FROM KREIN TO S-SPACES: A SHORT STEP

Franciszek Hugon Szafraniec

Uniwersytet Jagielloński, Kraków

August 31, 2012

PHHQP XI, APC, Paris Diderot University, Paris, August 27-31 2012

An ad hoc example

Details later

Let a be a complex number and a "potential" V with the property $V(ax)=\overline{V(x)}.$

Let a be a complex number and a "potential" V with the property $V(ax) = \overline{V(x)}$. In the $\mathscr{L}^2(I)$ introduce the operator $(Uf)(x) \stackrel{\text{def}}{=} a^{-1/2} f(ax)$.

Let a be a complex number and a "potential" V with the property $V(ax) = \overline{V(x)}$. In the $\mathscr{L}^2(I)$ introduce the operator $(Uf)(x) \stackrel{\text{def}}{=} a^{-1/2} f(ax)$. It is unitary in $\mathscr{L}^2(I)$.

Let a be a complex number and a "potential" V with the property $V(ax) = \overline{V(x)}$. In the $\mathscr{L}^2(I)$ introduce the operator $(Uf)(x) \stackrel{\text{def}}{=} a^{-1/2} f(ax)$. It is unitary in $\mathscr{L}^2(I)$. Consider a (very indefinite) inner product in $\mathscr{L}^2(I)$, namely

$$[f,g] \stackrel{\mathrm{def}}{=} \int_{I} (Uf)(x) \overline{g(x)} \, \mathrm{d}x$$

Let a be a complex number and a "potential" V with the property $V(ax) = \overline{V(x)}$. In the $\mathscr{L}^2(I)$ introduce the operator $(Uf)(x) \stackrel{\text{def}}{=} a^{-1/2} f(ax)$. It is unitary in $\mathscr{L}^2(I)$. Consider a (very indefinite) inner product in $\mathscr{L}^2(I)$, namely

$$[f,g] \stackrel{\mathrm{def}}{=} \int_{I} (Uf)(x) \overline{g(x) \, \mathrm{d} x}$$

. Multiplication by V is selfadjoint with respect to the new inner product $[\,\cdot\,,-],$ whatever it means.

 $\ensuremath{\mathscr{E}}$ be a complex linear space,

 ${\mathscr E}$ be a complex linear space,

 $\mathscr{E}\times\mathscr{E}\ni (f,g)\mapsto [f,g]\in\mathbb{C}$ a Hermitian bilinear form.

 \mathscr{E} be a complex linear space, $\mathscr{E} \times \mathscr{E} \ni (f,g) \mapsto [f,g] \in \mathbb{C}$ a Hermitian bilinear form. Call \mathscr{E} just an *inner product space*.

 \mathscr{E} be a complex linear space, $\mathscr{E} \times \mathscr{E} \ni (f,g) \mapsto [f,g] \in \mathbb{C}$ a Hermitian bilinear form. Call \mathscr{E} just an *inner product space*.

An inner product space $\mathscr E$ is said to be a *S*-space if there is a Hilbert space structure in $\mathscr E$ with the positive definite inner product $\mathscr E\times \mathscr E \ni (f,g)\mapsto \langle f,g\rangle \in \mathbb C$ and a unitary operator U in the Hilbert space $(\mathscr E, \langle \, \cdot \, , -\rangle)$ such that

$$[f,g]=\langle Uf,g\rangle, \quad f,g\in \mathscr{E};$$

 \mathscr{E} be a complex linear space, $\mathscr{E} \times \mathscr{E} \ni (f,g) \mapsto [f,g] \in \mathbb{C}$ a Hermitian bilinear form. Call \mathscr{E} just an *inner product space*.

An inner product space $\mathscr E$ is said to be a *S*-space if there is a Hilbert space structure in $\mathscr E$ with the positive definite inner product $\mathscr E\times \mathscr E \ni (f,g)\mapsto \langle f,g\rangle \in \mathbb C$ and a unitary operator U in the Hilbert space $(\mathscr E, \langle \, \cdot \, , -\rangle)$ such that

$$[f,g]=\langle Uf,g\rangle, \quad f,g\in \mathscr{E};$$

The latter is not uniquely determined though its role is more than auxiliary. We refer to $(\mathscr{E}, \langle \cdot, - \rangle, U)$ as a *Hilbert space realization* of the S-space in question.

Mathematically L they are not so immediate $1^{\rm o}$ S–inner product is separating.

 $1^{\rm o}$ S–inner product is separating.

 $2^{\rm o}$ There is a <u>unique</u> (independent of a particular choice of a Hilbert space realization) topology in $\mathscr E$ which makes the S–inner product separately continuous.

 $1^{\rm o}$ S-inner product is separating.

 2° There is a <u>unique</u> (independent of a particular choice of a Hilbert space realization) topology in \mathscr{E} which makes the S-inner product separately continuous.

Consequently, closedness, closure, core and continuity (hence boundedness) of an operator are uniquely designated.

This makes the difference

The conjugate of an S-space If $(\mathscr{E}, [\cdot, -])$ is an S-space then so is $(\mathscr{E}, [\cdot -])$ with $[f,g]_{\mathrm{con}} \stackrel{\text{def}}{=} \overline{[g,f]}, \quad f,g \in \mathscr{E};$ The conjugate of an S-space If $(\mathscr{E}, [\cdot, -])$ is an S-space then so is $(\mathscr{E}, [\cdot -])$ with $[f,g]_{\operatorname{con}} \stackrel{\text{def}}{=} \overline{[g,f]}, \quad f,g \in \mathscr{E};$ call the latter the *conjugate* of the former. Moreover, if $(\mathscr{E}, \langle \cdot, -\rangle, U)$ is a Hilbert space realization of $(\mathscr{E}, [\cdot, -])$ then $(\mathscr{E}, \langle \cdot, -\rangle, U^*)$ is a Hilbert space realization of $(\mathscr{E}, [\cdot, -]_{\operatorname{con}}).$

This makes the difference

An S–space and its conjugate bear the same topology and share the same topological dual $\mathscr{E}',$

An S-space and its conjugate bear the same topology and share the same topological dual \mathscr{E}' , however the F. Riesz identification of \mathscr{E}' results in two different mappings. More precisely, the following is easy to prove.

An S-space and its conjugate bear the same topology and share the same topological dual \mathscr{E}' , however the F. Riesz identification of \mathscr{E}' results in two different mappings. More precisely, the following is easy to prove.

Riesz-like

For $\Phi\in \mathscr{E}'$ there is a uniquely determined pair (g_1,g_2) of vectors of \mathscr{E} such that

$$\Phi(f) = [f, g_1] = [f, g_2]_{\text{con}}, \quad f \in \mathscr{E}.$$

Dissymetry operator

Amalgamation

$$[f,g] = \overline{[Dg,f]}, \quad f,g \in \mathscr{E}.$$

$$[f,g] = \overline{[Dg,f]}, \quad f,g \in \mathscr{E}.$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot, -]$, call it the *dissymmetry operator* of the S-space $(\mathscr{E}, [\cdot, -])$.

$$[f,g] = \overline{[Dg,f]}, \quad f,g \in \mathscr{E}.$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot, -]$, call it the *dissymmetry operator* of the S-space $(\mathscr{E}, [\cdot, -])$. For the Krein space it is equal to I.

$$[f,g] = \overline{[Dg,f]}, \quad f,g \in \mathscr{E}.$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot, -]$, call it the *dissymmetry operator* of the S-space $(\mathscr{E}, [\cdot, -])$. For the Krein space it is equal to I.

Important

Suppose $(\mathscr{E}, \langle \cdot, - \rangle, U)$ is any Hilbert space realization of the S–space \mathscr{E} . Then $D = (U^*)^2$.

$$[f,g] = \overline{[Dg,f]}, \quad f,g \in \mathscr{E}.$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot, -]$, call it the *dissymmetry operator* of the S-space $(\mathscr{E}, [\cdot, -])$. For the Krein space it is equal to I.

Important

Suppose $(\mathscr{E}, \langle \cdot, - \rangle, U)$ is any Hilbert space realization of the S-space \mathscr{E} . Then $D = (U^*)^2$. Consequently,

$$[f,g] = \overline{[Dg,f]}, \quad f,g \in \mathscr{E}.$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot, -]$, call it the *dissymmetry operator* of the S-space $(\mathscr{E}, [\cdot, -])$. For the Krein space it is equal to I.

Important

Suppose $(\mathscr{E}, \langle \cdot , - \rangle, U)$ is any Hilbert space realization of the S–space \mathscr{E} . Then $D = (U^*)^2$. Consequently,

1. the dissymmetry operator D is unitary in $(\mathscr{E},\langle\,\cdot\,\,,-\rangle,U)$,

$$[f,g] = \overline{[Dg,f]}, \quad f,g \in \mathscr{E}.$$

The operator D is a kind of measure of asymmetry of the inner product $[\cdot, -]$, call it the *dissymmetry operator* of the S-space $(\mathscr{E}, [\cdot, -])$. For the Krein space it is equal to I.

Important

Suppose $(\mathscr{E}, \langle \cdot , - \rangle, U)$ is any Hilbert space realization of the S–space \mathscr{E} . Then $D = (U^*)^2$. Consequently,

- 1. the dissymmetry operator D is unitary in $(\mathscr{E},\langle\,\cdot\,\,,-\rangle,U)$,
- 2. the operator U^2 is independent of a particular choice of a Hilbert space realization.

Amalgamation

Amalgamation

Given a densely defined operator A in \mathscr{E} , a densely defined operator A^{\natural} is said to be a (*right*) *adjoint* of A and another densely defined operator ${}^{\natural}A$ (*left*) *adjoint* of A if

$$\begin{split} & [Af,g] = fA^{\natural}g, \quad f \in \mathscr{D}(A), \, g \in \mathscr{D}(A^{\natural}); \\ & [f,Ag] = [^{\natural}\!Af,g], \quad f \in \mathscr{D}(^{\natural}\!A), \, g \in \mathscr{D}(A). \end{split}$$

Given a densely defined operator A in \mathscr{E} , a densely defined operator A^{\natural} is said to be a (*right*) *adjoint* of A and another densely defined operator ${}^{\natural}A$ (*left*) *adjoint* of A if

$$\begin{split} & [Af,g] = fA^{\natural}g, \quad f \in \mathscr{D}(A), \, g \in \mathscr{D}(A^{\natural}); \\ & [f,Ag] = [^{\natural}\!Af,g], \quad f \in \mathscr{D}(^{\natural}\!A), \, g \in \mathscr{D}(A). \end{split}$$

D in action

 $A^{\natural} = {}^{\natural}A$ if and only if $DA^* = A^*D$. In addition to this, $D^{\natural} = {}^{\natural}D = D^{-1} = D^*$.

Amalgamation

Given a densely defined operator A in \mathscr{E} , a densely defined operator A^{\natural} is said to be a (*right*) *adjoint* of A and another densely defined operator ${}^{\natural}A$ (*left*) *adjoint* of A if

$$\begin{split} & [Af,g] = fA^{\natural}g, \quad f \in \mathscr{D}(A), \, g \in \mathscr{D}(A^{\natural}); \\ & [f,Ag] = [^{\natural}\!Af,g], \quad f \in \mathscr{D}(^{\natural}\!A), \, g \in \mathscr{D}(A). \end{split}$$

D in action

$$\begin{split} A^{\natural} &= {}^{\natural}\!A \text{ if and only if } DA^* = A^*D. \text{ In addition to this,} \\ D^{\natural} &= {}^{\natural}\!D = D^{-1} = D^*. \\ \text{Consequently, } A^{\natural\natural} &= D^{\natural}\overline{A}D \text{ and } {}^{\natural\natural}\!A = D\overline{A}D^{\natural}. \end{split}$$

Amalgamation

S-symmetric and S-selfadjoint

Lucky coincidence

Due to the splitting in the notion of S-adjoint we have to start with two possibilities:

Due to the splitting in the notion of S-adjoint we have to start with two possibilities: A is *left symmetric* if $A \subset {}^{\natural}A$ and it is *right symmetric* if $A \subset A^{\natural}$.

Due to the splitting in the notion of S-adjoint we have to start with two possibilities: A is *left symmetric* if $A \subset {}^{\natural}A$ and it is *right symmetric* if $A \subset A^{\natural}$. Furthermore, A is *left selfadjoint* if $A = {}^{\natural}A$ and it is right selfadjoint if $A = A^{\natural}$. Due to the splitting in the notion of S-adjoint we have to start with two possibilities: A is *left symmetric* if $A \subset {}^{\natural}A$ and it is *right symmetric* if $A \subset A^{\natural}$. Furthermore, A is *left selfadjoint* if $A = {}^{\natural}A$ and it is right selfadjoint if $A = A^{\natural}$. This disadvantage turns out to be temporary because

Lucky coincidence

A is right symmetric if and only if it is left symmetric. A is right selfadjoint if and only if it is left selfadjoint.

Due to the splitting in the notion of S-adjoint we have to start with two possibilities: A is *left symmetric* if $A \subset {}^{\natural}A$ and it is *right symmetric* if $A \subset A^{\natural}$. Furthermore, A is *left selfadjoint* if $A = {}^{\natural}A$ and it is right selfadjoint if $A = A^{\natural}$. This disadvantage turns out to be temporary because

Lucky coincidence

A is right symmetric if and only if it is left symmetric. A is right selfadjoint if and only if it is left selfadjoint. Furthermore, A is S-symmetric if and only if $A \subset UA^*U^*$ and it is S-selfadjoint if $A = UA^*U^*$ holds. My final goal is to develop the theory of S-subnormality (work still in progress) keeping in mind its usefulness in studying the quantum harmonic oscillator. My final goal is to develop the theory of S-subnormality (work still in progress) keeping in mind its usefulness in studying the quantum harmonic oscillator. Unfortumately, or maybe fortunately, the notions split as before and are reluctant to merge.

Another example

 $S = U^*D$

where U is the two-sided backward shift and D is the diagonal operator of weightes.

 $S=U^*D$

where U is the two-sided backward shift and D is the diagonal operator of weightes.

The point

 $S = U^*D$

where U is the two-sided backward shift and D is the diagonal operator of weightes.

The point

S is S-nomal with U fitting in the definition of the S–space in question.

Aplication

 $S = U^*D$

where U is the two-sided backward shift and D is the diagonal operator of weightes.

The point

S is S-nomal with U fitting in the definition of the S–space in question.

Aplication

q-deformed version of the quantum harmonic oscillator.