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Abstract

This work was initially motivated by a paper of Yaniv Almog at
Siam J. Math. Appl. [Alm2]. The main goal is to show how some
non self-adjoint operators appear in a specific problem appearing in
superconductivity, to analyze their spectrum (in particular the non
emptyness), their pseudo-spectrum and the decay of the associated
semi-group. These results are obtained together with Y. Almog
and X. Pan [AlmHelPan1, AlmHelPan2, AlmHelPan3]. These
pseudo-spectral methods appear also in the analysis of the
Fokker-Planck equation.
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Outline

1. Abstract Analysis : from resolvent estimates to decay
estimates for the semi-group.

2. A toy model : Airy’s operator.

3. The problem in superconductivity.

4. The Fokker-Planck operator.
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ABSTRACT ANALYSIS
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From resolvent estimates to decay estimates for the
semi-group

Theorem GP1 : Gearhart-Prüss Theorem

Let A be a closed operator with dense domain D(A) generating a
strongly continuous semi-group T (t) = etA and ω ∈ R. Assume
that ‖(z − A)−1‖ is uniformly bounded in the half-plane Re z ≥ ω.
Then there exists a constant M > 0 such that P(M, ω) holds:

||T (t)|| ≤ Meωt .
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Reformulation in terms of ε-spectra

For any ε > 0, we define the ε-spectra by

σε(A) = {z ∈ C , ||(z −A)−1|| > 1

ε
} .

For a given accretive closed operator A = −A, we introduce

α̂ε(A) = inf
z∈σε(A)

Re z . (1)

It is obvious that
α̂ε(A) ≤ inf

z∈σ(A)
Re z . (2)

We also define in [−∞,+∞[:

ω̂0(A) = lim
t→+∞

1

t
log ||e−tA|| . (3)

Note that there are cases where ω̂0(A) = −∞ corresponding to
semigroups with a faster decay than exponential.
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Using Theorem GP1 with A = −A, we get the following statement.

Theorem GP2: Gearhart-Prüss reformulated

Let A be a densely defined closed operator in an Hilbert space X
such that −A generates a contraction semigroup. Then

lim
ε→0

α̂ε(A) = −ω̂0(A) . (4)
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Remarks.
This version is interesting because it reduces the question of the
decay, which is basic in the question of the stability to an analysis
of the ε-spectra of the operator for ε small, or equivalently the
level sets of the subharmonic function z 7→ ψ(z) := ||(A− z)−1||.

This is not interesting when A is similar to a selfadjoint operator.

For the application of the previous statements we are interested in
supν ψ(µ+ iν) for λ < inf{Re z | z ∈ σ(A)}.
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What we should remember:

It is not enough to know the spectrum for determining the decay of
the semi-group !

Let us now look at toy models before to consider specific examples
in superconductivity and (if time permits) in kinetic theory
(Fokker-Planck operator).
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TOY MODELS.
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The Airy operator in R
The operator D2

x + ix can be defined as the closed extension A of
the differential operator on C∞0 (R) :

A+
0 := D2

x + ix . (5)

A has compact resolvent, is accretive:

Re 〈Au | u〉 ≥ 0 . (6)

Hence −A is the generator of a semi-group St of contraction,

St = exp−tA . (7)

Hence all the results of this theory can be applied.
In particular, we have, for Reλ < 0

||(A− λ)−1|| ≤ 1

|Reλ|
. (8)
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A very special property of this operator is that, for any a ∈ R,

TaA = (A− ia)Ta , (9)

where Ta is the translation operator :

(Tau)(x) = u(x − a) . (10)

As immediate consequence, we obtain that the spectrum is empty

σ(A) = ∅ (11)

and that the resolvent of A, which is defined for any λ ∈ C satisfies

||(A− λ)−1|| = ||(A− Reλ)−1|| . (12)
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The most interesting property is the control of the resolvent for
Reλ ≥ 0.

Proposition

There exist two positive constants C0 and C1, such that

C1|Reλ|−
1
4 exp

4

3
Reλ

3
2 ≤ ||(A− λ)−1|| ≤ C2|Reλ|−

1
4 exp

4

3
Reλ

3
2 ,

(13)

(see Martinet [Mart] for this version and
Bordeaux-Montrieux–Sjöstrand for further improvments). The
proof of the (rather standard) upper bound is based on the direct
analysis of the semi-group in the Fourier representation. One can
show that || exp−tA|| decays more than exponentially.
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The Airy complex operator in R+

Here we mainly describe some results presented in [Alm2], who
refers to [IvKol]. We consider the Dirichlet realization AD of
D2
x + ix on the half space. Moreover, by construction, we have

Re 〈ADu | u〉 ≥ 0 , ∀u ∈ D(AD) . (14)

Again we have an operator, which is the generator of a semi-group
of contraction. Moreover, the operator has compact inverse, hence
the spectrum (if any) is discrete.

B. Helffer and Spectral problems



Using what is known on the usual Airy operator, Sibuya’s theory
and a complex rotation, we obtain ([Alm2]) that

σ(AD) = ∪+∞
j=1 {λj} (15)

with
λj = exp i

π

3
µj , (16)

the µj ’s being real zeroes of the Airy function satisfying

0 < µ1 < · · · < µj < µj+1 < · · · . (17)

It is also shown in [Alm2] that the vector space generated by the
corresponding eigenfunctions is dense in L2(R+).
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We arrive now to the analysis of the properties of the semi-group
and the estimate of the resolvent.
As before, we have, for Reλ < 0,

||(AD − λ)−1|| ≤ 1

|Reλ|
, (18)

If Imλ < 0 one gets also a similar inequality, so the main
remaining question is the analysis of the resolvent in the set
Reλ ≥ 0 , Imλ ≥ 0, which corresponds to the numerical range of
the symbol.
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Figure: Airy with Dirichlet condition : pseudospectra
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Application in superconductivity.
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The model in superconductivity

Consider a superconductor placed in an applied magnetic field and
submitted to an electric current through the sample. It is usually
said that if the applied magnetic field is sufficiently high, or if the
electric current is strong, then the sample is in a normal state. We
are interested in analyzing the joint effect of the applied field and
the current on the stability of the normal state.

To be more precise, let us consider a two-dimensional
superconducting sample capturing the entire xy plane. We can
assume also that a magnetic field of magnitude He is applied
perpendicularly to the sample. Denote the Ginzburg-Landau
parameter of the superconductor by κ and the normal conductivity
of the sample by σ.
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The physical problem is posed in a domain Ω with specific
boundary conditions.
We will only analyze limiting situations where the domains possibly
after a blowing argument become the whole space (or the
half-space).
In a work in progress [AlmHel] , we analyze the case of bounded
domains.
We will mainly work in 2D for simplification. 3D is also very
important.
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Then the time-dependent Ginzburg-Landau system (also known as
the Gorkov-Eliashberg equations) is in (0,T )× R2 :{

∂tψ + i κΦψ = ∇2
κAψ + κ2 (1− |ψ|2)ψ ,

κ2 curl 2A + σ (∂tA +∇Φ) = κ Im (ψ̄∇κAψ) + κ2 curl He ,

(19)
where ψ is the order parameter, A is the magnetic potential, Φ is
the electric potential, and (ψ,A,Φ) also satisfies an initial
condition at t = 0.
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Stationary normal solutions

From (19) we see that if (0,A,Φ) is a time-independent normal
state solution then (A,Φ) satisfies the equality

κ2 curl 2A + σ∇Φ = κ2 curl He , div A = 0 in R2 . (20)

(Note that if one identifies He to a function h, then
curl He = (−∂yh , ∂xh)).

This could be rewritten as the property that

κ2( curl A−He) + iσΦ ,

is an holomorphic function.
In particular

∆Φ = 0 and ∆( curl A−He)) = 0 .
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Results by Almog-Helffer-Pan: Φ affine

(19) has the following stationary normal state solution

A =
1

2J
(Jx + h)2̂iy, Φ =

κ2J

σ
y . (21)

Note that
curl A = (Jx + h) îz,

that is, the induced magnetic field equals the sum of the applied
magnetic field hîz and the magnetic field produced by the electric
current Jx îz .
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For this normal state solution, the linearization of (19) with
respect to the order parameter is

∂tψ+
iκ3Jy

σ
ψ = ∆ψ− iκ

J
(Jx + h)2∂yψ− (

κ

2J
)2(Jx + h)4ψ+κ2ψ .

(22)
Applying the transformation x → x − h/J and κ = 1 for
simplification the time-dependent linearized Ginzburg-Landau
equation takes the form

∂ψ

∂t
+ i

J

σ
yψ = ∆ψ − iJx2∂ψ

∂y
−
(1

4
J2x4 − 1

)
ψ . (23)
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Rescaling x and t by applying

t → J2/3t ; (x , y)→ J1/3(x , y) , (24)

yields
∂tu = −(A0,c − λ)u , (25)

where

A0,c := D2
x + (Dy +

1

2
x2)2 + icy , (26)

and

c = 1/σ ; λ = J−2/3 ; u(x , y , t) = ψ(J−1/3x , J−1/3y , J−2/3t) .
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Our main problem will be to analyze the long time property of the
attached semi-group.
We recall that

A0,c := D2
x + (Dy +

1

2
x2)2 + icy ,

Theorem

If c 6= 0, A = A0,c has compact resolvent, empty spectrum, and
there exist C , t0 such that, for t ≥ t0,

‖ exp(−tA)‖ ≤ exp
(
−

2
√

2|c|
3

t3/2 + Ct3/4
)
. (27)

We have also a lower bound using a quasimode construction.
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The case of the half-space

Once the definition of the extended operator A+
c has been

formulated, we may write

A+
c = D2

x + (Dy +
1

2
x2)2 + icy . (28)

Note that A+
c is not self-adjoint. Furthermore, we have that

(A+
c )∗ = A+

−c .

In the present contribution we analyze the spectrum of A+
c ,

denoted by σ(A+
c ), and the associated semi-group exp−tA+

c .
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As in the case of the whole space, we can easily prove that for any
c > 0, A+

c has compact resolvent. Moreover, if E0(ω) denotes the
ground state energy of the anharmonic oscillator (also called
Montgomery operator)

Mω := − d2

dx2
+
(x2

2
+ ω

)2
,

and if
E ∗0 = inf

ω∈R
E0(ω) = E0(ω∗) , (29)

then
σ(A+

c ) ⊂ {λ ∈ C , Reλ ≥ E ∗0 }. (30)
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As mentioned earlier, our interest is in the effect that the Dirichlet
boundary condition has on the spectrum σ(A+

c ) and on the
semigroups exp−tA+

c . Thus, it is interesting to compare them
with the analogous entities for the whole-plane problem.
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We have seen, that σ(A) must be empty and that the decay of the
semigroup exp(−tA) is faster than any exponential rate.
On the other hand, for the half-plane problem we do not expect
σ(A+

c ) to be empty. We provide a proof in the asymptotic regimes
c → +∞ and c → 0.
The proof is based on the construction of quasi-modes but one
should be aware that it is not immediate to deduce from this
construction the existence of an eigenvalue, when we have an
approximate eigenvalue.
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Theorem A

There exists c0 ≥ 0 such that for c ≥ c0

σ(A+
c ) 6= ∅.

Furthermore, there exists µ(c) ∈ σ(A+
c ) which as c → +∞:

µ(c) ∼ c2/3 exp(i
π

3
)α0 + λ1 exp(−i π

6
) c−1/3 +O(c−5/6) , (31)

with −α0 the rightmost zero point of Airy’s function, and λ1 an
eigenvalue of an harmonic oscillator like operator.
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µ(c) is the candidate to be the eigenvalue with smallest real part.
One can indeed show that if

µm(c) = inf
z∈σ(A+

c )
Re z . (32)

then, for all c > c0 µm(c) ∼ Reµ(c) +O(c−5/6) .
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The next result is based on Gearhard-Pruss Theorem and is valid
for all c > 0.

Theorem B

If σ(A+
c ) 6= ∅, then

lim
t→+∞

− log ‖ exp(−tA+
c )‖

t
= µm(c) . (33)
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The case of c large, Analytic dilation

Instead of dealing with σ(A+
c ), it is more convenient to analyze the

spectrum of the operator Pθ which is obtained from A+
c using a

gauge transformation and analytic dilation.
Let θ ∈ C. Like for the analysis of resonances, we introduce the
dilation operator

u 7−→ (U(θ)u)(x , y) = e−θ/2 u(eθx , e−2θy) . (34)

Set then

Pθ := U(θ)−1PU(θ) = e2θ (Dx − yx)2 − e−4θ ∂2
y + ic e2θ y , (35)
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For θ = −i π12 , we have

P−i π
12

= e iπ/3(D2
y + cy) + e−iπ/6(Dx − xy)2 .

Note that P−i π
12

is not unitarily equivalent to A+
c . But analytic

dilation facilitates the analysis of the spectrum of A+
c . We

introduce the (small) parameter ε = 1
c .
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After a (real) dilation, we get:

Bε := ε
(
Dx − xy

)2
+ i
(
D2
y + y

)
. (36)

The spectrum is unchanged but not the pseudo-spectrum. This
can be used to construct quasimodes and the non emptyness of the
spectrum.

B. Helffer and Spectral problems



Other non self-adjoint problems : The Fokker-Planck
operator

If V be a C∞ potential on Rm, then we consider the operator K
defined on C∞0 (R2m) by

K := −∆v +
1

4
|v |2 − m

2
+ X0 , (37)

where
X0 := −∇V (x) · ∂v + v · ∂x (38)

K is considered as an unbounded operator on H = L2(R2m).
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The simplest model of this type is on R2 (m = 1) when we

consider the quadratic one V (x) =
ω̃2

0
2 x2 (with ω̃0 6= 0), for which

rather explicit computations can be done:

− ∂2

∂v2
+

1

4
v2 − 1

2
− ω̃2

0x∂v + v∂x . (39)

In the general case, X0 is the vector field generating the
Hamiltonian flow associated with the Hamiltonian:
Rm × Rm 3 (x , v) 7→ 1

2 |v |
2 + V (x).

We denote its closure by K which is now called : the
Fokker-Planck operator.
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The main result is the following:

Theorem FP

For any V ∈ C∞(Rm), the associated Fokker-Planck operator is
maximally accretive.
Let us assume that, for some ρ0 >

1
3 and for |α| = 2, there exists

Cα > 0

|Dα
x V (x)| ≤ Cα(1 + |∇V (x)|2)

1−ρ0
2 , (40)

and
|∇V (x)| → +∞ , as |x | → +∞. (41)

Then K has compact resolvent and there exists a constant C > 0,
such that for all ν ∈ R,

|ν|
2
3 ||u||2+|| |∇V (x)|

2
3 u ||2 ≤ C

(
||(K − iν)u||2 + ||u||2

)
, ∀u ∈ C∞0 .

(42)
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Corollary FP

Uniformly for µ in a compact interval, there exists ν0 and C such
that µ+ iν is not in the spectrum of K and

||(K − µ− iν)−1|| ≤ C |ν|−
1
3 , ∀ν s.t. |ν| ≥ ν0 . (43)
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As a main application, we will show:

Theorem Decay

Under the assumptions of Theorem FP and assuming that
e−V ∈ L1(Rm), then there exists α > 0 and C > 0 so that

∀u ∈ L2(R2m),
∥∥∥e−tKu − Π0u

∥∥∥
L2
≤ Ce−αt ‖u‖ . (44)

where Π0 is the projector defined for u ∈ L2(R2m) by

(Π0u)(x , v) = Φ(x , v)(

∫
Φ(x , v) u(x , v) dxdv)/(

∫
Φ(x , v)2 dxdv) ,

(45)
with

Φ(x , v) := exp−v2

4
exp−V (x)

2
. (46)
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Remarks

References : Hérau-Nier, Villani, Helffer-Nier,
Hérau-Hitrick-Sjöstrand,...

There is some PT symmetric aspect.
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J. Sjöstrand.
Resolvent estimates for non-self-adjoint operators via
semi-groups.
http://arxiv.org/abs/0906.0094.

L.N. Trefethen.
Pseudospectra of linear operators.
SIAM Rev. 39 (3) (1997), p. 383-406.

B. Helffer and Spectral problems



L.N. Trefethen and Embree.
A course on Pseudospectra in three volumes (2004).

C. Villani.
Hypocoercivness. Memoirs of the AMS (2009).

B. Helffer and Spectral problems


