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In 1998, Bender and Boettcher studied a class of Hamiltonians: 

where ε is taken as a real parameter.

The prescription to examine this Hamiltonian is well-known:

 - convert into a differential equation form by replacing p by -id/dx

  - Solve the eigenvalue problem numerically.
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We are all familiar with the solution of the eigenvalue problem:
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Isospectral Pairs of Hamiltonians
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•We’ve already seen 4th order Hamiltonians...

•We know some of the qualities of the classical paths

• So...can we construct a general class of fourth order oscillators 
that have a real eigenspectrum? (i.e. is PT general or is it 
special to second order problems?)

Isospectral Pairs of Hamiltonians
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Worked Example

 (x) ⇠ exp
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Four possible asymptotic behaviours:

Stokes’ wedges

Ignore “sign” so that the phase angle is: 
Centre of wedge:
Angular opening: 
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At ε = 0:

Opening angle is 2π/3 

As ε → ∞:

Opening angle vanishes.

At ε = −1: 

θ = π/10 and ∆θ/2 = 4π/10

Thus, the upper edge of the right wedge is at π/2.

Worked Example



Numerical Procedure
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Substitute into differential equation:

Calculate WKB, so that we have initial conditions:

Choose two solutions:

!1 = e3⇡i/4 and !2 = e�3⇡/4
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Numerical Procedure

0

BB@

 R,1(0)  R,2(0) � L,1(0) � L,2(0)
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R,2(0).

Require continuity:

By Cramer’s Rule, set Det = 0



Classical Paths
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