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General considerations :

Wave equations with energy dependent potentials are known since the

early days of relativistic quantum mechanics. The Pauli-Schrödinger

equation is a typical example. Recently they appear in the Hamiltonian

formalism of the relativistic many-body problem, i.e. in the manifestly

covariant formalism with constraints.

They can be used in the Schrödinger equation to introduce non-linear

effect, such that the soliton propagation or interacting clusters.

Studying analytical examples allows us to get acquainted with the effect

of the energy dependence of the potential and to show the differences

with respect to the usual case.



Purpose of the present work :

To point out two aspects of energy dependent potentials

1 - The regularisation effect in the case of singular potentials

2 - Supersymmetry properties

We consider potentials of the form

V (x) = V0(x) + E V1(x) (1)

Analytical cases generally requires V1(x) = γV0(x). This work is

made in D = 1 but it is easily extended to higher dimensions.



Local equivalent potentials.

Much of our arguments are based on the concept of the local
equivalent potential.

Consider the Schrödinger equation (we limit the discussion to
discrete states)

[

− d2

dx2
+ V0(x) + EnV1(x)

]

ψn(x) = Enψn(x) . (2)

Suppose the eigenvalue En = ǫn to be known, the Schrödinger
equation with the local equivalent potential

Un(x) = V0(x) + ǫn V1(x) (3)

yields the same solution for the state |n >, with ψn = φn but the
normalisation is different.



Singular potentials.

In the case of attractive short range potentials, with bound states
of negative energy, the energy dependence increases the
eigenvalues, in other words it diminishes the binding.

An illustrative example : in D = 3 dimensions, take

V (r) = −λ rα [1 + γEn] , (4)

with λ > 0, α < 0 and γ ≥ 0.

NOTA : For this form of potentials, γ has to be positive to ensure
the positivity of the density distribution.

Let us look at some numerical estimates.
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These numerical results are no more than an indication, specially
for α→ −2.

Theorem :

Let V (x) = −λf (|x |)[1 + γE ]

λ > 0 ; f (|x |) → 0 as x → ±∞, possibly singular in x = 0,

If V (x) admits a bound state solution ψǫ(x) (square integrable !)
with E = −ǫ,

H = − d2

dx2
+ V (x) (5)

is bounded from below.



As stated above, ψǫ(x) is also solution of the local equivalent
potential

[

− d2

dx2
− Uǫ(|x |)

]

φǫ(x) = −ǫφǫ(x) (6)

with
Uǫ(|x |) = λf (|x |)[1− γǫ] . (7)

We multiply from the left with φǫ(x) and integrate. It yields

−
∫

∞

−∞

φǫ(x)
d2

dx2
φǫ(x)dx −

∫

∞

−∞

|φǫ(x)|2Uǫ(|x |)dx = −ǫ . (8)

The first contribution on the left is positive definite (kinetic
energy), thus, with λ > 0, γ > 0 and f (|x |) > 0, this equation is
satisfied if and only if

1− γǫ > 0, namely ǫ < 1/γ.

quod erat demonstrandum !



This result applies to a large class of potentials, including singular
cases.

First example : The D = 1 Hydrogen atom

L.K.Haines and D.R. Roberts Am. J. of Physics 37 (1969) 1145.

We use ~ = 2m = 1

[− d2

dx2
− e2

|x |(1 + γE )]ψ(x) = Eψ(x) (9)

Setting E = − 1

a2
0
α2 , e

2 = 2

a0
(a0 is the Bohr orbit) and x = 1

2
a0αz

yields
[

d2

dz2
− 1

4
+

1

|z |(α− γ′

α
)

]

ψ(z) = 0 (10)

which is the Whittaker’s equation (here γ′ = γ/a20).



The solution is given by

ψ(z) = e−z/2 z U(1− κ, 2, z) , (11)

where κ = α− γ′/α

The behaviour as z → 0 is given by

ψ(z) → C±

Γ(−κ) [−
1

κ
+ |z | ln |z |+ O(z) . (12)

The matching condition at z = 0 yields

−1

κ

C+

Γ(−κ) = −1

κ

C−

Γ(−κ) . (13)

Ground state : this is satisfied as soon as κ 6= 0, which implies

α− γ′/α > 0 i.e. α > 1/γ′ . (14)



Second example : The D = 3 square well potential.

V (r) = −λ(1 + γE )Θ(R − r)

It simulates a singular potential when λ→ ∞. The solutions are
well known. For the 1s state, if

k2 = λ(1 + γE1s) + E1s and κ2 = −E1s , (15)

the matching of the logarithmic derivatives at r = R yields

tan(kR) = −k/κ . (16)

The existence of a bound state requires k2 > 0, which yields
immediately

E1s > − λ

1 + γ λ
. (17)



The matching conditions can be solved numerically to the desired
degree of accuracy.

The numerical estimate for the 1s and the 1p states yields

λ E1s E1p

5 -0.4033 unbound
10 -0.9827 -0.0168
50 -1.7491 -1.4966
100 -1.871 -1.7409
500 -1.9736 -1.9469
1000 -1.9868 -1.9734

Table: Here, R = 1 and γ = .5



The Pöschl-Teller case

For the ground state

[

− d2

dxx
− λ(1 + γE0)

cosh x2

]

ψ0(x) = E0ψ0(x) (18)

as λ→ ∞

E0 → − 1

1/λ+ γ
. (19)



Supersymmetry.

We propose a way to extend the supersymmetry algebra to energy
dependent potentials, by generalising the superpotential. It uses
the concept of local equivalent potential.

We recall that the superpotential is defined by (D = 1 - dimension)

W (x) = −φ
′
0(x)

φ0(x)
. (20)

Let {ψn(En, x),En} be the set of eigenfunctions and eigevalues of
V0(x)(1 + γEn)
To each state ψk(Ek , x) ∈ {ψn(En, x)}, a potential Uk(x) can be
associated in such a way that

[

− d2

dx2
+ Uk(x)

]

ψk(Ek , x) = Ekψk(Ek , x). (21)



Obviously we have

Uk(x) = V0(x)(1 + γEk) = λkV0(x). (22)

Uk(x) local, energy independent

[

− d2

dx2
+ Uk(x)

]

φk,m(x) = εk,mφk,m(x) m = 0, 1, 2, . . . (23)

generates a set {φk,m(x), εk,m} of eigenfunctions and eigenvalues
with

φk,k(x) = ψk(Ek , x) ; εk,k = Ek (24)

and

φk,m(x) 6= ψk(Ek , x); εk,m 6= Ek if m 6= k . (25)



Uk(x) differs from V0(x) only through its coupling constant.
A corresponding superpotential can be defined from the ground
state wave function of Uk(x) φk,0(x) :

Wk(Ek , x) = −
φ′k,0(x)

φk,0(x)
, (26)

Each eigenstate of a potential depending on energy through its
coupling constant is simultaneously an eigenstate of a local energy
independent potential. A superpotential can be associated to this
state. The ensemble of these superpotentials provides the
generalisation of the superpotential.



Orthogonality relations :
For {k} of energy Ek , ψk(Ek , x) ≡ φk,k(x) up to the normalisation
factor. Then, the orthogonality condition with respect to the
φk,m(x) functional space is ensured by

∫

ψk(Ek , x)φk,m(x)dx = δkm. (27)

The orthogonality of φk,k(x) with respect to the ψn(En, x) is given
by

∫

ψn(En, x)φk,k(x)

[

1− ∂V (En, x)

∂En

]

dx = δkn. (28)



The generalised superpotential allows us to generalise the basic
differential operators :

A+
n = − d

dx
+Wn(En, x) ; A−

n =
d

dx
+Wn(En, x). (29)

They obey
[

A+
n ,A

−

n

]

= 2W ′

n(En, x) (30)

and

A+
n A

−

n =

[

− d2

dx2
+W 2

n (En, x)−W ′

n(En, x)

]

= Hn − εn,0 . (31)

εn,0 is defined from (21) for the ground state m = 0.



The supersymmetric partners H−
n and H+

n are shifted in energy
with respect to the spectrum of the reference Hn, in such a way
that E−

0
= 0.

With the superpotential depending on the state, the shift is
different for each state.

H−

n = A+
n A

−

n + (εn,0 − ε0,0) n = 0, 1, 2, 3, . . . . (32)

Moreover, the parameters of H+
n has to be shifted by one unit with

respect to those of H−
n to ensure ψ+

n (En+1, x) and ψ
−

n+1
(En+1, x).

H+
n = A−

n+1
A+

n+1
+ (εn+1,0 − ε0,0) n = 0, 1, 2, 3, . . . . (33)



These two Hamiltonians satisfy

H−

n ψ
−

n (En, x) = E−

n ψ
−

n (En, x) ; H+
n ψ

+
n (En+1, x) = E+

n ψ
+
n (En+1, x) .

(34)
With these modifications taken into account, the basic rules of
supersymmetry are fulfilled by energy dependent potential :
- factorisation of the Hamiltonians
- relationships between eigenvalues and wave functions of H−

n and
H+
n .

E+
n = E−

n+1
. (35)

ψ+
n (En+1, x) = A−

n+1
ψ−

n+1
(En+1, x) (36)

ψ−

n+1
(En+1, x) = A+

n ψ
+
n (En+1, x). (37)



The harmonic oscillator

V0(x) = ω2x2.

Hnψn(En, x) =

[

− d2

dx2
+ ω2(1 + γEn)x

2

]

ψn(En, x) = Enψn(En, x)

(38)

ψn(En, x) = Hn(
√
αnx)e

−αnx
2/2, n = 0, 1, 2, ..., (39)

where Hn are the Hermite polynomials. The eigenvalues and the
coupling constant are linked by

α2
n = ω2(1 + γEn); En = (2n + 1)αn γ < 0. (40)

En =
1

2

[

ω2γ(2n + 1)2 ± ω(2n + 1)
√

ω2γ2(2n + 1)2 + 4

]

. (41)

Only the roots with the positive square root lead to normalisable
wave functions.



The problem is governed by the parameter αn, and the
superpotential is given by

Wn(En, x) = αnx . (42)

It yields

H−

n ψ
−

n (αn, x) =

[

− d2

dx2
+ α2

nx
2 − α0

]

ψ−

n (αn, x) = E−

n ψ
−

n (αn, x).

(43)

E−

n = En − α0 = (2n + 1)αn − α0. (44)

H+
n ψ

+
n (αn+1, x) =

[

− d2

dx2
+ 2αn+1 + α2

n+1x
2 − α0

]

ψ+
n (αn+1, x)(45)

= E+
n ψ

+
n (αn+1, x).

It is easy to check that the all relationships are verified. In
particular

E+
n = (2n + 3)αn+1 − α0 = E−

n+1
. (46)



Conclusions.

The present work is devoted to the energy dependent potentials.
We consider a linear dependence, which leads to a coherent theory.

For attractive potentials :

The energy dependence affects essentially the lowest states, which
are less bound. It has a regularisation effect in the sense that the
corresponding Hamiltonians are bounded from below, leading to
finite binding energies in the case of singular potentials.

Supersymmetry :

We propose a construction extending the concept of superpotential
to the energy dependent case. With this generalisation taken into
account, the rules of supersymmetry are applicable.


