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The motivation

> effort to extend Quantum mechanics with P7-symmetric operators [BeBo9s]
— only similarity to self-adjoint operators [Moo02],[ScGeHa92]
» non-local self-adjoint operator — (non-self-adjoint) differential operator

» What about spin?

[BeBo98] 1998, Bender, Boettcher, Physical Review Letters 80
[Mo02] 2002, Mostafazadeh, Journal of Mathematical Physics 43
[ScGeHa92] 1992, Scholtz, Geyer, Hahne, Annals of Physics 213



Influence of the spin

» Pauli equation
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» complexification through boundary conditions
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> time-reversal operator 7 differs from complex conjugation

» for fermionic systems:

T2 =-1
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The model
> HY = — AU+ LB LU+ £ (B x £V + uB -6V

» homogeneous, time-independent field B:= (0,0, B)

> l;é L and B x 7 act in first two space variables
B - & = Bos acts in the third (o3 = diag(1, —1))
> Q:=R2 x (—a,a)

> matrix A constant on each connected component of 92

— separation of the problem — focus on the one dimensional problem in the
third variable (denoted z)

— ‘ 0 a




The Hamiltonian
> A = L*((—a,a);C?)
» 12—y p—puB

2m

42
44 0
Hy = dz a2
0 -2
z

D(Hp) := {®¥ € H*((—a,a);C?) |¥/(+a) + AT¥(+a) =0, AT €C??}




Sesquilinear form

» form associated with Hamiltonian: hy(®, V) := (P, H,¥)
hy(®, ) = (&', ') + b(®,030) + B (a)ATW(a) =B (—a)A~T(—a)
D(hy) := H'((~a,a);C?),
> perturbation results — hy(®, ¥) is closed sectorial form

= Representation theorem — a unique m-sectorial operator Hj on . such that
hb(i', ‘I/) = (@7 Hb‘ll) for all ® € D(hb) and ¥ € D(Hb) C D(hb)

Imz

Rez




Adjoint operator

> in agreement with previous statements

Hy W = <_d%% to d20 B b) (ﬁt) s

dz?
D(H,) = {¥ € H?((—a,0);C?) | W' (a) + AT U(ka) =0}

> H; is easily found through h}(®,¥) := h; (¥, ®)



Adjoint operator

> in agreement with previous statements

Hbqf=<_di%+b <120b> (ﬁt)’

dz?
D(H,) = {¥ € H?((—a,0);C?) | W' (a) + AT U(ka) =0}

> H; is easily found through h}(®,¥) := h; (¥, ®)

d2
H;\I/: 7@+b 20 <T/J+>’
0 —d ) \¥-

D(H;) = {® € H*((~a,a);C?) |V (+a) + (A*)*¥(+a) =0}
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The scattering motivation

> generalized problem
d2
gz tb+ V(z) ) 0 (¢+>:>\(¢+)
0 — L b+ V(2)) \¥- Y-/’

where V(z) is an electric potential supported in (—a, a)



The scattering motivation

» generalized problem

(—sz Ve o W)) () =2 (4).

dz?

where V(z) is an electric potential supported in (—a, a)

» Robin-type boundary conditions

P! (£a) —ivVA—b 0 Yi(Ea))
(J(ﬂ)) + ( 0 AT b) (wf(ia)) =0

V()
U(z) = e%m eim
e /\ @) = ( (VAT )
—a "a z



The scattering motivation

> solving the non-linear problem by one-parametric spectral problem [HCKrSi11]

(52 +§+ " — & —(Z+ V(ac)) (iﬁ =@ (if) ’

(FE2) (T ) () =

> solutions of the original problem are obtained using the dispersion relation

AMax) = as

> solutions are perfect transmission energies

» complex points in the spectrum correspond to the loss of PTE’s
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Symmetries

How to choose 7T physically?

Maxwell equations

rot B = 107 + ﬂof—ro%

o 9B
rotll = -5
divE = £ divB = 0,

€0
where E is electric field intensity, B is magnetic field induction
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Symmetries

How to choose 7T physically?

Maxwell equations

rot B = 107 + ﬂof—ro%

rotE = 78371;3

divE = £z divB = 0,

where E is electric field intensity, B is magnetic field induction
> time-reversal T

> charge density p — p, current density j — —f
= E—-E B-—-B
Definition

We say that linear operator Hy is PT -symmetric if it satisfies the relation
[Ho, PT] = 0.

- (PU)(@) = U(—a),  (TW)(a) = (ioakW)(a) = =)
P+ (2)
(K¥)(z) := T(a)



Symmetry properties of Hp

Definition
We say that a densely defined operator H on a Hilbert space is S-self-adjoint if
H* = S™YHS for some bounded and boundedly invertible operator S.

Proposition

Hy is
> PT-symmetric if, and only if, A~ = TATT

Hy is
> PK-symmetric if, and only if, A= = —KATK
> self-adjoint if, and only if, (AT)* = A+
> P-self-adjoint if, and only if, A= = —(A1)*
> T-self-adjoint if, and only if, (A)* = —TATT
> K-self-adjoint if, and only if, (AT)* = —KAEK
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Basic notions about the spectrum of H,

> S-self-adjointness with an antilinear S = empty residual spectrum [BoKros]
> AN€op(Hy) <& X€Eop(H)
> o(H) = {AECIAE o, (Hy) & Agop(H)}

> spectrum is enclosed in a parabola

> PK-symmetry = spectrum is symmetric with respect to the real axis

Q




Basic notions about the spectrum of H,

> Hy is an operator with compact resolvent = spectrum is purely discrete
» implicit equation for the eigenvalues
(det(A+) +det(A7) — a11a22 a;rz afl) k— k4 cos(ak—) cos(aky)
+ (det(A"") det(A™) + “11“1_1]“7 + a;'QaQ_Qki + k2 ki) sin(ak_) sin(aky)
( Tag, + afy det(A7) + (—af| + a;)k2 ) k4 sin(ak—_) cos(ak4)
( det(AM)a;; + an det(A7) + (— a22 + a22)k+) k— cos(ak—)sin(aky)
+ (a2

Gy, G159 + a12a21) k_ky =0,

where k+ = VA F b



A:I:

= (_9,1%) - Self-adjoint example

Spectrum of H

K2 k2 4+ at

tan(aky ) cot(ak—) + tan(ak—) cot(aky) = — 5
e

A = A* = spectrum is real.

a2
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AT = (io‘g[ﬁ iai ﬁ) - Decoupled non-Hermitian example

Spectrum of H
(72[%_ cos(2ak_) + (k2 — a? — ?) sin(2ak_))
X (—26k+ cos(2ak4) + (k+ —a? )sm(2ak+))

Studied for fixed 8 [Krsi10]
» =0
» >0
» <0



AT = (io‘g[ﬁ iai ﬁ) - Decoupled non-Hermitian example

Spectrum of H for 5 =0
[KrBiZn06]

(k2 — a2)(ki — a?)sin(2ak_) sin(2ak;) = 0
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AT = (io‘g[ﬁ iai ﬁ) - Decoupled non-Hermitian example

Spectrum of H for 8 > 0
(—2Bk_ cos(2ak_) + (k2 —a? — B?) sin(2ak_))
X (—25k+ cos(2ak+) + (k+ —a? - )sm(2ak+)) 0

Spectrum is real.




AT = (io‘g[ﬁ iai ﬁ) - Decoupled non-Hermitian example
Spectrum of H for 5 < 0
(—Qﬂk, cos(2ak_) + (K2 —a® — %) sin(2ak,))
X (—25k+ cos(2aky) + (k+ —a? )sm(2ak+)) 0

» complex-conjugated pairs of eigenvalues appear in the spectrum.

> simultaneously at most only two pairs

Re A ImaA
0 6




AT = (io‘g[ﬁ iai ﬁ) - Decoupled non-Hermitian example

Existence of the (bounded) metric operator

_(I+K 0
@'_( 0 I+K)

» K is an integral operator with kernel [KrSize11]
K(z,y) := =Pyl (¢ 4 jasgn(z — v))

where c is an arbitrary constant

» metric is positive if 3 is positive and large; or « is small; or |a| and |c| are
small



A* = (i(i)a i(i)a) - Coupled non-Hermitian example

Spectrum of H
402k k_ cos(aky)? cos(ak—)? + 402k k_ sin(aky )? sin(ak— )2
= —(kyk— + a*)sin(2aky ) sin(2ak_).

» complex-conjugated pairs of eigenvalues appear in the spectrum.

» simultaneously multiple pairs

Rea
350
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Concluding remarks

> investigation of the role of spin in P7-symmetric quantum mechanics
> special attention to the physical choice of operator T (7-2 =-1)

> physical realisation (scattering, metric)



Concluding remarks

> investigation of the role of spin in P7-symmetric quantum mechanics
> special attention to the physical choice of operator T (7-2 =-1)

> physical realisation (scattering, metric)

? connected boundary conditions

7 similarity transformations

-

self-adjoint counterparts of H,,



Thank you for your attention!
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