Introduction to $P T$ quantum mechanics

Carl Bender

 Washington University(On sabbatical at King's College London)

PHHQPXI
 Paris, 2012

Dirac Hermiticity

$H=H^{\dagger}$
$(\dagger$ means transpose + complex conjugate $)$

- guarantees real energy and probability-conserving time evolution
- but ... is a mathematical axiom and not a physical axiom of quantum mechanics

Dirac Hermiticity can be generalized...

The point of this work:

Replace Dirac Hermiticity by physical and weaker condition of $P T$ symmetry
$\boldsymbol{P}=$ parity
$T=$ time reversal

Example:

$$
H=p^{2}+i x^{3}
$$

A class of $\boldsymbol{P T}$-symmetric Hamiltonians:

$$
H=p^{2}+x^{2}(i x)^{\varepsilon} \quad(\varepsilon \text { real })
$$

CMB and S. Boettcher PRL 80, 5243 (1998)

THE SPECTRUM OF $M^{\prime} P^{2}+x^{2}(i x)^{6}$ IS DISCRETE, REAL, AND POSITIVE, AND PARITY SYMMETRY IS BROKEN IF EDO

HEY! WHAT

Upside-down potential with real positive eigenvalues?!

Some of my work

- CMB and S. Boettcher, Physical Review Letters 80, 5243 (1998)
- CMB, D. Brody, H. Jones, Physical Review Letters 89, 270401 (2002)
- CMB, D. Brody, and H. Jones, Physical Review Letters 93, 251601 (2004)
- CMB, D. Brody, H. Jones, B. Meister, Physical Review Letters 98, 040403 (2007)
- CMB and P. Mannheim, Physical Review Letters 100, 110402 (2008)
- CMB, D. Hook, P. Meisinger, Q. Wang, Physical Review Letters 104, 061601 (2010)
- CMB and S. Klevansky, Physical Review Letters 105, 031602 (2010)

PT papers (2008-2010)

- K. Makris, R. El-Ganainy, D. Christodoulides, and Z. Musslimani, Phyical Review Letters 100, 103904 (2008)
- Z. Musslimani, K. Makris, R. El-Ganainy, and D. Christodoulides, Physical Review Letters 100, 030402 (2008)
- U. Günther and B. Samsonov, Physical Review Letters 101, 230404 (2008)
- E. Graefe, H. Korsch, and A. Niederle, Physical Review Letters 101, 150408 (2008)
- S. Klaiman, U. Günther, and N. Moiseyev, Physical Review Letters 101, 080402 (2008)
- CMB and P. Mannheim, Physical Review Letters 100, 110402 (2008)
- U. Jentschura, A. Surzhykov, and J. Zinn-Justin, Physical Review Letters 102, 011601 (2009)
- A. Mostafazadeh, Physical Review Letters 102, 220402 (2009)
- O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, Physical Review Letters 103, 030402 (2009)
- S. Longhi, Physical Review Letters 103, 123601 (2009)
- A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Physical Review Letters 103, 093902 (2009)
- H. Schomerus, Physical Review Letters 104, 233601 (2010)
- S. Longhi, Physical Review Letters 105, 013903 (2010)
- C. West, T. Kottos, T. Prosen, Physical Review Letters 104, 054102 (2010)
- S. Longhi, Physical Review Letters 105, 013903 (2010)
- T. Kottos, Nature Physics 6, 166 (2010)
- C. Ruter, K. Makris, R. El-Ganainy, D. Christodoulides, M. Segev, and D. Kip, Nature Physics 6, 192 (2010)
- CMB, D. Hook, P. Meisinger, Q. Wang, Physical Review Letters 104, 061601 (2010)
- CMB and S. Klevansky, Physical Review Letters 105, 031602 (2010)

PT papers (2011-2012)

- Y. D. Chong, L. Ge, and A. D. Stone, Physical Review Letters 106, 093902 (2011)
- Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, Physical Review Letters 106, 213901 (2011)
- P. D. Mannheim and J. G. O’Brien, Physical Review Letters 106, 121101 (2011)
- L. Feng, M. Ayache, J. Huang, Y. Xu, M. Lu, Y. Chen, Y. Fainman, A. Scherer, Science 333, 729 (2011)
- S. Bittner, B. Dietz, U. Guenther, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schaefer, Physical Review Letters 108, 024101 (2012)
- M. Liertzer, Li Ge, A. Cerjan, A. D. Stone, H. E. Tureci, and S. Rotter, Physical Review Letters 108, 173901 (2012)
- A. Zezyulin and V. V. Konotop, Physical Review Letters 108, 213906 (2012)
- H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, Physical Review Letters 109, 033902 (2012)
- A. Regensberger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, Nature 488, 167 (2012)
- T. Prosen, Physical Review Letters (2012, to appear)

Review articles

- CMB, Contemporary Physics 46, 277 (2005)
- CMB, Reports on Progress in Physics 70, 947 (2007)
- P. Dorey, C. Dunning, and R. Tateo, Journal of Physics A 40, R205 (2007)
- A. Mostafazadeh, International of Journal of Geometric Methods in Modern Physics 7, 1191 (2010)

Developments in PT Quantum Mechanics (Since its 'official' beginning in 1998)

Over fifteen international conferences
Over 1000 published papers
Over 122 posts to "PT symmeter" http://ptsymmetry.net in last 12 months (92 in previous 12 months)

Lots of experimental results in last two years

Proving the reality of eigenvalues

Proof is difficult! Uses techniques from conformal field theory and statistical mechanics:
(1) Bethe ansatz
(2) Monodromy group
(3) Baxter T-Q relation
(4) Functional Determinants
[P. Dorey, C. Dunning, and R. Tateo]

$$
H=p^{2}+x^{2}(i x)^{\varepsilon} \quad(\varepsilon \text { real })
$$

Region of broken PT symmetry

Broken ParroT
Unbroken ParroT
$H^{(2 n)}=p^{2 n}+x^{2}(i x)^{\varepsilon} \quad(\varepsilon$ real $; n=1,2,3, \ldots)$

CMB and D. Hook
Phys. Rev. A 86, 022113 (2012)

Hermitian Hamiltonians: BORING!

The eigenvalues are always real - nothing interesting happens

PT-symmetric Hamiltonians: ASTONISHING!

Phase transition between parametric regions of broken and unbroken PT symmetry...
Can be observed experimentally!

Intuitive explanation of $P T$

 phase transition ...Box 1: Loss
Box 2: Gain

$$
\begin{aligned}
& -i \frac{d}{d t} \phi(t)=H \phi(t) \\
& H=\left[E_{1}\right]=\left[a e^{i \theta}\right] \\
& H=\left[E_{2}\right]=\left[a e^{-i \theta}\right] \\
& \psi(t)=\psi(0) e^{i E_{1} t} \\
& \psi(t)=\psi(0) e^{i E_{2} t}
\end{aligned}
$$

Two boxes together as a single system:

$$
H=\left[\begin{array}{cc}
a e^{i \theta} & 0 \\
0 & a e^{-i \theta}
\end{array}\right]
$$

This Hamiltonian is $\boldsymbol{P T}$ symmetric,
where \boldsymbol{T} is complex conjugation and $\mathcal{P}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Couple the boxes together with coupling strength \boldsymbol{g}

$$
H=\left[\begin{array}{cc}
a e^{i \theta} & g \\
g & a e^{-i \theta}
\end{array}\right]
$$

Eigenvalues become real if g is sufficiently large:

$$
g_{\text {crit }}^{2}=a^{2} \sin ^{2} \theta
$$

Examining CLASSICAL limit of $\boldsymbol{P T}$ quantum mechanics provides intuitive explanation of the $P T$ transition:

$$
H=p^{2}+i x^{3}
$$

Source antenna becomes infinitely strong as

$$
x \rightarrow-\infty
$$

Sink antenna becomes infinitely strong as

$$
x \rightarrow+\infty
$$

Time for classical particle to travel from source to sink:

$$
T=\int d t=\int \frac{d x}{p}=\int_{x=-\infty}^{\infty} \frac{d x}{\sqrt{E-i x^{3}}}
$$

$$
H=p^{2}-x^{4}
$$

Source and sink localized at + and - infinity

Complex eigenvalue problems and Stokes wedges...

At the quantum level: $H=p^{2}-x^{4}$

Upside down potential

$$
\begin{aligned}
& H=\frac{1}{2 m} p^{2}-g x^{4} \\
& -\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)-g x^{4} \psi(x)=E \psi(x)
\end{aligned}
$$

Step 1: Change path of integration

$$
x=-2 i L \sqrt{1+i y / L}
$$

fundamental unit of length is $\left[\hbar^{2} /(\mathrm{mg})\right]^{1 / 6}$

$$
L=\lambda\left(\frac{\hbar^{2}}{m g}\right)^{1 / 6}
$$

λ is an arbitrary positive dimensionless constant

$$
-\frac{\hbar^{2}}{2 m}\left(1+\frac{i y}{L}\right) \phi^{\prime \prime}(y)-\frac{i \hbar^{2}}{4 L m} \phi^{\prime}(y)-16 g L^{4}\left(1+\frac{i y}{L}\right)^{2} \phi(y)=E \phi(y)
$$

Step 1: Change path of integration

$$
x=-2 i L \sqrt{1+i y / L}
$$

fundamental unit of length is $\left[\hbar^{2} /(\mathrm{mg})\right]^{1 / 6}$

$$
L=\lambda\left(\frac{\hbar^{2}}{m g}\right)^{1 / 6}
$$

λ is an arbitrary positive dimensionless constant

$$
-\frac{\hbar^{2}}{2 m}\left(1+\frac{i y}{L}\right) \phi^{\prime \prime}(y)-\frac{i \hbar^{2}}{4 L m} \phi^{\prime}(y)-16 g L^{4}\left(1+\frac{i y}{L}\right)^{2} \phi(y)=E \phi(y)
$$

Step 2: Fourier transform

$$
\tilde{f}(p) \equiv \int_{-\infty}^{\infty} d y e^{-i y p / h} f(y)
$$

$$
\frac{1}{2 m}\left(1-\frac{\hbar}{L} \frac{d}{d p}\right) p^{2} \tilde{\phi}(p)+\frac{\hbar}{4 L m} p \tilde{\phi}(p)-16 g L^{4}\left(1-\frac{\hbar}{L} \frac{d}{d p}\right)^{2} \tilde{\phi}(p)=E \tilde{\phi}(p)
$$

$$
-16 g L^{2} \hbar^{2} \tilde{\phi}^{\prime \prime}(p)+\left(-\frac{\hbar p^{2}}{2 m L}+32 g L^{3} \hbar \hbar \tilde{\phi}^{\prime}(p)+\left(\frac{p^{2}}{2 m}-\frac{3 p \hbar}{4 m L}-16 g L^{4}\right) \tilde{\phi}(p)=E \tilde{\phi}(p)\right.
$$

Step 3: Change dependent variable

$$
\begin{aligned}
& \tilde{\phi}(p)=e^{Q(p) / 2} \Phi(p) \\
& Q(p)=\frac{2 L}{\hbar} p-\frac{1}{96 g m L^{3} \hbar} p^{3} \\
& -16 g L^{2} \hbar^{2} \Phi^{\prime \prime}(p)+\left(-\frac{\hbar p}{4 m L}+\frac{p^{4}}{256 g m^{2} L^{4}}\right) \Phi(p)=E \Phi(p)
\end{aligned}
$$

Step 4: Rescale p

$$
\begin{gathered}
p=z L \sqrt{32 m g} \\
-\frac{\hbar^{2}}{2 m} \Phi^{\prime \prime}(z)+\left(-\hbar \sqrt{\frac{2 g}{m}} z+4 g z^{4}\right) \Phi(z)=E \Phi(z)
\end{gathered}
$$

Result: A pair of exactly isospectral Hamiltonians

$$
\begin{aligned}
& H=\frac{1}{2 m} p^{2}-g x^{4} \\
& \tilde{H}=\frac{\tilde{p}^{2}}{2 m}-\hbar \sqrt{\frac{2 g}{m}} z+4 g z^{4}
\end{aligned}
$$

CMB, D. C. Brody, J.-H. Chen, H. F. Jones, K. A. Milton, and M. C. Ogilvie Physical Review D 74, 025016 (2006) [arXiv: hep-th/0605066]

Reflectionless potentials!

Z. Ahmed, CMB, and M. V. Berry,
J. Phys. A: Math. Gen. 38, L627 (2005) [arXiv: quant-ph/0508117]

In effect, we are extending

 conventional classical mechanics and Hermitian quantum mechanics into the complex plane...
Complex plane

How general is the PT phase transition?

$$
H=p^{2}+i x^{3}
$$

Implicitly restarted Arnoldi algorithm

CMB and D. Weir [arXiv: quant-ph/1206.5100]

$H=\frac{1}{2} p^{2}+x^{2}+\frac{1}{2} q^{2}+\frac{1}{2} y^{2}+i g x^{2} y$

2D, irrational [all eigenvalues; real part less than 18]

Phase transition at $g=0.04$

The eigenvalues are real and positive, but is this quantum mechanics?

- Probabilistic interpretation??
- Hilbert space with a positive metric??
- Unitarity time evolution??

The Hamiltonian determines its own adjoint!

$$
\begin{aligned}
& {[\mathcal{C}, \mathcal{P} \mathcal{T}]=0,} \\
& {\left[\mathcal{C}^{2}=1\right],} \\
& {[\mathcal{C}, H]=0}
\end{aligned}
$$

Replace \dagger by $\mathcal{C P T}$

Unitarity

With respect to the CPT adjoint the theory has UNITARY time evolution.

Norms are strictly positive! Probability is conserved!

Example: 2×2 Non-Hermitian matrix $P T$-symmetric Hamiltonian

$H=\left(\begin{array}{cc}r e^{i \theta} & s \\ s & r e^{-i \theta}\end{array}\right) \quad(r, s, \theta$ real $)$
\mathcal{T} is complex conjugation and $\mathcal{P}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

$$
\begin{aligned}
& E_{ \pm}=r \cos \theta \pm \sqrt{s^{2}-r^{2} \sin ^{2} \theta} \quad \text { real if } s^{2}>r^{2} \sin ^{2} \theta \\
& \mathcal{C}=\frac{1}{\cos \alpha}\left(\begin{array}{cc}
i \sin \alpha & 1 \\
1 & -i \sin \alpha
\end{array}\right)
\end{aligned}
$$

where $\sin \alpha=(r / s) \sin \theta$.
$P T$-symmetric systems are being
observed experimentally!

Laboratory verification using table-top optics experiments!

Observing $\boldsymbol{P T}$ symmetry using optical wave guides:

- Z. Musslimani, K. Makris, R. El-Ganainy, and D. Christodoulides, Physical Review Letters 100, 030402 (2008)
- K. Makris, R. El-Ganainy, D. Christodoulides, and Z. Musslimani, Physical Review Letters 100, 103904 (2008)
- A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. VolatierRavat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Physical Review Letters 103, 093902 (2009)
- C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nature Physics 6, 192 (2010)

The observed PT phase transition

Figure 4: Experimental observation of spontaneous passive $\mathcal{P} \mathcal{T}$-symmetry breaking. Output transmission of a passive $\mathcal{P} \mathcal{T}$ complex system as the loss in the lossy waveguide arm is increased. The transmission attains a minimum at $6 \mathrm{~cm}^{-1}$.

Observation of parity-time symmetry in optics

Christian E. Rüter ${ }^{1}$, Konstantinos G. Makris ${ }^{2}$, Ramy El-Ganainy ${ }^{2}$, Demetrios N. Christodoulides ${ }^{2}$, Mordechai Segev ${ }^{3}$ and Detlef Kip ${ }^{1 \star}$

One of the fundamental axioms of quantum mechanics is associated with the Hermiticity of physical observables'. In the case of the Hamiltonian operator, this requirement not only implies real eigenenergies but al so guarantees probability conservation. Interestingly, a wide class of non-Hermitian Hamiltonians can still show entirely real spectra. Among these are Hamiltonians respecting parity-time (PT) symmetry ${ }^{2-7}$. Even though the Hermiticity of quantum observables was never in doubt, such concepts have motivated discussions on several fronts in physics, including quantum field theories ${ }^{8}$, nonHermitian Anderson models ${ }^{9}$ and open quantum systems ${ }^{10,11}$, to mention a few. Although the impact of PT symmetry in these fields is still debated, it has been recently realized that optics can provide a fertile ground where PT-related notions can be implemented and experimentally investigated ${ }^{12-15}$. In this letter we report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential. We observe both spontaneous PT symmetry breaking and power oscillations violating left-right symmetry. Our results may pave the way towards a new class of PT-synthetic materials with intriguing and unexpected properties that rely on non-reciprocal light propagation and tailored transverse energy flow.
($\varepsilon>\varepsilon_{\boldsymbol{d}}$), the spectrum ceases to be real and starts to involve imaginary eigenvalues. This signifies the onset of a spontaneous $P T$ symmetry-breaking, that is, a 'phase transition' from the exact to broken-PT phase ${ }^{7,20}$.

In optics, several physical processes are known to obey equations that are formally equivalent to that of Schrodinger in quantum mechanics. Spatial diffraction and temporal dispersion are perhaps the most prominent examples. In this work we focus our attention on the spatial domain, for example optical beam propagation in $P T$-symmetric complex potentials. In fact, such $P T$ 'optical potentials' can be realized through a judicious inclusion of index guiding and gain/loss regions ${ }^{7,12-14}$. Given that the complex refractive-index distribution $n(x)=n_{\mathrm{R}}(x)+i n_{\mathrm{I}}(x)$ plays the role of an optical potential, we can then design a $P T$-symmetric system by satisfying the conditions $n_{\mathrm{R}}(x)=n_{\mathrm{R}}(-x)$ and $n_{\mathrm{I}}(x)=-n_{\mathrm{I}}(-x)$.

In other words, the refractive-index profile must be an even function of position x whereas the gain/loss distribution should be odd. Under these conditions, the electric-field envelope E of the optical beam is governed by the paraxial equation of diffraction ${ }^{13}$:

$$
i \frac{\partial E}{\partial z}+\frac{1}{2 k} \frac{\partial^{2} E}{\partial x^{2}}+k_{0}\left[n_{\mathrm{R}}(x)+i n_{1}(x)\right] E=0
$$

Figure 2 | Experimental set-up. An Ar^{+}laser beam (wavelength 514.5 nm) is coupled into the arms of the structure fabricated on a photorefractive LiNbO_{3} substrate. An amplitude mask blocks the pump beam from entering channel 2 , thus enabling two-wave mixing gain only in channel $1 . \mathrm{ACCD}$ camera is used to monitor both the intensity and phases at the output.

NATURE PHYSICS Dol:10.1038/NPHYS1515

Figure 3 | Computed and experimentally measured response of a PT-symmetric coupled system. a, Numerical solution of the coupled equations (1) describing the PT-symmetric system. The left (right) panel shows the situation when light is coupled into channel 1 (2). Red dashed lines mark the symmetry-breaking threshold. Above threshold, light is predominantly guided in channel 1 experiencing gain, and the intensity of channels 1 and 2 depends solely on the magnitude of the gain.
b, Experimentally measured (normalized) intensities at the output facet during the gain build-up as a function of time.

Another experiment...

"Enhanced magnetic resonance signal of spin-polarized Rb atoms near surfaces of coated cells"
K. F. Zhao, M. Schaden, and Z. Wu

Physical Review A 81, 042903 (2010)

More...

SCIENCE VOL 3335 AUGUST 2011

Nonreciprocal Light Propagation in a Silicon Photonic Circuit

Liang Feng, ${ }^{1,2,4 *} \dagger$ Maurice Ayache, ${ }^{3} *$ Jingqing Huang, ${ }^{1,4 *}$ Ye-Long Xu, ${ }^{2}$ Ming-Hui Lu, ${ }^{2}$ Yan-Feng Chen, ${ }^{2} \dagger$ Yeshaiahu Fainman, ${ }^{3}$ Axel Scherer ${ }^{1,4} \dagger$

Optical communications and computing require on-chip nonreciprocal light propagation to isolate and stabilize different chip-scale optical components. We have designed and fabricated a metallic-silicon waveguide system in which the optical potential is modulated along the length of the waveguide such that nonreciprocal light propagation is obtained on a silicon photonic chip. Nonreciprocal light transport and one-way photonic mode conversion are demonstrated at the wavelength of 1.55 micrometers in both simulations and experiments. Our system is compatible with conventional complementary metal-oxide-semiconductor processing, providing a way to chip-scale optical isolators for optical communications and computing.

[^0]
Bifurcation Diagram and Pattern Formation of Phase Slip Centers in Superconducting Wires Driven with Electric Currents

J. Rubinstein, P. Sternberg, and Q. Ma
Mathematics Department, Indiana University, Bloomington, Indiana 47405, USA
(Received 14 February 2007; published 18 October 2007)

We provide here new insights into the classical problem of a one-dimensional superconducting wire exposed to an applied electric current using the time-dependent Ginzburg-Landau model. The most striking feature of this system is the well-known appearance of oscillatory solutions exhibiting phase slip centers (PSC's) where the order parameter vanishes. Retaining temperature and applied current as parameters, we present a simple yet definitive explanation of the mechanism within this nonlinear model that leads to the PSC phenomenon and we establish where in parameter space these oscillatory solutions can be found. One of the most interesting features of the analysis is the evident collision of real eigenvalues of the associated $P T$-symmetric linearization, leading as it does to the emergence of complex elements of the spectrum.

$\mathcal{P} \mathcal{T}$ Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard

S. Bittner, ${ }^{1}$ B. Dietz, ${ }^{1, *}$ U. Günther, ${ }^{2}$ H. L. Harney, ${ }^{3}$ M. Miski-Oglu, ${ }^{1}$ A. Richter, ${ }^{1,4, \dagger}$ and F. Schäfer ${ }^{1,5}$

${ }^{1}$ Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
${ }^{2}$ Helmholtz-Zentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden, Germany
${ }^{3}$ Max-Planck-Institut für Kernphysik, D-69029 Heidelberg, Germany
${ }^{4}$ ECT* ${ }^{*}$, Villa Tambosi, I-38123 Villazzano (Trento), Italy
${ }^{5}$ LENS, University of Florence, I-50019 Sesto-Fiorentino (Firenze), Italy (Received 21 July 2011; published 10 January 2012)
We demonstrate the presence of parity-time ($\mathcal{P} \mathcal{T}$) symmetry for the non-Hermitian two-state Hamiltonian of a dissipative microwave billiard in the vicinity of an exceptional point (EP). The shape of the billiard depends on two parameters. The Hamiltonian is determined from the measured resonance spectrum on a fine grid in the parameter plane. After applying a purely imaginary diagonal shift to the Hamiltonian, its eigenvalues are either real or complex conjugate on a curve, which passes through the EP. An appropriate basis choice reveals its $\mathcal{P T}$ symmetry. Spontaneous symmetry breaking occurs at the EP.

$\mathcal{P} \mathcal{T}$-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems

Y.D. Chong,* Li Ge, ${ }^{\dagger}$ and A. Douglas Stone
Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA (Received 30 August 2010; revised manuscript received 27 January 2011; published 2 March 2011)

Using a scattering matrix formalism, we derive the general scattering properties of optical structures that are symmetric under a combination of parity and time reversal $(\mathcal{P} \mathcal{T})$. We demonstrate the existence of a transition between $\mathcal{P} \mathcal{T}$-symmetric scattering eigenstates, which are norm preserving, and symmetrybroken pairs of eigenstates exhibiting net amplification and loss. The system proposed by Longhi [Phys. Rev. A 82, 031801 (2010).], which can act simultaneously as a laser and coherent perfect absorber, occurs at discrete points in the broken-symmetry phase, when a pole and zero of the S matrix coincide.

APS: Spotlighting exceptional research

J. Schindler et al., Phys. Rev. A (2011)

Experimental study of active LRC circuits with PT symmetries

 Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsampikos Kottos Phys. Rev. A 84, 040101 (2011)

Published October 13, 2011

Everyone learns in a first course on quantum mechanics that the result of a measurement cannot be a complex number, so the quantum mechanical operator that corresponds to a measurement must be Hermitian. However, certain classes of complex Hamiltonians that are not Hermitian can still have real eigenvalues. The key property of these Hamiltonians is that they are parity-time ($P T$) symmetric, that is, they are invariant under a mirror reflection and complex conjugation (which is equivalent to time reversal).

Hamiltonians that have PT symmetry have been used to describe the depinning of vortex flux lines in type-II superconductors and optical effects that involve a complex index of refraction, but there has never been a simple physical system where the effects of PT symmetry can be clearly understood and explored. Now, Joseph Schindler and colleagues at Wesleyan University in Connecticut have devised a simple LRC electrical circuit that displays directly the effects of $P T$ symmetry. The key components are a pair of coupled resonant circuits, one with active gain and the other with an equivalent amount of loss. Schindler et al. explore the eigenfrequencies of this system as a function of the "gain/loss" parameter that controls the degree of amplification and attenuation of the system. For a critical value of this parameter, the eigenfrequencies undergo a spontaneous phase transition from real to complex values, while the eigenstates coalesce and acquire a definite chirality (handedness). This simple electronic analog to a quantum Hamiltonian could be a useful reference point for studying more complex applications.

- Gordon W. F. Drake

Pump-Induced Exceptional Points in Lasers

M. Liertzer, ${ }^{1, *} \mathrm{Li} \mathrm{Ge},{ }^{2}$ A. Cerjan, ${ }^{3}$ A. D. Stone, ${ }^{3}$ H. E. Türeci, ${ }^{2,4}$ and S. Rotter ${ }^{1, \dagger}$
${ }^{1}$ Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
${ }^{2}$ Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
${ }^{3}$ Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
${ }^{4}$ Institute for Quantum Electronics, ETH-Zürich, CH-8093 Zürich, Switzerland
(Received 2 September 2011; revised manuscript received 20 January 2012; published 24 April 2012)
We demonstrate that the above-threshold behavior of a laser can be strongly affected by exceptional points which are induced by pumping the laser nonuniformly. At these singularities, the eigenstates of the non-Hermitian operator which describes the lasing modes coalesce. In their vicinity, the laser may turn off even when the overall pump power deposited in the system is increased. Such signatures of a pumpinduced exceptional point can be experimentally probed with coupled ridge or microdisk lasers.

Nonlinear Modes in Finite-Dimensional $\mathcal{P} \mathcal{T}$-Symmetric Systems

D. A. Zezyulin and V. V. Konotop
Centro de Física Teórica e Computacional and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Avenida Professor Gama Pinto 2, Lisboa 1649-003, Portugal
(Received 7 February 2012; published 24 May 2012)

By rearrangements of waveguide arrays with gain and losses one can simulate transformations among parity-time ($\mathcal{P} \mathcal{T}$-) symmetric systems not affecting their pure real linear spectra. Subject to such transformations, however, the nonlinear properties of the systems undergo significant changes. On an example of an array of four waveguides described by the discrete nonlinear Schrödinger equation with dissipation and gain, we show that the equivalence of the underlying linear spectra does not imply similarity of the structure or stability of the nonlinear modes in the arrays. Even the existence of oneparametric families of nonlinear modes is not guaranteed by the $\mathcal{P} \mathcal{T}$ symmetry of a newly obtained system. In addition, the stability is not directly related to the $\mathcal{P} \mathcal{T}$ symmetry: stable nonlinear modes exist even when the spectrum of the linear array is not purely real. We use a graph representation of $\mathcal{P} \mathcal{T}$-symmetric networks allowing for a simple illustration of linearly equivalent networks and indicating their possible experimental design.

Parity-time synthetic photonic lattices

Alois Regensburger ${ }^{1,2}$, Christoph Bersch ${ }^{1,2}$, Mohammad-Ali Miri ${ }^{3}$, Georgy Onishchukov ${ }^{2}$, Demetrios N. Christodoulides ${ }^{3}$ \& Ulf Peschel ${ }^{1}$

The development of new artificial structures and materials is today one of the major research challenges in optics. In most studies so far, the design of such structures has been based on the judicious manipulation of their refractive index properties. Recently, the prospect of simultaneously using gain and loss was suggested as a new way of achieving optical behaviour that is at present unattainable with standard arrangements. What facilitated these quests is the recently developed notion of 'parity-time symmetry' in optical systems, which allows a controlled interplay between gain and loss. Here we report the experimental observation of light transport in large-scale temporal lattices that are parity-time symmetric. In addition, we demonstrate that periodic structures respecting this symmetry can act as unidirectional invisible media when operated near their exceptional points. Our experimental results represent a step in the application of concepts from parity-time symmetry to a new generation of multifunctional optical devices and networks.

$P T$-symmetric system of coupled pendula

$$
\begin{aligned}
x^{\prime \prime}(t)+a x^{\prime}(t)+x(t)+\varepsilon y(t) & =0 \\
y^{\prime \prime}(t)-a y^{\prime}(t)+y(t)+\varepsilon x(t) & =0
\end{aligned}
$$

Best way to have loss and gain:

Set $\boldsymbol{a}=\mathbf{0}$

Remove $r(0<r<1)$ of the energy of the x pendulum and transfer it to the y pendulum.

CMB, B. Berntson, D. Parker, E. Samuel [arXiv: math-ph/1206.4972]

Magnets off

Theory:

Experiment:

Unbroken PT, Rabi oscillations (pendula in equilibrium)

Unbroken $P T$ region Theory:

Experiment:

Broken PT region Theory:

Experiment:

Strong magnets, no Rabi oscillations (pendula out of equilibrium)

$P T$ quantum mechanics is fun!

 You can re-visit things you already know about ordinaryHermitian quantum mechanics.

Two examples:

"Ghost Busting: PT-Symmetric Interpretation of the Lee Model" CMB, S. F. Brandt, J.-H. Chen, and Q. Wang Phys. Rev. D 71, 025014 (2005) [arXiv: hep-th/0411064]
"No-ghost Theorem for the Fourth-Order Derivative Pais-Uhlenbeck Oscillator Model"
CMB and P. D. Mannheim
Phys. Rev. Lett. 100, 110402 (2008) [arXiv: hep-th/0706.0207]

New example:

"Resolution of Ambiguity in the Double-Scaling Limit" CMB, M. Moshe, and S. Sarkar [arXiv: hep-th/1206.4943]

Correlated limits

Perturbative solution to a problem:

$$
\mathcal{S}(\varepsilon, \alpha) \sim \sum_{n=0}^{\infty} a_{n}(\alpha) \varepsilon^{n}
$$

α tends to a limit as ε approaches $0: \alpha=\alpha(\varepsilon)$

$$
\mathcal{S}(\gamma) \text { is entire (analytic for all } \gamma \text {) }
$$

Examples of correlated limits:

(1) Fourier sine series:

$$
N \rightarrow \infty, x \rightarrow 0, \text { and } \gamma \equiv N x
$$

$$
\text { Gibbs function } G(\gamma)=\operatorname{Si}(2 \gamma)
$$

(2) Laplace's method for asymptotic expansion of integrals:

$$
Z(N)=\int_{0}^{\infty} d r e^{-N S(r)}
$$

Integration by parts:

$$
\left.Z(N) \sim e^{-N S(0)} \sum_{k=1}^{\infty} N^{-k}\left[\frac{1}{S^{\prime}(r)} \frac{d}{d r}\right]^{k-1} \frac{1}{S^{\prime}(r)}\right|_{r=0}
$$

Correlated limit: $N \rightarrow \infty, S^{\prime}(0) \rightarrow 0$, where $\gamma^{2} \equiv N\left[S^{\prime}(0)\right]^{2} / S^{\prime \prime}(0)$

$$
Z(\gamma) \sim e^{-N S(0)} \exp \left(\gamma^{2} / 4\right) \mathrm{D}_{-1}(\gamma) / \sqrt{N S^{\prime \prime}(0)}
$$

For the special value $\gamma=0, D_{-1}(0)=\sqrt{\pi / 2}$

$$
Z(N) \sim e^{-N S(0)} \sqrt{\pi /\left[2 N S^{\prime \prime}(0)\right]} \quad(N \rightarrow \infty)
$$

(3) Transition in a quantum-mechanical wave function between a classically allowed and a classically forbidden region

$$
\begin{aligned}
& \hbar^{2} \phi^{\prime \prime}(x)=Q(x) \phi(x) \quad Q(x) \sim a x(x \rightarrow 0) \\
& \phi_{\mathrm{WKB}}(x)=\exp \left[\frac{1}{\hbar} \int_{0}^{x} d s \sum_{n=0}^{\infty} \hbar^{n} S_{n}(s)\right](\hbar \rightarrow 0) \\
& \hbar \rightarrow 0, x \rightarrow 0 \\
& \gamma=a^{1 / 2} x^{3 / 2} / \hbar \text { held fixed } \\
& \phi(\gamma)=C \operatorname{Ai}(\gamma)
\end{aligned}
$$

Uncorrelated large- N series for quantum field theory in zero dimensions: The partition function

$$
\begin{array}{r}
Z=\int d^{N+1} x \exp \left[-\frac{1}{2} \sum_{n=1}^{N+1} x_{n}^{2}-\frac{\lambda}{4}\left(\sum_{n=1}^{N+1} x_{n}^{2}\right)^{2}\right] \\
\mathrm{O}(N+1) \text { symmetry }
\end{array}
$$

$$
\sum_{k=0}^{\infty} a_{k} N^{-k}
$$

Correlated limit (double-scaling limit):
$N \rightarrow \infty$ and $g \rightarrow g_{\text {crit }}=-1 / 4$

$$
\text { with } \gamma \equiv N G^{3} / 2
$$

(Two quadratic saddle points fuse into a cubic saddle point)
Result:

$$
Z \sim \mathcal{A}_{N+1} e^{N L(\sqrt{2})} 2^{-1 / 6} \pi N^{-1 / 3} \operatorname{Bi}\left(\gamma^{2 / 3}\right) e^{-2 \gamma / 3}
$$

This is invalid because $g<0$

$P T$-symmetric reformulation:

$$
L=\frac{1}{2} \sum_{j=1}^{N+1} x_{j}^{2}+\frac{\lambda i^{\varepsilon}}{2+\varepsilon}\left(\sum_{j=1}^{N+1} x_{j}^{2}\right)^{1+\varepsilon / 2}
$$

Only works when the dimension $N+1$ is odd!
"The shortest path between two truths in the real domain passes through the complex domain." -- Jacques Hadamard The Mathematical Intelligencer 13 (1991)

Possible fundamental applications:

1. PT Higgs model: $-g \phi^{4}$ theory is asymptotically free, stable, conformally invariant, and has $\langle\phi\rangle \neq 0$
2. PT QED $e A_{\mu} J^{\mu}$ like a theory of magnetic charge, asymptotically free, opposite Coulomb force
3. PT gravity $G \phi_{\mu \nu} T^{\mu \nu}$ has a repulsive force

[^0]: ${ }^{1}$ Department of Electrical Engineering, California Institute of Technology, Pasadena, CA91125, USA. ${ }^{2}$ Nanjing National Laboratary of Microstructures, Nanjing University, Nanjing, Jiangu 210093, China. ${ }^{3}$ Department of Electrial and Computer Engineering, Uniwersity of California, San Diega, La Jolla, CA 92093, USA. ${ }^{4}$ Kavli Nanoscience Institute, California Irstitute of Technology, Pasadena, CA 91125, USA.

