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An ad hoc example

Let a be a complex number and a “potential” V with the property
V (ax) = V (x). In the L 2(I) introduce the operator

(Uf)(x)
def
= a−1/2f(ax). It is unitary in L 2(I).

Consider a (very indefinite) inner product inL 2(I), namely

[f, g]
def
=

∫
I
(Uf)(x)g(x) dx

. Multiplication by V is selfadjoint with respect to the new inner
product [ · ,−], whatever it means.

Details later
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Basic definition

E be a complex linear space,
E × E 3 (f, g) 7→ [f, g] ∈ C a Hermitian bilinear form.
Call E just an inner product space.

An inner product space E is said to be a S–space if there is a
Hilbert space structure in E with the positive definite inner
product E × E 3 (f, g) 7→ 〈f, g〉 ∈ C and a unitary operator U in
the Hilbert space (E , 〈 · ,−〉) such that

[f, g] = 〈Uf, g〉, f, g ∈ E ;

The latter is not uniquely determined though its role is more than
auxiliary. We refer to (E , 〈 · ,−〉, U) as a Hilbert space realization
of the S–space in question.

Theory

step by step
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Next-door consequences

1o S–inner product is separating.
2o There is a unique (independent of a particular choice of a
Hilbert space realization) topology in E which makes the S–inner
product separately continuous.
Consequently, closedness, closure, core and continuity (hence
boundedness) of an operator are uniquely designated.

Mathematically

they are not so immediate
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The topolological dual of an S–space

The conjugate of an S–space

If (E , [ · ,−]) is an S–space then so is (E , [ · −]) with

[f, g]con
def
= [g, f ], f, g ∈ E ;

call the latter the conjugate of the former. Moreover, if
(E , 〈 · ,−〉, U) is a Hilbert space realization of (E , [ · ,−]) then
(E , 〈 · ,−〉, U∗) is a Hilbert space realization of (E , [ · ,−]con).

This makes the difference
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The Riesz-like representation

An S–space and its conjugate bear the same topology and share
the same topological dual E ′, however the F. Riesz identification of
E ′ results in two different mappings. More precisely, the following
is easy to prove.

Riesz-like

For Φ ∈ E ′ there is a uniquely determined pair (g1, g2) of vectors
of E such that

Φ(f) = [f, g1] = [f, g2]con, f ∈ E .

This makes the difference
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Dissymetry operator

Consequently, there is a unique linear bicontinuous operator D on
E such that

[f, g] = [Dg, f ], f, g ∈ E .

The operator D is a kind of measure of asymmetry of the inner
product [ · ,−], call it the dissymmetry operator of the S–space
(E , [ · ,−]). For the Krein space it is equal to I.

Important

Suppose (E , 〈 · ,−〉, U) is any Hilbert space realization of the
S–space E . Then D = (U∗)2. Consequently,

1. the dissymmetry operator D is unitary in (E , 〈 · ,−〉, U),

2. the operator U2 is independent of a particular choice of a
Hilbert space realization.

Amalgamation
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The S–space adjoints of an operator

Given a densely defined operator A in E , a densely defined
operator A\ is said to be a (right) adjoint of A and another
densely defined operator \A (left) adjoint of A if

[Af, g] = fA\g, f ∈ D(A), g ∈ D(A\);

[f,Ag] = [\Af, g], f ∈ D(\A), g ∈ D(A).

D in action

A\ = \A if and only if DA∗ = A∗D. In addition to this,
D \ = \D = D−1 = D∗.
Consequently, A\\ = D \AD and \\A = DAD \.

Amalgamation
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S–symmetric and S–selfadjoint

Due to the splitting in the notion of S–adjoint we have to start
with two possibilities: A is left symmetric if A ⊂ \A and it is right
symmetric if A ⊂ A\. Furthermore, A is left selfadjoint if A = \A
and it is right selfadjoint if A = A\. This disadvantage turns out
to be temporary because

Lucky coincidence

A is right symmetric if and only if it is left symmetric. A is right
selfadjoint if and only if it is left selfadjoint.
Furthermore, A is S–symmetric if and only if A ⊂ UA∗U∗ and it is
S–selfadjoint if A = UA∗U∗ holds.

Lucky coincidence
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S–normality and S–subnormality

My final goal is to develop the theory of S–subnormality (work still
in progress) keeping in mind its usefulness in studying the quantum
harmonic oscillator.

Unfortumately, or maybe fortunately, the
notions split as before and are reluctant to merge.

It stops

I mean the lucky coincidence
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Another example

Consider the two-sided `2 space and a two-sided weighted shift,
that is

S = U∗D

where U is the two-sided backward shift and D is the diagonal
operator of weightes.

The point

S is S-nomal with U fitting in the definition of the S–space in
question.

Aplication

q-deformed version of the quantum harmonic oscillator.

It stops

I mean the lucky coincidence
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