WKB for PT-symmetric Sturm-Liouville Problems

H. F. Jones

Imperial College London
PHHQP XI
Paris 27/08/12

Outline

Introduction
The problem
Two examples
WKB
One-turning-point approximation
igx
ig $\sin (x)$
igx**3
Two-turning-point approximation
igx**3
igx**5
Fractional Powers
Neumann Boundary Conditions
1TP
2TP
Summary

Outline

Appendix-applications
Hydrodynamics
Superconducting Wire
Diffusion of Spin-Polarized Atoms in an Inhomogeneous
Magnetic Field

The problem

- Want to consider the $P T$-symmetric eigenvalue problem on a finite interval $[-L, L]$:

$$
\left(-\frac{d^{2}}{d x^{2}}+V(x)\right) \psi=\lambda \psi
$$

with boundary conditions $\psi(\pm L)=0$.

- Such problems, particularly with $V= \pm i g x$, have physical significance.
- e.g. hydrodynamics (Günther et al.) superconducting wire (Rubinstein et al.) magnetic resonance signal (Zhao et al.)

Example 1

Real parts of eigenvalues of $V=I(i x)$ on the interval $[-1,1]$
Rubinstein et al., PRL 99, 167003 (2007)

Example 2

Eigenvalues of $V=i g \sin x$ on the interval $[-\pi / 2, \pi / 2]$
Bender \& Kalveks, Int. J. Theor. Phys. 50, 955 (2011)

WKB

- Spectra are strikingly similar. Why? Maybe WKB approx. can cast some light.
- For large λ WKB solution of

$$
\left(-\frac{d^{2}}{d x^{2}}+V(x)\right) \psi=\lambda \psi
$$

is

$$
\psi(x) \sim \frac{1}{(\lambda-V(x))^{\frac{1}{4}}}\left(A e^{i \int_{-L}^{x} d s \sqrt{\lambda-V(s)}}+B e^{-i \int_{-L}^{x} d s \sqrt{\lambda-V(s)}}\right)
$$

- Imposing $b d^{y}$ cond ${ }^{\text {ns }}$ at $x= \pm L$ gives quantization condition

$$
\sin \left(\int_{-L}^{L} d s \sqrt{\lambda-V(s)}\right)=0
$$

WKB

- i.e.

$$
\int_{-L}^{L} d s \sqrt{\lambda_{n}-V(s)}=n \pi
$$

- Path from $-L$ to L not specified, but assumed that it doesn't pass through a turning point (zero of $\lambda-V(s)$). Using this formula for $V=-i g x$ gives following picture:

WKB

Simple WKB for $V=-i g x$ vs. numerical results

WKB

- Clear that simple WKB doesn't give interesting structure
- Alternative? Take path through turning point(s)

CMB \& HFJ, arXiv:1201.1234 [hep-th]

One turning-point

For $V=-i g x$ write $\lambda-V(x)$ as $g(a+i x) \equiv g Q$

- \exists single turning point at $x=i b \equiv i a$

1TP

Procedure: Away from turning-point use WKB approximations

$$
\psi_{L}(x) \sim \frac{1}{[Q(x)]^{1 / 4}}\left\{L_{1} e^{i \int_{x}^{i b} d s \sqrt{g Q(s)}}+L_{2} e^{-i \int_{x}^{i b} d s \sqrt{g Q(s)}}\right\}
$$

on left-hand side, and
$\psi_{R}(x) \sim \frac{1}{[Q(x)]^{1 / 4}}\left\{R_{1} e^{i \int_{x}^{i b} d s \sqrt{g Q(s)}}+R_{2} e^{-i \int_{x}^{i b} d s \sqrt{g Q(s)}}\right\}$
on the right.

- Then have to impose bd ${ }^{y}$ cond $^{\text {ns }} \psi(\pm 1)=0$ and match WKB approximations to Airy solutions

$$
\psi_{A}=K_{1} \operatorname{Ai}(y)+K_{2} \operatorname{Ai}(\omega y)
$$

near TP.
Here y is a scaled version of $x-i b$ such that the Schröd. eq ${ }^{n}$ becomes the Airy eq ${ }^{\mathrm{n}}$ in the neighbourhood of $i b$, namely

$$
y=g^{1 / 3}(x-i b) e^{-i \pi / 6}
$$

- Note that y can be considered large, since

$$
y=g^{1 / 3}(x-i b) e^{-i \pi / 6}
$$

- \exists two different asymptotic approx ${ }^{\text {ns }}$ to Airy functions for y large:

$$
\begin{aligned}
& \operatorname{Ai}(y) \sim \frac{1}{2 \sqrt{\pi} y^{1 / 4}} e^{-\frac{2}{3} y^{3 / 2}} \quad(|\arg y|<\pi) \\
& \operatorname{Ai}(y) \sim \frac{1}{2 \sqrt{\pi} y^{1 / 4}}\left(e^{-\frac{2}{3} y^{3 / 2}}+i e^{\frac{2}{3} y^{3 / 2}}\right) \quad(|\arg y|=\pi)
\end{aligned}
$$

Which is appropriate depends on way you approach TP from L and R. Note that y-plane is rotated by $e^{-i \pi / 6}$ w.r. to x-plane:

1TP

Relation between x - and y-planes near $x=i b$

- Have to further approximate WKB wave-functions for large y and match with Airy solution.
- On R just use simple approx. for both Airy functions.
- On L have to use second approx. for $\operatorname{Ai}(y)$.
- Altogether get 4 equations for 3 ratios $L_{1} / L_{2}, R_{1} / R_{2}, K_{1} / K_{2}$

2 from $\psi(\pm 1)=0$
1 from matching on L
1 from matching on R

- Hence (after much algebra!) get the eigenvalue condition

1TP

$$
\sin I_{T}+\frac{1}{2} e^{\Delta}=0
$$

where

$$
\begin{aligned}
I_{T} & =\int_{-1}^{1} d s \sqrt{g Q(s)} \\
\Delta & \equiv 2 \operatorname{Im} I_{R} \\
I_{R} & =\int_{i b}^{1} d s \sqrt{g Q(s)}
\end{aligned}
$$

1TP

Simple and 1TP WKB for $V=-i g x$

1TP

Essentially same story for $V=-i g \sin x$. Now $b=\arcsin a$.

Simple and 1TP WKB for $V=-i g \sin x$

1TP

Remarks:

Recall 1TP eigenvalue condition

$$
\sin I_{T}+\frac{1}{2} e^{\Delta}=0
$$

- First term by itself is 0TP approx ${ }^{\text {n }}$
- $\Delta=2 \operatorname{Im} \int_{i b}^{1} d s \sqrt{g Q(s)}$ is generically large $\because \sqrt{g}$
- Second term negligible when $\Delta<0$. Revert to 0TP approx ${ }^{\text {n }}$
- No real solution when $\Delta>0$
- Turn-around occurs near line $(\lambda=a g)$ where $\Delta=0$
- Mechanism for turn-around is cancellation between two terms

1TP

However, method fails when applied to $V=i g x^{3}$:

1TP WKB for $V=i g x^{3}$

- Reason is that Δ is always <0

1TP

But in this case there are three turning points:

Turning points for $V=i g x^{3}$

- Maybe correct path is through two lower turning points?
\rightarrow CMB \& HFJ, arXiv:1203.5702[hep-th]

Two turning-points

Stokes lines for $V=i g x^{3}$ with $a=0.5$

- Now have different WKB approx ${ }^{\text {ns }}$ in three regions:

$$
\left.\begin{array}{l}
\psi_{L}(x) \\
\psi_{M}(x) \\
\psi_{R}(x)
\end{array}\right\} \text { in }\left\{\begin{array}{l}
{\left[-1, x_{L}\right]} \\
{\left[x_{L}, x_{R}\right]} \\
{\left[x_{R}, 1\right]}
\end{array}\right] \begin{aligned}
& \psi_{L}(x) \sim \frac{1}{[Q(x)]^{1 / 4}}\left\{L_{1} e^{i \int_{x}^{x_{L}} d s \sqrt{g Q(s)}}+L_{2} e^{-i \int_{x}^{x_{L}} d s \sqrt{g Q(s)}}\right\} \\
& \psi_{M}(x) \sim \frac{1}{[Q(x)]^{1 / 4}}\left\{M_{1} e^{i \int_{x_{L}}^{x} d s \sqrt{g Q(s)}}+M_{2} e^{-i \int_{x_{L}}^{x} d s \sqrt{g Q(s)}}\right\} \\
& \psi_{L}(x) \sim \frac{1}{[Q(x)]^{1 / 4}}\left\{R_{1} e^{i \int_{x_{R}}^{x} d s \sqrt{g Q(s)}}+R_{2} e^{-i \int_{x_{R}}^{x} d s \sqrt{g Q(s)}}\right\}
\end{aligned}
$$

- Won't need $\psi_{R}(x)$ explicitly: work only in LHP, and enforce $P T$ symmetry of WF on imaginary axis.

2TP

$P T$ symmetry $\Rightarrow \operatorname{Re}\left(\psi^{\prime}(x) / \psi(x)\right)=0$ on imag. axis

- Resulting condition is

$$
\frac{M_{1} M_{2}^{*}}{M_{2} M_{1}^{*}}=e^{-2 i M_{M}}
$$

where $I_{M} \equiv \int_{x_{L}}^{x_{R}} d s \sqrt{g Q(s)}$

- Condition that $\psi(-1)=0$ gives

$$
\frac{L_{1}}{L_{2}}=-e^{-2 i L_{L}}
$$

where $I_{L} \equiv \int_{-1}^{x_{L}} d s \sqrt{g Q(s)}$

2TP

- Have to match ψ_{L} to Airy approx. in vicinity of x_{L} :
- In this case choose Airy expansion as

$$
\psi_{A}(x)=K_{1} \operatorname{Ai}(y)+K_{2} \operatorname{Ai}\left(\omega^{2} y\right)
$$

where $y=\left(x-x_{L}\right) / c$

- Now $c=\gamma e^{-i \theta / 3}$, where $\theta=5 \pi / 6$
- So matching paths are:

2TP

Relation between x - and y-planes near $x=x_{L}$

2TP

- Altogether get 4 equations for 3 ratios $L_{1} / L_{2}, M_{1} / M_{2}, K_{1} / K_{2}$

1 from $\psi(-1)=0$
1 from $P T$-symmetry condition
2 from matching on L and R of x_{L}

- Again get an eigenvalue condition, which in this case is

$$
\sin I_{T}+e^{\Delta_{L}} \cos I_{M}=0
$$

where $\Delta_{L} \equiv 2 \operatorname{Im} /_{L}$
NB: $\Delta_{L} \rightarrow-\Delta_{L}$ if TPs are in upper half plane

2TP

2TP

Same for $V=-i g x^{5}$:

2TP WKB for $V=-i g x^{5}$ vs. numerical results

2TP - Fractional Powers

Now \exists a cut in x-plane, which we take along + ve imaginary axis:

Cut x-plane for fractional powers in $V(x)$

2TP: $V=-g(i x)^{\frac{1}{2}}$

Spectrum no longer symmetric in g :

WKB for $V=-g\left(i x^{\frac{1}{2}}\right)$ vs. numerical results:
1TP for $g<0$ 0TP for $g>0 \times$

2TP: $V=-g(i x)^{\frac{1}{2}}$

- \exists only one TP at $x_{0}=-i a^{2}$:

TP and cut for $V=-g\left(i x^{\frac{1}{2}}\right)$

- TP on 1st sheet for $g<0$
- TP on 2 nd sheet for $g>0 \times$

2TP: $V=-g(i x)^{3 / 2}$

WKB for $V=-g\left(i x^{3 / 2}\right)$ vs. numerical results:
1 TP for $g<0 \checkmark$
2TP for $g>0 \times$

2TP: $V=-g(i x)^{3 / 2}$

TPs and cut for $V=-g\left(i x^{3 / 2}\right)$
1TP for $g<0$ 2TP for $g>0 \times$

2TP: $V=-g(i x)^{5 / 2}$

WKB for $V=-g\left(i x^{5 / 2}\right)$ vs. numerical results:
Lower 2TP for $g>0$
Upper 2TP for $g<0$

2TP: $V=-g(i x)^{5 / 2}$

TPs and cut for $V=-g\left(i x^{5 / 2}\right)$
Lower 2TP for $g>0$
Upper 2TP for $g<0$

Neumann Boundary Conditions

- Boundary conditions are now $\psi^{\prime}(\pm 1)=0$ rather than

$$
\psi(\pm 1)=0
$$

- Hence expressions for L_{1} / L_{2} and R_{1} / R_{2} change sign
- Net result is that sign of extra e^{Δ} term is reversed
- Note that \exists new ground state with $\lambda=0$ at $g=0$, corresponding to $\psi=$ const.

1TP - Neumann

Eigenvalue equation is now

Gives different pairing:

igx - Neumann

$\leftarrow \mathrm{cf}$. Dirichlet

A scaled version of this graph occurs in Zhao et al.

2TP - Neumann

Eigenvalue equation is now

$$
\sin I_{T}-e^{\Delta_{L}} \cos I_{M}=0
$$

$i g x^{3}-$ Neumann

\leftarrow cf. Dirichlet

Summary

- 1TP approx ${ }^{n}$ works extremely well for $V=i g x, V=i \sin x$ etc.
- Fails for $V=i g x^{3}$. Need 2TP approx ${ }^{n}$. 2TP approx ${ }^{\mathrm{n}}$ works well for $V=i g x^{3}$, igx ${ }^{5}$ etc.
- For fractional powers spectrum not symmetric in g. Cut \Rightarrow WKB works for only one sign
- WKB formulae extremely simple. Exceptional points result from interaction of 1st and 2nd terms
- Interaction causes different pairings for Neumann boundary conditions

Summary

- WKB formulae very accurate, even for small g, λ
- General comment: breaking of PT symmetry for large g seems generic.
With hindsight, continuum case was exceptional.

Hydrodynamics

Approximation to Orr-Sommerfeld equation

$$
-i \varepsilon \frac{d^{2}}{d x^{2}} \varphi+q(x) \varphi=\lambda \varphi \quad \text { with } \varphi(\pm 1)=0
$$

Here $\varepsilon \propto$ viscosity
$q(x)$ is velocity profile
λ is spectral parameter
$\varphi(x) \propto$ small perturbation to stream function

Hydrodynamics

Multiplying by $-i / \varepsilon$, and identifying $g=1 / \varepsilon$, get

$$
\left(-\frac{d^{2}}{d x^{2}}-i g q(x)\right) \varphi=-i g \lambda \varphi
$$

- So in our language $V=-i g q(x)$, with $q(x)$ real
- For $P T$-invariance need $q(x)=x^{2 M+1}$
- Simplest possibility is $q(x)=x \leftrightarrow$ Couette flow

Superconducting Wire

Time-dependent Landau-Ginzburg model

$$
\psi_{t}+i \varphi \psi=\psi_{x x}+\Gamma \psi-|\psi|^{2} \psi
$$

Here ψ is order parameter
$\varphi=-l x$ is electric potential
$\Gamma \propto T_{c}-T$

- Linearize about $\psi=0$ and write $\psi=e^{(\Gamma-\lambda) t} u(x)$
- Then get eq ${ }^{\text {n }}$

$$
-u_{x x}-i x l u=\lambda u
$$

Diffusion of Spin-Polarized Atoms in an Inhomogeneous Magnetic Field

Torrey equation

$$
\left[D \nabla^{2}-i \omega_{L}(\mathbf{x})\right] \psi=\frac{\partial \psi}{\partial t}
$$

Here ψ is \propto transverse magnetization ω_{L} is Larmor frequency

- Approximate $\omega_{L}=\omega_{0}+a z+b x^{2}$
- Look for eigenmodes $\psi(t)=\varphi_{\beta} e^{-\beta t}$
- Factorize $\varphi_{\beta}=\varphi_{\ell}(x) \varphi_{m}(y) \varphi_{n}(z)$
- Then get

$$
\left(D \frac{d^{2}}{d z^{2}}-i a z+E_{n}\right) \varphi_{n}(z)=0
$$

Bd^{y} cond ${ }^{\mathrm{n}}$ taken to be $\psi^{\prime}(\pm L)=0$

