On the spectrum of a bent chain graph

Miloš Tater

Nuclear Physics Institute, Academy of Sciences, Řež, Czech Republic Paris, 31st August 2012

\author{

1. which graph I mean
 Outline: 2. one-ring graph
 3. more-than-one-ring graph
}

Quantum graphs

Quantum graphs: Schrödinger operators with graph configuration spaces Aim: to study spectral properties of a Schrödinger operator supported by a graph Geometry of such a graph:

- enters through the adjacency matrix of the graph and the lengths of its edges
- graph is a subset of \mathbb{R}^{n} with the geometry inherited from the ambient space

Generally, we know that perturbing geometry of graphs (deformation) can change the spectrum (eg. it may give rise to eigenvalues)

Particle is nonrelativistic and spinless living on the graph.
Models (almost) solvable have a prominent position.

The Model

Our model consists of identical rings of radius (wlog) one connected at the touching points by a point interaction.

The particle Hamiltonian is the (negative) Laplacian acting as $\psi \rightarrow-\psi^{\prime \prime}$.

The Hilbert space for the graph is the orthogonal sum of $2 n+1 L^{2}$ spaces referring to the graph links; its elements will be denoted as

$$
\left(\varphi_{-n}, \psi_{-n}, \ldots, \varphi_{-1}, \psi_{-1}, \varphi_{0}, \psi_{0}, \varphi_{1}, \psi_{1}, \ldots, \varphi_{n}, \psi_{n}\right)
$$

with the coordinates at the loop taken anticlockwise.
The eigenfunction with energy $E=k^{2} \neq 0$ is a linear combination of the functions $e^{ \pm i k x}$. We parametrize the wavefuction components on the j th ring as $(j=-n, \ldots, 0, \ldots, n)$

$$
\begin{aligned}
\varphi_{j}(x) & =A_{j}^{+} e^{i k x}+A_{j}^{-} e^{-i k x} \\
\psi_{j}(x) & =B_{j}^{+} e^{i k x}+B_{j}^{-} e^{-i k x}
\end{aligned}
$$

The point interaction (δ-coupling) in the contact point

$$
\begin{array}{r}
\varphi_{j-1}(\pi)=\psi_{j-1}(0)=\psi_{j}(\pi)=\varphi_{j}(0) \\
\psi_{j-1}^{\prime}(0)-\psi_{j}^{\prime}(\pi)-\varphi_{j-1}^{\prime}(\pi)+\varphi_{j}^{\prime}(0)= \pm i \alpha \psi_{j}(0)
\end{array}
$$

At the endpoints we require

$$
\begin{array}{rr}
\varphi_{-n}(0)=\psi_{-n}(\pi) & \varphi_{n}(\pi)=\psi_{n}(0) \\
\varphi_{-n}^{\prime}(0)-\psi_{-n}^{\prime}(\pi)=-i \beta \psi_{-n}(\pi) & \psi_{n}^{\prime}(0)-\varphi_{n}^{\prime}(\pi)=i \beta \psi_{n}(0)
\end{array}
$$

The bending angle ϑ is supposed to take values from $[0, \pi]$, regardless of the fact that for $\vartheta \geq 2 \pi / 3$ it is not possible to consider the graph embedded in the plane.

One-ring graph
Conditions:

$$
\begin{array}{rr}
\varphi_{0}(0)=\psi_{0}(\pi+\vartheta) & \varphi_{0}(\pi-\vartheta)=\psi_{0}(0) \\
\varphi_{0}^{\prime}(0)-\psi_{0}^{\prime}(\pi+\vartheta)=-i \alpha \varphi_{0}(0) & \psi_{0}^{\prime}(0)-\varphi_{0}^{\prime}(\pi-\vartheta)=i \alpha \psi_{0}(0) .
\end{array}
$$

Nontrivial solutions if $16 k^{2} \sin (k \pi)^{2}-4 \alpha^{2} \sin (k(\pi-\vartheta)) \sin (k(\pi+\vartheta))=0$.
The spectrum has two types of eigensolutions:

There is always a root below $k=|\alpha| / 2$ and possibly states having zeros at positions of the point interaction.

Three-ring graph

Conditions: We have a system of 12 homogeneous equations for 12 unknowns $A_{j}^{+}, A_{j}^{-}, B_{j}^{+}, B_{j}^{-}, j=-1,0,1$. Requiring $\operatorname{det}\left(M_{3}\right)=0$ we get eigenvalues. They are again of two types.

If $k=n \in \mathbb{N}$, then rank of M_{3} is 10 .

$$
\left(A_{-1}^{+} \sin (k x), A_{-1}^{+} \sin (k x), 0,0, A_{1}^{+} \sin (k x), A_{1}^{+} \sin (k x)\right)
$$

