From Krein to S-spaces: A SHORT STEP

Franciszek Hugon Szafraniec
Uniwersytet Jagielloński, Kraków

August 31, 2012

An ad hoc example

An ad hoc example

Let a be a complex number and a "potential" V with the property $V(a x)=\overline{V(x)}$.

An ad hoc example

Let a be a complex number and a "potential" V with the property $V(a x)=\overline{V(x)}$. In the $\mathscr{L}^{2}(I)$ introduce the operator $(U f)(x) \stackrel{\text { def }}{=} a^{-1 / 2} f(a x)$.

An ad hoc example

Let a be a complex number and a "potential" V with the property $V(a x)=\overline{V(x)}$. In the $\mathscr{L}^{2}(I)$ introduce the operator $(U f)(x) \stackrel{\text { def }}{=} a^{-1 / 2} f(a x)$. It is unitary in $\mathscr{L}^{2}(I)$.

An ad hoc example

Let a be a complex number and a "potential" V with the property $V(a x)=\overline{V(x)}$. In the $\mathscr{L}^{2}(I)$ introduce the operator $(U f)(x) \stackrel{\text { def }}{=} a^{-1 / 2} f(a x)$. It is unitary in $\mathscr{L}^{2}(I)$.
Consider a (very indefinite) inner product in $\mathscr{L}^{2}(I)$, namely

$$
[f, g] \stackrel{\text { def }}{=} \int_{I}(U f)(x) \overline{g(x) \mathrm{d} x}
$$

An ad hoc example

Let a be a complex number and a "potential" V with the property $V(a x)=\overline{V(x)}$. In the $\mathscr{L}^{2}(I)$ introduce the operator
$(U f)(x) \stackrel{\text { def }}{=} a^{-1 / 2} f(a x)$. It is unitary in $\mathscr{L}^{2}(I)$.
Consider a (very indefinite) inner product in $\mathscr{L}^{2}(I)$, namely

$$
[f, g] \stackrel{\text { def }}{=} \int_{I}(U f)(x) \overline{g(x) \mathrm{d} x}
$$

. Multiplication by V is selfadjoint with respect to the new inner product $[\cdot,-]$, whatever it means.

Basic definition

Basic definition

\mathscr{E} be a complex linear space,

Basic definition

\mathscr{E} be a complex linear space,
$\mathscr{E} \times \mathscr{E} \ni(f, g) \mapsto[f, g] \in \mathbb{C}$ a Hermitian bilinear form.

Basic definition

\mathscr{E} be a complex linear space,
$\mathscr{E} \times \mathscr{E} \ni(f, g) \mapsto[f, g] \in \mathbb{C}$ a Hermitian bilinear form.
Call \mathscr{E} just an inner product space.

Basic definition

\mathscr{E} be a complex linear space,
$\mathscr{E} \times \mathscr{E} \ni(f, g) \mapsto[f, g] \in \mathbb{C}$ a Hermitian bilinear form.
Call \mathscr{E} just an inner product space.
An inner product space \mathscr{E} is said to be a S-space if there is a Hilbert space structure in \mathscr{E} with the positive definite inner product $\mathscr{E} \times \mathscr{E} \ni(f, g) \mapsto\langle f, g\rangle \in \mathbb{C}$ and a unitary operator U in the Hilbert space $(\mathscr{E},\langle\cdot,-\rangle)$ such that

$$
[f, g]=\langle U f, g\rangle, \quad f, g \in \mathscr{E} ;
$$

Basic definition

\mathscr{E} be a complex linear space,
$\mathscr{E} \times \mathscr{E} \ni(f, g) \mapsto[f, g] \in \mathbb{C}$ a Hermitian bilinear form.
Call \mathscr{E} just an inner product space.
An inner product space \mathscr{E} is said to be a S-space if there is a Hilbert space structure in \mathscr{E} with the positive definite inner product $\mathscr{E} \times \mathscr{E} \ni(f, g) \mapsto\langle f, g\rangle \in \mathbb{C}$ and a unitary operator U in the Hilbert space $(\mathscr{E},\langle\cdot,-\rangle)$ such that

$$
[f, g]=\langle U f, g\rangle, \quad f, g \in \mathscr{E} ;
$$

The latter is not uniquely determined though its role is more than auxiliary. We refer to $(\mathscr{E},\langle\cdot,-\rangle, U)$ as a Hilbert space realization of the S -space in question.

Next-door consequences

$1^{\circ} \mathrm{S}$-inner product is separating.

Next-door consequences

$1^{\circ} \mathrm{S}$-inner product is separating.
2° There is a unique (independent of a particular choice of a Hilbert space realization) topology in \mathscr{E} which makes the S-inner product separately continuous.

Next-door consequences

$1^{\circ} \mathrm{S}$-inner product is separating.
2° There is a unique (independent of a particular choice of a Hilbert space realization) topology in \mathscr{E} which makes the S-inner product separately continuous.
Consequently, closedness, closure, core and continuity (hence boundedness) of an operator are uniquely designated.

The topolological dual of an S-space

The topolological dual of an S-space

The conjugate of an S-space
If $(\mathscr{E},[\cdot,-])$ is an S-space then so is $(\mathscr{E},[\cdot-])$ with

$$
[f, g]_{\mathrm{con}} \stackrel{\text { def }}{=}[g, f], \quad f, g \in \mathscr{E} ;
$$

The topolological dual of an S-space

The conjugate of an S-space
If $(\mathscr{E},[\cdot,-])$ is an S-space then so is $(\mathscr{E},[\cdot-])$ with

$$
[f, g]_{\text {con }} \stackrel{\text { def }}{=}[g, f], \quad f, g \in \mathscr{E} ;
$$

call the latter the conjugate of the former. Moreover, if $(\mathscr{E},\langle\cdot,-\rangle, U)$ is a Hilbert space realization of $(\mathscr{E},[\cdot,-])$ then $\left(\mathscr{E},\langle\cdot,-\rangle, U^{*}\right)$ is a Hilbert space realization of $\left(\mathscr{E},[\cdot,-]_{\text {con }}\right)$.

The Riesz-like representation

The Riesz-like representation

An S-space and its conjugate bear the same topology and share the same topological dual \mathscr{E}^{\prime},

The Riesz-like representation

An S-space and its conjugate bear the same topology and share the same topological dual \mathscr{E}^{\prime}, however the F. Riesz identification of \mathscr{E}^{\prime} results in two different mappings. More precisely, the following is easy to prove.

The Riesz-like representation

An S-space and its conjugate bear the same topology and share the same topological dual \mathscr{E}^{\prime}, however the F. Riesz identification of \mathscr{E}^{\prime} results in two different mappings. More precisely, the following is easy to prove.

Riesz-like
For $\Phi \in \mathscr{E}$ ' there is a uniquely determined pair $\left(g_{1}, g_{2}\right)$ of vectors of \mathscr{E} such that

$$
\Phi(f)=\left[f, g_{1}\right]=\left[f, g_{2}\right]_{\mathrm{con}}, \quad f \in \mathscr{E} .
$$

Dissymetry operator

Dissymetry operator

Consequently, there is a unique linear bicontinuous operator D on \mathscr{E} such that

$$
[f, g]=\overline{[D g, f}], \quad f, g \in \mathscr{E} .
$$

Dissymetry operator

Consequently, there is a unique linear bicontinuous operator D on \mathscr{E} such that

$$
[f, g]=\overline{[D g, f}], \quad f, g \in \mathscr{E} .
$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot,-]$, call it the dissymmetry operator of the S-space $(\mathscr{E},[\cdot,-])$.

Dissymetry operator

Consequently, there is a unique linear bicontinuous operator D on \mathscr{E} such that

$$
[f, g]=\overline{[D g, f}], \quad f, g \in \mathscr{E} .
$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot,-]$, call it the dissymmetry operator of the S-space $(\mathscr{E},[\cdot,-])$. For the Krein space it is equal to I.

Dissymetry operator

Consequently, there is a unique linear bicontinuous operator D on \mathscr{E} such that

$$
[f, g]=\overline{[D g, f}], \quad f, g \in \mathscr{E} .
$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot,-]$, call it the dissymmetry operator of the S-space $(\mathscr{E},[\cdot,-])$. For the Krein space it is equal to I.

Important
Suppose $(\mathscr{E},\langle\cdot,-\rangle, U)$ is any Hilbert space realization of the S-space \mathscr{E}. Then $D=\left(U^{*}\right)^{2}$.

Dissymetry operator

Consequently, there is a unique linear bicontinuous operator D on \mathscr{E} such that

$$
[f, g]=\overline{[D g, f}], \quad f, g \in \mathscr{E} .
$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot,-]$, call it the dissymmetry operator of the S-space $(\mathscr{E},[\cdot,-])$. For the Krein space it is equal to I.

Important
Suppose $(\mathscr{E},\langle\cdot,-\rangle, U)$ is any Hilbert space realization of the S-space \mathscr{E}. Then $D=\left(U^{*}\right)^{2}$. Consequently,

Dissymetry operator

Consequently, there is a unique linear bicontinuous operator D on \mathscr{E} such that

$$
[f, g]=\overline{[D g, f}], \quad f, g \in \mathscr{E} .
$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot,-]$, call it the dissymmetry operator of the S-space $(\mathscr{E},[\cdot,-])$. For the Krein space it is equal to I.

Important

Suppose $(\mathscr{E},\langle\cdot,-\rangle, U)$ is any Hilbert space realization of the S-space \mathscr{E}. Then $D=\left(U^{*}\right)^{2}$. Consequently,

1. the dissymmetry operator D is unitary in $(\mathscr{E},\langle\cdot,-\rangle, U)$,

Dissymetry operator

Consequently, there is a unique linear bicontinuous operator D on \mathscr{E} such that

$$
[f, g]=\overline{[D g, f}], \quad f, g \in \mathscr{E} .
$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot,-]$, call it the dissymmetry operator of the S-space $(\mathscr{E},[\cdot,-])$. For the Krein space it is equal to I.

Important

Suppose $(\mathscr{E},\langle\cdot,-\rangle, U)$ is any Hilbert space realization of the S-space \mathscr{E}. Then $D=\left(U^{*}\right)^{2}$. Consequently,

1. the dissymmetry operator D is unitary in $(\mathscr{E},\langle\cdot,-\rangle, U)$,
2. the operator U^{2} is independent of a particular choice of a Hilbert space realization.

The S-space adjoints of an operator

The S-space adjoints of an operator

Given a densely defined operator A in \mathscr{E}, a densely defined operator A^{\natural} is said to be a (right) adjoint of A and another densely defined operator ${ }^{\natural} A$ (left) adjoint of A if

$$
\begin{aligned}
& {[A f, g]=f A^{\natural} g, \quad f \in \mathscr{D}(A), g \in \mathscr{D}\left(A^{\natural}\right) ;} \\
& \left.[f, A g]={ }^{\natural} A f, g\right], \quad f \in \mathscr{D}\left({ }^{\natural} A\right), g \in \mathscr{D}(A) .
\end{aligned}
$$

The S-space adjoints of an operator

Given a densely defined operator A in \mathscr{E}, a densely defined operator A^{\natural} is said to be a (right) adjoint of A and another densely defined operator ${ }^{\natural} A$ (left) adjoint of A if

$$
\begin{aligned}
& {[A f, g]=f A^{\natural} g, \quad f \in \mathscr{D}(A), g \in \mathscr{D}\left(A^{\natural}\right) ;} \\
& {[f, A g]=\left[{ }^{\natural} A f, g\right], \quad f \in \mathscr{D}\left({ }^{\natural} A\right), g \in \mathscr{D}(A) .}
\end{aligned}
$$

D in action
$A^{\natural}={ }^{\natural} A$ if and only if $D A^{*}=A^{*} D$. In addition to this, $D^{\natural}={ }^{\natural} D=D^{-1}=D^{*}$ 。

The S-space adjoints of an operator

Given a densely defined operator A in \mathscr{E}, a densely defined operator A^{\natural} is said to be a (right) adjoint of A and another densely defined operator ${ }^{\natural} A$ (left) adjoint of A if

$$
\begin{aligned}
& {[A f, g]=f A^{\natural} g, \quad f \in \mathscr{D}(A), g \in \mathscr{D}\left(A^{\natural}\right) ;} \\
& \left.[f, A g]={ }^{\natural} A f, g\right], \quad f \in \mathscr{D}\left({ }^{\natural} A\right), g \in \mathscr{D}(A) .
\end{aligned}
$$

D in action
$A^{\natural}={ }^{\natural} A$ if and only if $D A^{*}=A^{*} D$. In addition to this, $D^{\natural}={ }^{\natural} D=D^{-1}=D^{*}$ 。

S-symmetric and S-selfadjoint

S-symmetric and S-selfadjoint

Due to the splitting in the notion of S-adjoint we have to start with two possibilities:

S-symmetric and S-selfadjoint

Due to the splitting in the notion of S-adjoint we have to start with two possibilities: A is left symmetric if $A \subset{ }^{\natural} A$ and it is right symmetric if $A \subset A^{\natural}$.

S-symmetric and S-selfadjoint

Due to the splitting in the notion of S -adjoint we have to start with two possibilities: A is left symmetric if $A \subset{ }^{\natural} A$ and it is right symmetric if $A \subset A^{\natural}$. Furthermore, A is left selfadjoint if $A={ }^{\natural} A$ and it is right selfadjoint if $A=A^{\natural}$.

S-symmetric and S-selfadjoint

Due to the splitting in the notion of S-adjoint we have to start with two possibilities: A is left symmetric if $A \subset{ }^{\natural} A$ and it is right symmetric if $A \subset A^{\natural}$. Furthermore, A is left selfadjoint if $A={ }^{\natural} A$ and it is right selfadjoint if $A=A^{\natural}$. This disadvantage turns out to be temporary because

Lucky coincidence
A is right symmetric if and only if it is left symmetric. A is right selfadjoint if and only if it is left selfadjoint.

S-symmetric and S-selfadjoint

Due to the splitting in the notion of S-adjoint we have to start with two possibilities: A is left symmetric if $A \subset{ }^{\natural} A$ and it is right symmetric if $A \subset A^{\natural}$. Furthermore, A is left selfadjoint if $A={ }^{\natural} A$ and it is right selfadjoint if $A=A^{\natural}$. This disadvantage turns out to be temporary because

Lucky coincidence
A is right symmetric if and only if it is left symmetric. A is right selfadjoint if and only if it is left selfadjoint.
Furthermore, A is S-symmetric if and only if $A \subset U A^{*} U^{*}$ and it is S-selfadjoint if $A=U A^{*} U^{*}$ holds.

S-normality and S-subnormality

My final goal is to develop the theory of S-subnormality (work still in progress) keeping in mind its usefulness in studying the quantum harmonic oscillator.

S-normality and S-subnormality

My final goal is to develop the theory of S-subnormality (work still in progress) keeping in mind its usefulness in studying the quantum harmonic oscillator. Unfortumately, or maybe fortunately, the notions split as before and are reluctant to merge.

Another example

Another example

Consider the two-sided ℓ^{2} space and a two-sided weighted shift, that is

$$
S=U^{*} D
$$

where U is the two-sided backward shift and D is the diagonal operator of weightes.

Another example

Consider the two-sided ℓ^{2} space and a two-sided weighted shift, that is

$$
S=U^{*} D
$$

where U is the two-sided backward shift and D is the diagonal operator of weightes.

The point

Another example

Consider the two-sided ℓ^{2} space and a two-sided weighted shift, that is

$$
S=U^{*} D
$$

where U is the two-sided backward shift and D is the diagonal operator of weightes.

The point
S is S-nomal with U fitting in the definition of the S-space in question.

Aplication

Another example

Consider the two-sided ℓ^{2} space and a two-sided weighted shift, that is

$$
S=U^{*} D
$$

where U is the two-sided backward shift and D is the diagonal operator of weightes.

The point
S is S-nomal with U fitting in the definition of the S-space in question.

Aplication
q-deformed version of the quantum harmonic oscillator.

