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Dirac Hermiticity

H — H T (T means transpose + complex conjugate)

 guarantees real energy and probability-conserving
time evolution

- but ... isa Mathematical axiom and not a
physical axiom of quantum mechanics

Dirac Hermiticity can be generalized...



The point of this work:

Replace Dirac Hermiticity by physical
and weaker condition of PT symmetry

P- parity

T = time reversal



This Hamiltonian has

PT symmetry!




A class of PT-symmetric Hamiltonians:

CMB and S. Boettcher
PRL 80, 5243 (1998)
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Upside-down potential with
real positive eigenvalues?!
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Developments in PT Quantum Mechanics
(Since 1ts ‘official’ beginning in 1998)
* Over fifteen international conferences
* Over 1000 published papers

* Over 122 posts to “PT symmeter” <http://ptsymmetry.net>
In last 12 months (92 in previous 12 months)

* Lots of experimental results in last two years



Proving the reality of eigenvalues

Proof is difficult! Uses techniques from conformal field
theory and statistical mechanics:

(1) Bethe ansatz

(2) Monodromy group

(3) Baxter T-Q relation

(4) Functional Determinants

[P. Dorey, C. Dunning, and R. Tateo]
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CMB and D. Hook
g Phys. Rev. A 86, 022113 (2012)



Hermitian Hamiltonians:
BORING!

The eigenvalues are always real — nothing interesting happens




- PT-symmetric Hamiltonians:
~ ASTONISHING!

Phase transition between parametric regions of
broken and unbroken PT symmetry...
Can be observed experimentally!




Intuitive explanation of PT
phase transition ...



Box 1: Loss Box 2: Gain

sink source
X=-a X=+4a

. d
—iafi’(t) — H‘i‘(t)
H = (B = [ae] H = [B;] = [ac]

b(t) = (0)e"* p(t) = P(0)eH2*



Two boxes together as a single system:

10
ae 0
H= [ 0 ae ]

This Hamiltonian is PT symmetric,

where T Is complex conjugation and p = l (i' Llj ]



Couple the boxes together with coupling strength g

Eigenvalues become real if g is sufficiently large:

2 2 . 2
Jorit = @ sin” ¢



Examining CLASSICAL limit of P T quantum mechanics
provides intuitive explanation of the P T transition:

2 -3
H=p"+wx
Source antenna becomes infinitely strong as

r — —0OC

Sink antenna becomes infinitely strong as

r — +0C

Time for classical particle to travel from source to sink:

f /tfr / dx
dt =
re o VE —ix3




H=p*—z*

Source and sink localized at + and - infinity

1.5



Complex eigenvalue problems
and Stokes wedges...

At the quantum level: ] — 2 — ;4



Upside down potential




Step 1: Change path of integration

= —2il\/1+iy/L

fundamental unit of length is [ﬁ?j{rn_g]]J.-"ﬁ"

P 2 5 1/6
()
g

A 1s an arbitrary positive dimensionless constant
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Step 2: Fourler transform

o B2 2 gk )
~16gL7 R ¢" (p) + P +32¢ L% | &' (p) + P Sh 16gL" | & (p) = Eolp)
2l 2m  4mlL




Step 3: Change dependent variable

o(p) = P17 0(p)

2L 1 .
Q(p) = —p —p’
2(p) h / 96 gL P

16gL2h2d" (p) o P O(p) = ED(p)
o dml.  206gm?L*




Step 4: Rescale p

p = zL~/32myg

}-E" II,I'Q_
J—‘D”{:] } ( Fi v‘ j } -"|_r,r:']) $¢(z) = Ed(z)
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Result: A pair of exactly
Isospectral Hamiltonians

1 .

H=—p — ga
EmE g

I:F- = E ﬁ "@ 2 = |er .
2 \\.'JI o o

CMB, D. C. Brody, J.-H. Chen, H. F. Jones , K. A. Milton, and M. C. Ogilvie
Physical Review D 74, 025016 (2006) [arXiv: hep-th/0605066]



Reflectionless potentials!

Z. Ahmed, CMB, and M. V. Berry,
J. Phys. A: Math. Gen. 38, L627 (2005) [arXiv: quant-ph/0508117]



In effect, we are extending
conventional classical mechanics
and Hermitian quantum

mechanics into the complex plane...



Complex plane




How general Is the PT phase transition?
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Implicitly restarted Arnoldi algorithm [arXiv: quant-ph/1206.5100]
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The eigenvalues are real and positive,
but is this qguantum mechanics?

* Probabilistic interpretation??
 Hilbert space with a positive metric??
« Unitarity time evolution??



The Hamiltonian determines its own adjoint!
IC,PT] =0,
c* = 1],
C,H] =0

Replace T by CPT



Unitarity

With respect to the CP T adjoint

the theory has UNITARY time
evolution.

Norms are strictly positive!
Probability 1s conserved!



Example: 2 x 2 Non-Hermitian
matrix PT-symmetric Hamiltonian

s re i

iff
H = ( e i ) (r, =, # real)

T 15 complex conjugation and P = ([1] é.:l

i i . T " ] E E . 2
Ei=ru:usﬁi':|:xf.f:3—r'*smfﬂ real it s > resin“#

1 ( 1 8111 €¥ 1 )
_— .
COS Y 1 — ¢ 811 (¥

where sinea = (r/s) siné.




PT-symmetric systems are being
observed experimentally!



aboratory verification using
table-top optics experiments!

Observing PT symmetry using optical wave guides:

« Z. Musslimani, K. Makris, R. EI-Ganainy, and D.
Christodoulides, Physical Review Letters 100, 030402 (2008)

« K. Makris, R. EI-Ganainy, D. Christodoulides, and Z.
Musslimani, Physical Review Letters 100, 103904 (2008)

* A.Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Physical Review Letters 103, 093902 (2009)

« C.E.Ruter, K. G. Makris, R. ElI-Ganainy, D. N. Christodoulides,
M. Segev, and D. Kip, Nature Physics 6, 192 (2010)



— ~, « OV o T




A

' B A BRD D
‘ERE R R E RN
- '







The observed PT phase transition

Figure 4: Experimental observation of spontaneous passive P7T-symmetry breaking.

Output transmission of a passive P7 complex system as the loss in the lossy waveguide
.. . . ; .. -1
arm 1s increased. The transmission attains a mimimum at 6 cm’ .
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Observation of parity-time symmetry in optics

Christian E. Riiter', Konstantinos G. Makris?, Ramy El-Ganainy?, Demetrios N. Christodoulides?,

Mordechai Segev® and Detlef Kip'*

One of the fundamental axioms of quantum mechanics is
associated with the Hermiticity of physical observables'. In
the case of the Hamiltonian operator, this requirement not
only implies real eigenenergies but al so guarantees probabil ity
conservation. Interestingly, a wide class of non-Hermitian
Hamiltonians can still show entirely real spectra. Among these
are Hamiltonians respecting parity-time (PT) symmetry?™.
Even though the Hermiticity of quantum observables was never
in doubt, such concepts have motivated discussions on several
fronts in physics, including quantum field theories®, non-
Hermitian Anderson models? and open quantum systems™",
to mention a few. Although the impact of PT symmetry in
these fields is still debated, it has been recently realized that
optics can provide a fertile ground where PT-related notions
can be implemented and experimentally investigated™ ™, In
this letter we report the Ffirst observation of the behaviour
of a PT optical coupled system that judiciously invelves a
complex index potential. We observe both spontancous PT
symmetry breaking and power oscillations vielating left-right
symmetry. Our results may pave the way towards a new
class of PT-synthetic materials with intriguing and unexpected
properties that rely on non-reciprocal light propagation and
tailored transverse energy Flow.

(& = gg), the spectrum ceases to be real and starts to involve
imaginary eigenvalues. This signifies the onset of a spontaneous PT
symmetry-breaking, that is, a “phase transition” from the exact to
broken-PT phase™.

In optics, several physical processes are known to obey equations
that are formally equivalent to that of Schrodinger in quantum
mechanics. Spatial diffraction and temporal dispersion are perhaps
the most prominent examples. In this work we focus our attention
on the spatial domain, for example optical beam propagation
in PT-symmetric complex potentials. In fact, such PT “optical
potentials’ can be realized through a judicious inclusion of
index guiding and gain/loss regions™?'*, Given that the complex
refractive-index distribution six) = ngix)4+inlx) plays the role of
an optical potential, we can then design a PT -symmetric system by
satisfying the conditions mg(x) =np{—x)and n(x) = —mi—x).

In other words, the refractive-index profile must be an even
function of position x whereas the gain/loss distribution should be
odd. Under these conditions, the electric-field envelope E of the
optical beam is governed by the paraxial equation of diffraction:

AE 1 3°E

- +kp[mplx) i ix ] E=0
5z T o g Helme il




Pump beam

Intensity/phase
distribution

Amplitude mask

Waveguides

Signal beam

N\

VvV

\ Lithium niobate \

CCD camera Beam splitter Objective lens

Figure 2 | Experimental set-up. An Ar+ laser beam (wavelength 514.5nm) is coupled into the arms of the structure fabricated on a photorefractive
LiNbO3 substrate. An amplitude mask blocks the pump beam from entering channel 2, thus enabling two-wave mixing gain only in channel 1. A CCD
camera is used to monitor both the intensity and phases at the output.
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Figure 3 | Computed and experimentally measured response of a
PT-symmetric coupled system. a, Numerical solution of the coupled
equations (1) describing the PT-symmetric system. The left (right) panel
shows the situation when light is coupled into channel 1(2). Red dashed
lines mark the symmetry-breaking threshold. Above threshold, light is
predominantly guided in channel 1 experiencing gain, and the intensity of
channels1and 2 depends solely on the magnitude of the gain.

b, Experimentally measured (normalized) intensities at the output facet
during the gain build-up as a function of time.



Another experiment...

“Enhanced magnetic resonance signal of spin-polarized Rb
atoms near surfaces of coated cells”

K. F. Zhao, M. Schaden, and Z. Wu

Physical Review A 81, 042903 (2010)



More...

SCIENCE VOL 333 5 AUGUST 2011

Nonreciprocal Light Propagation in a
Silicon Photonic Circuit

Liang Feng, LE.A.T Maurice ﬁcya{he,;* lingging Huang,u* Ye-Long Xu,? Ming-Hui Lu,*
Yan-Feng Chen,’t Yeshaiahu Fainman,® Axel Scherer™*f

Optical communications and computing require on-chip nonreciprocal light propagation to isolate
and stabilize different chip-scale optical components. We have designed and fabricated a
metallic-silicon waveguide system in which the optical potential is modulated along the length
of the waveguide such that nonredprocal light propagation is obtained on a silicon photonic
chip. Nonreciprocal light transport and one-way photonic mode conversion are demonstrated at
the wavelength of 1.55 micrometers in both simulations and experiments. Our system is
compatible with conventional complementary metal-oxide-semiconductor processing, providing a
way to chip-scale optical isolators for optical communications and computing.

‘Department of Bedrical Engineering, Califormia Institute of
Technology, Pasadena, CA 91125, USA. “Nanjing National
Laboratory of Microstructures, Nanjing Unmeerstty, Nanjing,
hangsu 210093, China. 1[h!|:artment of Hecinal and Com
puter Engineenng, Unmerstty of Calthormia, San Dhegao, La Jolla,
CA 92093, USA. "Kavli Nanosoence Institute, Cabiforma Inst
tute of Technology, Pasadena, CA 91125, USA.
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PRL 99, 167003 (2007) PHYSICAL REVIEW LETTERS 19 OCTOBER 3007

Bifurcation Diagram and Pattern Formation of Phase Slip Centers
in Superconducting Wires Driven with Electric Currents

J. Rubinstein, P. Sternberg, and Q. Ma

Mathematics Department, Indiana University, Bloomington, Indiana 47405, USA
(Received 14 February 2007; published 18 October 2007)

We provide here new insights into the classical problem of a one-dimensional superconducting wire
exposed to an applied electric current using the time-dependent Ginzburg-Landau model. The most
striking feature of this system is the well-known appearance of oscillatory solutions exhibiting phase slip
centers (PSC's) where the order parameter vanishes. Retaining temperature and applied current as
parameters, we present a simple yet definitive explanation of the mechanism within this nonlinear model
that leads to the PSC phenomenon and we establish where in parameter space these oscillatory solutions
can be found. One of the most interesting features of the analysis is the evident collision of real
eigenvalues of the associated PT-symmetric linearization, leading as it does to the emergence of complex
elements of the spectrum.
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week ending

PRL 108, 024101 (2012) PHYSICAL REVIEW LETTERS 13 JANUARY 2012

PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard

S. Bittner," B. Dietz,"* U. Giinther,” H. L. Harney,” M. Miski-Oglu," A. Richter,""" and F. Schiifer'”

' Institu fuir Kernphysik, Technische Universitat Darmstadt, D-64289 Darmstadt, Germany
*Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden, Germany
‘Max-Planck-Instinut fiir Kernphysik, D-69029 Heidelberg, Germany
ECT* Villa Tambosi, I-38123 Villazzano | Trento), Italy
SLENS, University of Florence, I-50019 Sesto-Fiorentino (Firenze), Italy
(Received 21 July 2011; published 10 January 2012)

We demonstrate the presence of parity-ime (PT) symmetry for the non-Hermitian two-state
Hamiltonian of a dissipative microwave billiard in the vicmity of an exceptional point (EP). The shape
of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance
spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the
Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP.
An appropriate basis choice reveals its PT symmetry. Spontaneous symmetry breaking occurs at the EP.

DOT: 10.1103/PhysReviet. 108.024101 PACS numbers: 0545Mt 0210.Yn, 11L30Er



PRL 106, 093902 (2011) PHYSICAL REVIEW LETTERS 4 MARCH 2011

PT -Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems

Y.D. Chong,* Li Ge,” and A. Douglas Stone

Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
(Received 30 August 2010; revised manuscript received 27 January 2011; published 2 March 2011)

Using a scattering matrix formalism, we denve the general scattering properties of optical structures
that are symmetric under a combination of parity and time reversal ( PT ). We demonstrate the existence
of a transition between PT -symmetric scattering eigenstates, which are norm preserving, and symmetry-
broken pairs of eigenstates exhibiting net amplification and loss. The system proposed by Longhi
[Phys. Rev. A 82, 031801 (2010).], which can act simultaneously as a laser and coherent perfect absorber,
occurs at discrete points in the broken-symmetry phase, when a pole and zero of the § matrix coincide.

DOT: 101103/ PhysRevLett. 1 06.093002 PACS nmumbers: 42.25Bs, 4225 Hz, 4255 Ah



APS: Spotlighting exceptional research

J. Schindler et al., Phys. Rev. A (2011)

Experimental study of active LRC circuits with PT symmetries
Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsampikos Kottos

Phys. Rev. A 84, 040101 (2011)
Published October 13, 2011

Everyone learns in a first course on quantum mechanics that the result of a measurement cannot be a complex
number, so the quantum mechanical operator that corresponds to a measurement must be Hermitian. However,
certain classes of complex Hamiltonians that are not Hermitian can still have real eigenvalues. The key property
of these Hamiltonians is that they are parity-time (PT) symmetric, that is, they are invariant under a mirror
reflection and complex conjugation (which is equivalent to time reversal).

Hamiltonians that have PT symmetry have been used to describe the depinning of vortex flux lines in type-Il
superconductors and optical effects that involve a complex index of refraction, but there has never been a simple
physical system where the effects of PT symmetry can be clearly understood and explored. Now, Joseph Schindler
and colleagues at Wesleyan University in Connecticut have devised a simple LRC electrical circuit that displays
directly the effects of PT symmetry. The key components are a pair of coupled resonant circuits, one with active
gain and the other with an equivalent amount of loss. Schindler et al. explore the eigenfrequencies of this system
as a function of the “gain/loss” parameter that controls the degree of amplification and attenuation of the system.
For a critical value of this parameter, the eigenfrequencies undergo a spontaneous phase transition from real to
complex values, while the eigenstates coalesce and acquire a definite chirality (handedness). This simple electronic
analog to a quantum Hamiltonian could be a useful reference point for studying more complex applications.

— Gordon W. F. Drake



PRL 108, 173901 (2012) PHYSICAL REVIEW LETTERS 27 e oo

Pump-Induced Exceptional Points in Lasers

M. Liertzer,"™ Li Ge.> A. Cu]em A.D. Stone,” H. E. Tiireci,” and S. Rotter"’
In\murrsfor Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
Daparrmem of Electrical Engineering, Princeton University, Princeton, New Jersey 058544, USA

Dﬂpamnem of Applied Physics, Yale University, New Haven, Connecticut 06520, USA

Unstitute for Quantum Electronics, ETH-Ziirich, CH-8093 Ziirich, Switzerland
(Received 2 September 2011; revised manuscript received 20 January 2012; published 24 April 2012)

We demonstrate that the above-threshold behavior of a laser can be strongly affected by exceptional
points which are induced by pumping the laser nonuniformly. At these singularities, the eigenstates of the
non-Hermitian operator which describes the lasing modes coalesce. In their vicinity, the laser may turn off
even when the overall pump power deposited in the system is increased. Such signatures of a pump-
induced exceptional point can be experimentally probed with coupled ridge or microdisk lasers.



week endin
PRL 108, 213906 (2012) PHYSICAL REVIEW LETTERS 25 MAY 2012

Nonlinear Modes in Finite-Dimensional P77 -Symmetric Systems

D.A. Zezyulin and V. V. Konotop

Centro de Fisica Tedrica e Computacional and Departamento de Fisica, Faculdade de Ciéncias, Universidade de Lisboa,

Avenida Professor Gama Pinto 2, Lisboa 1649-003, Portugal
(Received 7 February 2012; published 24 May 2012)

By rearrangements of waveguide arrays with gain and losses one can simulate transformations among
parity-time (P7-) symmetric systems not affecting their pure real linear spectra. Subject to such
transformations, however, the nonlinear properties of the systems undergo significant changes. On an
example of an array of four waveguides described by the discrete nonlinear Schrodinger equation with
dissipation and gain, we show that the equivalence of the underlying linear spectra does not imply
similarity of the structure or stability of the nonlinear modes in the arrays. Even the existence of one-
parametric families of nonlinear modes is not guaranteed by the P7 symmetry of a newly obtained
system. In addition, the stability is not directly related to the PT symmetry: stable nonlinear modes exist
even when the spectrum of the linear array is not purely real. We use a graph representation of
PT -symmetric networks allowing for a simple illustration of linearly equivalent networks and indicating
their possible experimental design.



ARTICLE

doi:10.1038/naturel 1258

Parity-time synthetic photonic lattices

Alois Regensburger' 2, Christoph Bersch’?, Mohammad - Ali Miri®, Georgy Onishchukov?, Demetrios N. Christodoulides?
& Ulf Peschel

The development of new artificial structures and materials is today one of the major research challenges in optics. In most
studies so far, the design of such structures has been based on the judicious manipulation of their refractive index
properties. Recently, the prospect of simultaneously using gain and loss was suggested as a new way of achieving optical
behaviour that is at present unattainable with standard arrangements. What facilitated these quests is the recently
developed notion of ‘parity-time symmetry’ in optical systems, which allows a controlled interplay between gain and
loss. Here we report the experimental observation of light transport in large-scale temporal lattices that are parity-time
symmetric. In addition, we demonstrate that periodic structures respecting this symmetry can act as unidirectional
invisible media when operated near their exceptional points. Our experimental results represent a step in the
application of concepts from parity - time symmetry to a new generation of multifunctional optical devices and networks.



PT-symmetric system of coupled pendula

o (t) +ax'(t) + x(t) +sy(t) = 0
y'(t) —ay'(t) +y(t) +cx(t) = 0

Best way to have loss and gain:
Set a=0

Remove r (0 < r<1) of the energy of the x pendulum
and transfer it to the y pendulum.



CMB, B. Berntson, D. Parker, E. Samuel [arXiv: math-ph/1206.4972]
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Broken PT region

Theory:
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PT quantum mechanics is fun!
You can re-visit things you
already know about ordinary
Hermitian quantum mechanics.




Two examples:

“Ghost Busting: PT-Symmetric Interpretation of the Lee Model”
CMB, S. F. Brandt, J.-H. Chen, and Q. Wang
Phys. Rev. D 71, 025014 (2005) [arXiv: hep-th/0411064]

“No-ghost Theorem for the Fourth-Order Derivative Pais-Uhlenbeck
Oscillator Model”

CMB and P. D. Mannheim

Phys. Rev. Lett. 100, 110402 (2008) [arXiv: hep-th/0706.0207]



New example:
“Resolution of Ambiguity in the Double-Scaling Limit”

CMB, M. Moshe, and S. Sarkar
[arXiv: hep-th/1206.4943]

Correlated limits
Perturbative solution to a problem:
S(e,a) ~ > o ap(a)e"
a tends to a limit as € approaches 0: o = «(<)

S(~) 1s entire (analytic for all +)



Examples of correlated limits:

(1) Fourier sine series:

N — o0,z —0,and vy = Nz

Gibbs function G(7) _ Si(27)

!



(2) Laplace’s method for asymptotic expansion of integrals:

Z(N) = [ dr e~ N5()
0

Integration by parts
1 d 1

(N) ~ e~ N50) —k

(8 | Z N ["" () ] S'(r)

Correlated limit: N — . 57(0) — 0, where 42 = N[5/(0)]2/5"(0)

Z(7y) ~ e~ N300) oxp ( 2/4) (v)//NS"(0)

For the special value v =0, D_1(0) = \/7/2

Z(N) ~ e N0 /7 /2NS"(0)] (N — o)



(3) Transition in a quantum-mechanical wave function between
a classically allowed and a classically forbidden region

hzg}”(if) — (_2(1](,}(.1)
Q(x) ~ar (xr — 0)

| R | N
OWKB(T) = exp [g/ﬂ (ES_HZ_%E Sﬂ(.ﬁjl (h — 0)

h— 0,z —0

v = a'/?23/? /h held fixed

b(v) = CAi(y)



Uncorrelated large-N series for quantum field
theory in zero dimensions: The partition function

| N+l \ /N 2
_ N+1_. | 1 2 A 2
/= '/d. Texp [~ Z Tn T (Z .,In)

n=1

O(N +1) symmetry

S kN



Correlated limit (double-scaling limit):

T i - ¥
N — oo and g — Yerit = —lf 4

with v = NG?/2

(Two quadratic saddle points fuse into a cubic saddle point)

Result:
7 ANHENL(JE2—1z6m.\;—1/33i(?_.2/3)E—Qq-/s

This is invalid because g < 0



PT-symmetric reformulation:

Only works when the dimension N+1 is odd!



“The shortest path between two
truths In the real domain passes
through the complex domain.”

-- Jacques Hadamard
The Mathematical
Intelligencer 13 (1991)



Possible fundamental applications:

1. PT Higgs model: —g¢* theory is asymptotically
free, stable, conformally invariant, and has (¢) # 0

2. P

QED eA,J* like a theory of magnetic charge,

asymptotically free, opposite Coulomb force

3. PT gravity ge,, 7+ has a repulsive force
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THE END!



