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ABSTRACT
In

J. Zinn-Justin and U.D. Jentschura, J. Math. Phys. 51 (2010) 072106;
ibidem J. Phys. A: Math. Theor. 43 (2010) 425301,
we present a systematic analytic and numerical investigation of the lowest
eigenvalue of the quantum harmonic oscillator perturbed by an imaginary cu-
bic term i

√
gx3, leading to one of the simplest PT symmetric, non-Hermitian,

Hamiltonian. The Hamiltonian is known to have a real spectrum.
A key numerical tool is the summation of the perturbative expansion by

the Order-Dependent Mapping method (ODM),
R. Seznec and J. Zinn-Justin, Journal of Math. Phys. 20 (1979) 1398;

J. Zinn-Justin, Applied Numerical Mathematics 60 (2010) 1454,
in a form that takes full advantage of the properties of the potential. It
happens to be very efficient in the strong coupling regime and, in particular,
allows to determine a number of terms of the strong coupling expansion.

The expansion is related to the expansion of another PT symmetric Hamil-
tonian with the potential ix3 + ivx, v = g−4/5 real, in powers of the param-
eter v. However, both Hamiltonians are directly related only for v positive.
Studying the continuation to v < 0, one discovers that for a negative value vc
two eigenvalues merge and then become complex conjugate, a phenomenon
that can be interpreted as a spontaneous breaking of the PT symmetry.



The Lee–Yang edge singularity

An initial motivation to study a potential with an imaginary cubic term

comes from statistical physics. The partition function of a general Ising

model, as a function of the magnetic field H, has singularities on the imag-

inary axis, i.e., in z = eH on the circle |z| = 1. For T > Tc, the circle has

a gap while for T > Tc, the circle separates two distinct analytic functions.

It is expected (Fisher) that near Tc+ the nature of the singularity closest

to the real axis (the edge singularity) can be studied by renormalization

group methods. Starting from the φ4 field theory, known to describe uni-

versal properties of the Ising model, shifting φ by its imaginary expectation

value to cancel the linear magnetic term, and keeping only the most relevant

terms at large distance, one finds in d dimensions a Hamiltonian of the form

H(φ) =

∫

ddx
[

1
2

(

∂µφ(x)
)2

+ 1
2rφ

2(x) + 1
6 iλφ

3(x)
]

.



The imaginary cubic potential

The properties of such a model are rather intriguing and suggest to first

study a toy model corresponding to d = 1, and the quantum Hamiltonian

H = −1

2

d2

(dx)2
+

1

2
x2 + i

√
g
x3

6
, g > 0 . (1)

The model has been the subject of a number of investigations since it has

been conjectured by Bessis and Zinn-Justin (1992) to have a real spectrum,

a property that was later proved. It provides one of the simplest examples

of a PT symmetric Hamiltonian, that is, invariant under the simultaneous

transformations complex conjugation and x 7→ −x.
The perturbative expansion of the energy eigenvalues En for g → 0 contains

only integer powers of g:

En(g) =
n

2
+

∑

k=1

En,kg
k , En,k real .



The series are divergent with a large order behaviour of the form

En,k ∼
k→∞

Cn(−1)k+1A−kΓ(k + n+ 1/2) , A = 24/5 ,

but Borel summable. Padé summability has also established: ImEn(g) > 0

for g = −|g|+ i0.

By a simple affine transformation on x, one can relate the Hamiltonian

to another PT symmetric Hamiltonian

H(v) = g−1/5

(

H +
1

3g

)

= −1

2

d2

(dx)2
+ i

(

1

6
x3 +

1

2
vx

)

with v = g−4/5.

The ODM summation method (defined later) has been applied to the small

g expansion to determine a number of coefficients of the large g, small v,

expansion.

As a result of our numerical investigations, we conjecture that the lowest

eigenvalue E0(v) of H(v), which is a real analytic function, has singularities

only on the real negative axis with a discontinuity on the cut that is negative.



The singularity closest to the origin, a square-root singularity, has for the

Hamiltonian H(v) the interpretation of a spontaneous breaking of the PT

symmetry: the two lowest eigenvalues merge at the singularity and then

become complex conjugate.

A direct confirmation of these conjectures is obtained by studying the con-

tinued fraction expansion derived from the small v expansion.

Finally, combining all methods, we have a general numerical control on the

function E0(v) in a cut-plane or equivalently E0(g) in the first Riemann

sheet of the uniformization variable g−1/5.



Related Hamiltonians: Strong coupling expansion

To the cubic Hamiltonian H corresponds the time-independent Schrödinger

equation

− 1
2ψ

′′(x) +
(

i
6

√
gx3 + 1

2x
2
)

ψ(x) = E(g)ψ(x),

which, with proper boundary conditions at infinity, determines the eigen-

values E(g) of the operator.

After a rescaling of the variable x, the equation can be rewritten as

− 1
2ψ

′′(x) +
(

i
6x

3 + 1
2ux

2
)

ψ(x) = ε(u)ψ(x),

in which u = g−2/5 and E(g) = g1/5ε(g−2/5).

We then shift the coordinate x 7→ x+ iu. The equation becomes

− 1
2ψ

′′(x) + i
(

1
6x

3 + 1
2vx

)

ψ(x) = E(v)ψ(x) (2)

with v = g−4/5 and

ε(u) = − 1
3u

3 + E(u2). (3)



E(v) is an eigenvalue of the second PT symmetric Hamiltonian H(v). The

expansion of E(v) in powers of v, E(v) =
∑

ℓ=0 Eℓvℓ, unlike the perturbative
expansion in g, is convergent in a disk. Therefore, E(g) has a convergent

large g expansion of the form

E(g) = − 1

3g
+ g1/5

∑

ℓ=0

Eℓg−4ℓ/5. (4)

Since ǫ(u) has only one term odd in u, which, moreover, is explicitly known,

for g large, the relevant expansion variable is g−4/5 rather than g−2/5. In

the uniformizing variable g−1/5, it is sufficient to determine the eigenvalues

for −π/4 ≤ g−1/5 ≤ π/4 to know them in the whole first Riemann sheet.

Remark. The Hamiltonian H(v) is PT symmetric for all v real but cor-

responds to the cubic Hamiltonian only for v ≥ 0. The numerical deter-

mination of the small v expansion allows studying its spectrum also in the

region v < 0, which corresponds to the analytic continuation g = |g| ei5π/4.



Order-dependent mapping (ODM) summation method

We briefly explain the ODM summation method, a method based on some

prior knowledge of the analytic properties of the expanded function. It

applies both to convergent and divergent series, though it is mainly useful

in the latter case.

The ODM method. We consider a E(g) function analytic in a sector and

mappings g 7→ λ of the form

g = ρζ(λ) ,

where ζ(λ) is a real analytic function increasing on 0 ≤ λ < 1, such that

ζ(λ) = λ + O(λ2) and, for λ → 1, ζ(λ) ∝ (1 − λ)−α with α > 1. The

parameter α has to be chosen in accordance with the analytic properties of

the function and ρ is an adjustable parameter.

For the series under study here, one chooses mappings such that, for

g → ∞ and, thus λ→ 1, g−1/α has a regular expansion in powers of 1− λ.



After the mapping, E is given by a Taylor series in λ of the form

E
(

g(λ)
)

=
∑

k=0

Pk(ρ)λ
k,

where the coefficients Pk(ρ) are polynomials of degree k in ρ. Since the

result is formally independent of ρ, ρ can be chosen freely. At ρ fixed, the

series in λ is still divergent, but it has been verified on a number of examples

(all Borel summable), and proved in certain cases that, by adjusting ρ order

by order, one can devise a convergent algorithm.

The k-th approximant E(k)(g) is then constructed in the following way:

one truncates the expansion at order k and chooses ρ as to cancel the last

term. Since Pk(ρ) has k roots (real or complex), one chooses, in general, for

ρ the largest possible root (in modulus) ρk for which P ′

k(ρ) is small. This

leads to a sequence of approximants

E(k)(g) =

k
∑

ℓ=0

Pℓ(ρk)λ
ℓ(g, ρk) with Pk(ρk) = 0.



In the case of convergent series, it is expected that ρk has a non-vanishing

limit for k → ∞. By contrast, for divergent series it is expected that ρk
goes to zero for large k as

ρk = O
(

E
−1/k
k

)

.

The intuitive idea is that ρk corresponds to a ‘local’ radius of convergence.

Remarks.

(i) Alternatively, one can choose the largest roots ρk of the polynomials

P ′

k(ρ) for which Pk is small. Indeed, the approximant is not very sensitive

to the precise value of ρk, within errors. Finally, Pk+1(ρk) gives an estimate

of the error.

(ii) In the ODM method, determining the sequence of the ρk’s is the most

time-consuming task. Indeed, once the ρk are known, for each value of g the

calculation reduces to inverting the mapping g 7→ λ and simply summing

the Taylor series in λ to the relevant order.



Convergence analysis

A semi-rigorous analysis of the convergence of the ODM method provides

quantitative asymptotic estimates of the convergence as a function of the

choice of the ρk’s.

We now consider functions E(g) analytic in a cut-plane with an expansion

E(g) =
∑

k

Ekg
k,

where the coefficients Ek have a large order behaviour of the form

Ek ∝
k→∞

(−A)−kΓ(k + b+ 1) ∼ (−A)−kkbk! .

We have studied several mappings including three relevant for this problem:

g = ρ
λ

(1− λ)α
for α = 5/4, 5/2 and g = ρ

λ(1− λ/2)

(1− λ)α
for α = 5/2 .



Semi-rigorous arguments confirmed by numerical data suggest the be-

haviour

ρk ∼
k→∞

Aµ/k , µ > 0 .

(with this definition, the parameter µ is independent of the normalization

of g.) Error estimates then determine optimal values µ = µc. For the cubic

potential,

g = ρ
λ

(1− λ)5/4
⇒ µc = 3.811522 . . . ,

g = ρ
λ

(1− λ)5/2
⇒ µc = 4.895690 . . . ,

g = ρ
λ(1− λ/2)

(1− λ)5/2
⇒ µc = 4.445762 . . . ,

values asymptotically consistent with numerical data.



The error at order k is then governed by a factor of the form

eCk1−1/α

with C = Re(C1 + C2g
−1/α),

where C2 can be determined analytically and C1 numerically.

This form also determines the domain of convergence. Here it is found,

for α = 5/4,

Re g−4/5 > −0.48 ⇔ Re v > −1.351 . . . ,

and for α = 5/2,

Re g−2/5 > 0 ⇔ Re
√
v > 0 .

Therefore, from numerical evidence we conjecture that the function E0(v)
is analytic in a cut-plane, the first singularity being at v = vc ≈ −1.35

We also notice Im E0(v) < 0 near the cut. Finally, at order 150, the best

convergence is obtained for |v| < 1 for α = 5/4 and for |v| ≥ 1 for α = 5/2.



The ix3 perturbation: ODM summation

We have mainly studied the first eigenvalue E0 but, because we guessed

that the first singularity at v = vc could be due to an eigenvalue merger,

we have also determined (E0 + E1) and (E0 − E1)
2.

For example, the first terms of the expansion of E0 are:

E0(g) =
1
2 + 11

288g − 930
(288)2 g

2 +O(g3).

We have first determined the large g, small v expansion by using the ODM

method with α = 5/4.

We have applied the ODM method to the function

F (g) = 1
3 + gE(g),

which has a regular small g expansion and a large g expansion of the form

F (g) = g6/5E(g−4/5) = g6/5
∑

k=0

Ekg−4k/5.



We have introduced the mapping

g = ρ
λ

(1− λ)5/4
and set F

(

g(λ)
)

= (1− λ)−3/2φ(λ, ρ).

The function φ(λ, ρ) then has a regular expansion both at λ = 0, determined

by the small g expansion, and λ = 1 (g → ∞).

To characterize the nature of the first singularity, we have then also ex-

panded the second eigenvalue E1(g) and summed the series for (E1 + E0)

and (E1−E0)
2. As expected, the singularity disappears in these symmetric

functions and (E1 − E0)
2 vanishes linearly at

vc = −1.3510415966(3).

Evidence is found for a new singularity at a more negative value of v. As

an additional result, the precision of the small v expansion is improved.



ODM summation: A few numerical results

We first report the values of the coefficients of the large g expansion of E0(g)

as determined by the ODM method with α = 5/4 obtained from 150 term

series. This is equivalent to determine the small v expansion (v refers to

the potential i( 16x
3 + 1

2vx)) of

E0(v) =
∑

p

E0,pvp .

The successive coefficients of the small v expansion are related to the func-

tion φ(λ, ρ) defined before and its derivatives at λ = 1. We have stopped

the expansion at order p = 20 because the precision deteriorates with p

until no new information is left.

Since the convergence of the ODM method with α = 5/4 is very smooth,

we have improved the convergence with an additional extrapolation. Further

improvement came from summing (E0 + E1) and (E0 − E1)
2.



One infers

E0(v)
= 0.3725457904522070982506011(5) + 0.3675358055441936035304(6)v

+ 0.1437877004150665158339(0)v2 − 0.0265861056270593871352(9)v3

+ 0.0098871650792008872905(5)v4 − 0.004610019293623151602(3)v5

+ 0.002409342635048475211(7)v6 − 0.00134885152931985498(8)v7

+ 0.00079061197681697837(2)v8 − 0.0004788478414145725(4)v9

+ 0.0002972375584267145(5)v10 − 0.000188065795326713(9)v11

+ 0.000120825549560587(6)v12 − 7.8604558627946(5)× 10−5v13

+ 5.1674464642199(1)× 10−5v14 − 3.4272947828030(3)× 10−5v15

+ 2.290502086987(5)× 10−5v16 − 1.540915921976(3)× 10−5v17

+ 1.0426603452042(4)× 10−5v18 − 0.709138753556(4)× 10−5v19

+ 0.484508166066(0)× 10−5v20 +O(v21).



Continued fraction

Guessing that the function E(v) is analytic in a cut-plane with a negative

discontinuity, we introduce the function

Ẽ(v) = E0(v)− E0(0)
E ′

0(0)v

which is expected to be a Stieltjes function. We calculate the coefficients

of its continued fraction expansion:

f0(v) = Ẽ(v), fp−1(v) = 1 +
apv

fp(v)
, fp(0) = 1 .

All coefficients ap are positive within errors, a result consistent with a

Stieltjes function (see table 1). They seem to settle around 0.1850424, the

value expected for a square root singularity at vc. Some of the results

obtained by summing the continued fraction are included in tables 3 and 4.



Table 1

Coefficients ap of the continued fraction for k = 150.

p = 1 2 3

0.39122093207263598993 0.18489832962286956168 0.18699386165533376095

p = 4 5 6

0.18768406689188109149 0.1851910686950779010(9) 0.184774976141944774(1)

7 8 9

0.18470222481783684(5) 0.1850738286033382(9) 0.185134240394894(8)

10 11 12

0.18510363919575(7) 0.1849998937209(1) 0.185015894534(4)

13 14 15

0.18504172330(4) 0.18506432329(6) 0.1850419101(5)



A few numerical results

We now display a few typical results obtained for g finite, positive and

negative, by the ODM methods at order 150 with α = 5/4, 5/2 as well

as the variant with α = 5/2 and, finally, by using the continued fraction

expansion of the small v expansion.

The real g axis

For g > 0, two results are given below; a few others are reported in table 2.

For g < 0, a few results are reported in tables 3 and 4. We verify that the

imaginary part itself is a simple positive decreasing function, analytic with

singularities on the real negative axis only at g = 0 and at infinity.

At order 150, for values of |g| ≤ 1, the method with α = 5/2 gives the

most precise results. By contrast, for g > 1 the method with α = 5/4,

especially after extrapolation, eventually takes over.



For g = 0.5 and g = 1, at order 150, with the ODM method α = 5/4 (a)

after additional extrapolation (b), with the ODM method with α = 5/2 (c),

with the modified method with α = 5/2 (d), one finds

E0(0.5) = 0.516891764253171978211158895662177(5), (a)

= 0.516891764253171978211158895662177609999(9) , (b)

= 0.516891764253171978211158895662177609999961207(4) (c)

= 0.5168917642531719782111588956621775(8) (d)

E0(1) = 0.53078175930417667113556181(7) (a)

= 0.530781759304176671135561818032225(7) (b)

= 0.53078175930417667113556181803222595(1) (c)

For g = 1, a numerical solution of the Schrödinger equation yields

E0 = 0.530781759304176671135561818032225 .



Table 2

E0(g), values on the real positive axis, order 150.

g 0.5 1

α = 5/4(a) 0.5168917642531719782111588 0.530781759304176671135561

α = 5/2(c) 0.5168917642531719782111588 0.530781759304176671135561

α = 5/2(d) 0.5168917642531719782111588 0.530781759304176671135561

continued
fraction 0.51689176425317(3) 0.53078175930417667(4)

g 5 21.6

α = 5/4(a)
α = 5/4(b)

0.60168393320519196158(6)
0.601683933205191961589356

0.733409920485427964(2)
0.7334099204854279645924(0)

α = 5/2(c) 0.60168393320519196158(9) 0.7334099204854(3)

α = 5/2(d) 0.60168393320519196159(0) 0.73340992048542(8)

continued
fraction 0.60168393320519196158(9) 0.7334099204854279645(9)



Table 3

ReE0(g), values on the real negative axis, order 150.

−g 0.5 1

ODM α = 5/4 0.4764273(9) 0.442520045124(6)

ODM α = 5/2 0.476427408327179(5) 0.442520045124(7)

continued fraction 0.476427408(0) 0.442520045124(6)

−g 5 21.6

ODM α = 5/4 0.4338906678103631281(2) 0.55405351846101380318(0)

ODM α = 5/2 0.433890667(9) 0.5540535(2)

continued fraction 0.433890667810363128(1) 0.554053518461013803(1)



Table 4

ImE0(g), values on the real negative axis, order 150. The positivity is verified.

−g 0.5 1

ODM α = 5/4 0.0002667(0) 0.015517925820(5)

ODM α = 5/2 0.000266661882408(1) 0.015517925820(6)

continued fraction 0.000266661(3) 0.0155179258205(0)

−g 5 21.6

ODM α = 5/4 0.1838580861861711729(0) 0.35140177759369193624(4)

ODM α = 5/2 0.183858086(0) 0.3514018(0)

continued fraction 0.183858086186171172(9) 0.351401777593691936(2)



Table 5

E0(v), values on the real negative v axis, order 150.

v −24/5 = −1.741 . . . −1

ODM α = 5/4 does not converge 0.1957508157(1)

ODM α = 5/2 0.38(1)− 0.36(8)i 0.195(5)

cont. fraction 0.3898(5)− 0.3644(3)i 0.1957508157161719(6)

v −5−4/5 = −0.275 . . . −(21.6)−4/5 = −0.085 . . .

ODM α = 5/4 0.282699258193274909899(0) 0.34215801861934042140767(3)

ODM α = 5/2 0.2827(1) 0.34215(6)

cont. fraction 0.2826992581932749098990(1) 0.34215801861934042140767(6)


