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CONCLUSIONS

I We have constructed a nonunique C operator, and we have found that the
nonuniqueness of C is associated with the unboundedness of the metric operator.

I In particular, for the simple case of the harmonic oscillator, we have constructed
infinite unbounded C operators.

I Unfortunately, for other PT -symmetric Hamiltonians the explicit evaluation of
closed form expression for the coefficients in the series expansion of C is
extremely complicated, even for the simple case of the shifted harmonic
oscillator....

Unboundedness of the C operator is an hot topic inPT -symmetric quantum mechanics.
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C operator in PT -symmetric quantum mechanics

A PT -symmetric Hamiltonian having an unbroken PT symmetry defines a physical
theory of quantum mechanics.

A linear operator C can be constructed, it represents an hidden symmetry of the
PT -symmetric Hamiltonian.

X In terms of C, an inner product with a positive norm can be defined:

〈ψ|ζ〉CPT =

Z
dxψCPT(x)ζ(x) ψCPT(x) =

Z
dy C(x, y)ψ∗(y)

X The time evolution of the theory is unitary (norm is preserved in time).1

C obeys the following three algebraic equations:

C2 = 1, [C,PT ] = 0, [C,H] = 0.

1
C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002);

C. M. Bender, Rept. Prog. Phys. 70, 947 (2007).
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C operator in PT -symmetric quantum mechanics

C2 = 1, [C,PT ] = 0, [C,H] = 0.

I The C operator for a few nontrivial quantum-mechanical models has been
calculated exactly.

I Lee model, C. M. Bender, S. F. Brandt, J. H. Chen, and Q. Wang, Phys. Rev. D 71, 025014 (2005).
I −x4 Potenital, H. F. Jones and J. Mateo, Phys. Rev. D 73, 085002 (2006).

I Pais-Uhlenbeck oscillator, C. M. Bender and P. D. Mannheim, Phys. Rev. Lett. 100, 110402 (2008).

I In general this system of equations is extremely difficult to solve analytically: In
most cases a perturbative approach has been adopted.

I ix3 Potential, C. M. Bender, P. N. Meisinger, and Q. Wang, J. Phys. A: Math. Gen. 36, 1973 (2003);
C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. D 70, 025001 (2004);

I ix2y and i xyz Potentials, C. M. Bender, J. Brod, A. Refig, and M. E. Reuter, J. Phys. A: Math. Gen. 37,
10139-10165 (2004);

I PT -symmetric square well, C. M. Bender and B. Tan, J. Phys. A: Math. Gen. 39, 1945 (2006).
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Calculation of the C operator: Standard Approach

I Express the C operator as an exponential of a Dirac Hermitian operator Q
multiplied by the parity operator P :

C = eQP

eQ/2 is the metric operator η that can be used to transform the non-Hermitian
Hamiltonian H to an isospectral Hermitian Hamiltonian.

A. Mostafazadeh, J. Math. Phys. 43, 205 (2002), J. Phys. A: Math. Gen. 36, 7081 (2003);

F. Scholtz, H. Geyer, and F. Hahne, Ann. Phys. 213, 74 (1992).

I Solution to the first two equations:

C2 = 1, [C,PT ] = 0 Q(x, p) = Q(−x, p), Q(x, p) = −Q(x,−p)

I Solution to the third equation:

[C, H] = 0
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Calculation of the C operator: Standard Approach

PERTURBATIVE APPROACH - treat ε as a small parameter:

H = H0 + εH1

H0 commutes withP and H1 anticommutes withP .

Quantum-mechanical cases that have been studied:

H = H0 + iεq and H = H0 + iεq3 , where H0 is the

harmonic-oscillator Hamiltonian.

[C,H] = 0 [eQ,H0] = ε
n

eQ,H1

o

Q = εQ1 + ε3Q3 + ε5Q5 + . . . Why odd powers of ε ?

[H0,Q0] = 0

[H0,Q1] = −2H1

[H0,Q2] = −
1

2

h
H0,Q2

1

i
+ {Q1,H1}

[H0,Q3] = −
»

H0,
1

6
Q3

1 +
1

2
{Q1,Q2}

–
+
n

1
2 Q2

1 + Q2,H1

o
[H0,Q4] = −

»
H0,

1

24
Q4

1 + Q1 {Q1,Q2} + Q2Q2
1 +

1

2
{Q1,Q3}

–
+

 1

6
Q3

1 +
1

2
{Q1,Q2} + Q3,H1

ff
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Nonuniqueness of the C operator

There are an infinite number of one-parameter families of solutions to the equation :

[H0,Qk] = 0

THEY ARE NOT ALL FUNCTIONS OF H0 !

Many of them are odd in p and even in q.

It is precisely because of the existence of these solutions that
the C operator is nonunique.
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Nonuniqueness of the C operator
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A new strategy to calculate C operators

Within this approach, it is extremely hard to calculate a closed
form expression for the next order solutions Q3,Q5,Q7, . . .

I Finding multiple solutions for Q1 is not the only way to
demonstrate nonuniqueness of C!

I There is a clearer and more fundamental way to explain the

nonuniqueness of the C operator...

Q0 6= 0
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A new strategy to calculate C operators

Consider a perturbative approach in the small parameter ε:

H = H0 + εH1

H0 commutes withP and H1 anticommutes withP .
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n

eQ,H1

o
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A new strategy to calculate C operators

WHERE IS THE ADVANTAGE IN THE CHOICE Q0 6= 0?
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Working tools

Q =
X
m,n

αm,nTm,n

The basis elements Tm,n are the quantum-mechanical generalization of the classical
product pmqn. They are defined as a totally symmetric averages of all possible
orderings of m factors of p and n factors of q.

T0,0 = 1,

T1,0 = p

T1,1 =
1
2

(pq + qp),

T1,2 = 1
3 (pqq + qpq + qqp),

T2,2 = 1
6 (ppqq + qqpp + pqqp + qppq + qpqp + pqpq).

They can be recast in Weyl-ordered form:

Tm,n =
1

2m

mX
k=0

“m
k

”
pk qnpm−k =

1
2n

nX
k=0

“n
k

”
qk pmqn−k.
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Working tools

I The Tm,n operators form an algebra closed under multiplication
I The Tm,n operators obey simple commutation and anticommutation relations,

that continue to hold in the extended singular basis with negative values of m
and n:

[p,Tm,n] = −i n Tm,n−1, [q,Tm,n] = i m Tm−1,n,

{p,Tm,n} = 2Tm+1,n, {q,Tm,n} = 2Tm,n+1,

h
p2,Tm,n

i
= −2inTm+1,n−1,

h
q2,Tm,n

i
= 2imTm−1,n+1.

I Useful identities2 for m = ±n:

Tn,n =
1

(2n− 1)!!
Sn(T1,1) T−n,n =

1
2

„
1
p

q
«n

+
1
2

„
q

1
p

«n

2
C. M. Bender, L. R. Mead, and S. S. Pinsky, J. Math. Phys. 28, 509 (1987); C. M. Bender and S. P. Klevansky,

Phys. Lett. A 373, 2670 (2009).
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Solutions to the homogeneous equation

Q0 =
X
m,n

am,nTm,n [Q0,H0] = 0

Solutions odd in p and even in q have the general form 3:

Q(γ)
0 (p, q) =

∞X
k=0

a(γ)k T2γ+1−2k,2k, γ = 0, ±1, ±2, . . .

where the coefficients a(γ)k satisfy the following two-term recursion relation:

a(γ)k+1(k + 1)− (γ − k + 1/2)a(γ)k = 0,

a(γ)k = a(γ)0 (−1)k Γ(k− γ − 1/2)

k!Γ(−γ − 1/2)
(k = 0, 1, 2, . . .)

The series can be summed as a binomial expansion:

Q(γ)
0 =

a(γ)0

22γ+2

(
. . .

((„
1 + q

1
p

q
1
p

«γ+1/2
+

„
1 +

1
p

q
1
p

q
«γ+1/2

, p

)
, p

)
. . . , p

)
(2γ+1) times

3
C. M. Bender and S. P. Klevansky, Phys. Lett. A 373, 2670 (2009);

C. M. Bender and MG, J. Math. Phys. 53, 062102 (2012)
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C operators for the Harmonic oscillator Hamiltonian

C2 = 1, [C,PT ] = 0, [C,H0] = 0.

H0 = 1
2 p2 + 1

2 q2 C = eQ0P

Q(γ)
0 =

a(γ)0

22γ+2

(
. . .

((„
1 + q

1
p

q
1
p

«γ+1/2
+

„
1 +

1
p

q
1
p

q
«γ+1/2

, p

)
, p

)
. . . , p

)
(2γ+1) times

I While the construction of the solutions involves series in inverse powers of p,
these solutions are well behaved as p→ 0.

Solution corresponding to γ = 0:

Q(0)
0 =

1
4

a(0)
0

 s
1 + q

1
p

q
1
p

p + p

s
1 + q

1
p

q
1
p

+

s
1 +

1
p

q
1
p

q p + p

s
1 +

1
p

q
1
p

q

!
.

I In the classical limit for which p and q become commuting numbers:

Q(0)
0,classical = a(0)

0 sgn(p)
q

p2 + q2

Another example: solution for γ = −1:

Q(−1)
0 =

a(−1)
0

2i

»
p̂, arcsinh

„
q̂

1
p̂

«
+ arcsinh

„
1
p̂

q̂
«–
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It has recently become clear that the nonuniqueness of the C operator has important
implications for the mathematical and physical interpretation of PT -symmetric

quantum mechanics.

Q(γ)
0 =

a(γ)
0

22γ+2

8<:. . .
8<:
8<:
 

1 + q
1

p
q

1

p

!γ+1/2

+

 
1 +

1

p
q

1

p
q

!γ+1/2

, p

9=; , p

9=; . . . , p

9=;
(2γ+1) times

0 For the harmonic oscillator, the metric operator η = eQ0 is just the unity when
Q0 = 0. In this special case, the metric operator is bounded.

0 However, since there is an infinite number of possible choices for Q0, there is an
infinite number of possible metric operators. The metric operators η = eQ0 for
Q0 6= 0 are unbounded.

Recent papers on the unboundedness of the C operator:

ú C. M. Bender and S. Kuzhel, J. Phys. A: Math. Theor. (in press).

ú F. Bagarello and M. Znojil, J. Phys. A: Math. Theor. 45, 115311 (2012);

ú A. Mostafazadeh, ArXiv:1203.6241v4;

ú B. Samsonov, (to be published in Special J. Phys. A Issue).
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Calculation of Q to the first order in ε

Let us concentrate on the solution to the formal problem of determining Q to the

first-order in ε once that Q0 is given:

C = eQ0+εQ1+ε2Q2+ε3Q3+... P

The coefficient Q1 satisfies the equation:

ε
n

eQ0 ,H1

o
=
h

eQ0+εQ1 ,H0

i

n
eQ0 ,H1

o
= Z +

1
2

(Q0Z + ZQ0) +
1
6

(Q2
0Z + Q0ZQ0 + ZQ2

0)

+
1
24

(Q3
0Z + Q2

0ZQ0 + Q0ZQ2
0 + ZQ3

0) + . . .

where we have defined the operator:

Z ≡ [Q1,H0] .
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Calculation of Q to the first order in ε
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Calculation of Q to the first order in ε

I Q0 is a solution to the homogeneous equation [Q0,H0] = 0. We can use the scale
invariance of Q0:

Q0 → µQ0

Treat µ as a small perturbation parameter into the first order in ε equation for Q1:

n
eQ0 ,H1

o
= Z +

1
2

(Q0Z + ZQ0) +
1
6

(Q2
0Z + Q0ZQ0 + ZQ2

0)

+
1
24

(Q3
0Z + Q2

0ZQ0 + Q0ZQ2
0 + ZQ3

0) + . . .

Z =
∞X

n=0

Znµ
n, Z = [Q1,H0]

The general result can be given in terms of Bernoulli
numbers Bn:

Zn =
2Bn

n!
[Q0, . . . [Q0, [Q0,H1]] . . .]n times , n 6= 1

Q1 =
∞X

n=0

Q1,nµ
n,

Each order in Q1 is solution of the
commutator equation

Zn =
ˆ
Q1,n,H0

˜
, n = 0, 1, 2, . . .
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Q1 for the shifted harmonic oscillator

H = 1
2 p2 + 1

2 q2 + ε iq

I H has an unbroken PT symmetry for all real ε.
I Its real eigenvalues are:

En = n +
1
2

+
1
2
ε2, (n = 0, 1, 2, . . .)

I One C operator for this theory is given exactly by:

C = e−2εpP

C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002); C. M. Bender, Rept. Prog. Phys. 70, 947-1018

(2007).

However, the solution for C is not unique!
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Recipe for the construction of Q1 for the shifted harmonic oscillator

INGREDIENTS:
I Take one or more solutions Q0.

For simplicity, we choose

Q0 =
∞X

k=0

(−1)k Γ(k− 1/2)

Γ(k)
T1−2k,2k

I Remember the algebra of the Tm,n operatorsˆ
Tm,n, Tr,s

˜
= 2

P∞
j=0
Pj
`=0(−1)` (i/2)2j+1Γ(m+1)Γ(n+1)Γ(r+1)Γ(s+1)

(2j+1)!Γ(m−`+1)Γ(n+`−2j)Γ(r+`−2j)Γ(s−`+1) Tm+n−2j−1,r+s−2j−1

I Have some patience, and start to evaluate:ˆ
Q1,0,H0

˜
= 2i q,ˆ

Q1,2,H0
˜

=
i
6

[Q0, [Q0, q]] ,

ˆ
Q1,4,H0

˜
= −

i
360

[Q0, [Q0, [Q0, [Q0, q]]]]

. . . . . .
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Q1 for the shifted harmonic oscillator

µ0 For n = 0 we have a simple exact solution to the commutator equation for Q0,1:ˆ
Q1,0,H0

˜
= 0 =⇒ Q1,0 = −2p.

µ2 The equation for Q1,2 is

ˆ
Q1,2, H0

˜
=

i
6

∞X
k=1

∞X
α=0

(−1)k−α+1 Γ (k + 2α) Γ (α+ 1/2)2

Γ (k) Γ (α+ 1)2 T−2k−4α,2k−1.

This is a linear equation, we can solve it for each α separately and express the solution
as a sum over α...
One solution is:

Q1,2 =
∞X
α=0

∞X
k=1

ρk,αT−2k−4α−1,2k

where the coefficients ρk,α satisfy the recursion relation:

(2k + 4α− 1)ρk−1,α + 2kρk,α = Ak,α

whose solution is

ρk,α = (−1)k (k + 2α)!

k!

„
Γ (α+ 1/2)

α!

«2
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Technical details on the evaluation of Q1,2

I By using the algebra of Tm,n operators, the equation that Q1,2 must solve is :

ˆ
Q1,2, H0

˜
=

i
6

∞X
α=0

∞X
k=1

(−1)k−α+1 Γ (k + 2α) Γ (α+ 1/2)2

Γ (k) Γ (α+ 1)2 T−2k−4α,2k−1. (1)

I It is a linear equation, so we solve it for each α separately and express the
solution as a sum over α: Q1,2 =

P∞
α=0 Qα1,2.

I For general α we expand Qα1,2 into the basis of the Tm,n operators :

Qα1,2 =
X
m,n

ρm,nTm,n (2)

I The commutator between (2) and H0 gives:ˆ
Q1,2, H0

˜
=
X
m,n

ˆ
(m + 1)ρm+1,n−1 + (n + 1)ρm−1,n+1

˜
Tm,n (3)

I Now we choose the minimal solution: let be m = −n− 4α− 1 for n ≥ 1, and
make the substitution n = 2k− 1 into (3).

I Comparing (3) with (1) we obtain the recursion relation for the coefficients ρk,α:

(2k + 4α− 1)ρk−1,α + 2kρk,α = Ak,α. (4)

One solution of (4) is:

ρk,α = (−1)k (k + 2α)!

k!

„
Γ (α+ 1/2)

α!

«2
(5)
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Q1 for the shifted harmonic oscillator

The operator :

Zn =
2Bn

n!
[Q0, . . . [Q0, [Q0,H1]] . . .]n times , n 6= 1

for H1 = iq can be written in the general form:

Z2n =
∞X

k=n

∞X
α=0

A(2n)
α (−1)k Γ(k + 2α+ n− 1)

Γ(k)
T−2k−4α,2k−2n+1

The explicit form of the operators Q1,2n that satisfies the equation
ˆ
Q1,2n,H0

˜
= Z2n is:

Q1,2n =
∞X
α=0

∞X
k=n−1

ρ
(2n)
k,α T−2k−4α−1,2k−2n+2

The recursion satisfied by the coefficients ρk,α is:

(2k + 4α− 1)ρ
(2n)
k−1,α + 2(k− n + 1)ρ

(2n)
k,α = (−1)k Γ(k + 2α+ n− 1)

Γ(k)
A(2n)
α

whose solution is:

ρ2n
k,α =

(−1)kΓ(k + 2α+ 3/2)

Γ(k + 3− n)Γ(2α+ n + 1/2)

„
Gα + A2n

α −
A2n
α Γ(2α+ 3/2)Γ(2α+ k + 2)

Γ(2α+ k + 3/2)

«
.
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Conclusions

I We have constructed a nonunique C operator, and we have found that the
nonuniqueness of C is associated with the unboundedness of the metric operator.

I In particular, for the simple case of the harmonic oscillator, we have constructed
infinite unbounded C operators.

I Unfortunately, for other PT -symmetric Hamiltonians the explicit evaluation of
closed form expression for the coefficients in the series expansion of C is
extremely complicated, even for the simple case of the shifted harmonic
oscillator....

Unboundedness of the C operator is an hot topic inPT -symmetric quantum mechanics.
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Conclusions

The importance of being unbounded

I The fact that the C operator is unbounded is signicant because, while there is a
formal mapping between the Hilbert spaces of the two theories, the mapping
does not map all of the vectors in the domain of one Hamiltonian into the
domain of the other Hamiltonian.

I Consequently, even if the conventionally Hermitian Hamiltonian and the
PT -symmetric Hamiltonian are isospectral, they are two mathematically
distinct theories. 4

At a fundamental mathematical level a PT -symmetric Hamiltonian
describes a theory that is new.

4
C. M. Bender and S. Kuzhel, J. Phys. A: Math. Theor. (in press).
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Thanks for your attention!
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