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The problem

- Want to consider the PT-symmetric eigenvalue problem on a
finite interval [—L, L] :

dx?

(—d2 + V(x)) b=\

with boundary conditions ¢(+L) = 0.

- Such problems, particularly with V = +igx, have physical
significance.

- e.g. hydrodynamics (Giinther et al.)
superconducting wire (Rubinstein et al.)
magnetic resonance signal (Zhao et al.)
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Real parts of eigenvalues of V = [(ix) on the interval [-1,1]

Rubinstein et al., PRL 99, 167003 (2007)
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Eigenvalues of V = igsinx on the interval [-7/2,7/2]

Bender & Kalveks, Int. J. Theor. Phys. 50, 955 (2011)
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WKB

- Spectra are strikingly similar. Why?
Maybe WKB approx. can cast some light.

- For large A WKB solution of
d2
<_dx2 + V(X)> Y=\
D(x) ~ 1 : (Aeiijds,/,\_V(s) 4 Be—iijds./,\—v(s))
(A= V(x))?
- Imposing bd” cond™ at x = 4L gives quantization condition

san(/Ldsm>=o

—L



WKB

L
/ ds\/An— V(s) = nm

—L

- Path from —L to L not specified, but assumed that it doesn't
pass through a turning point (zero of A — V/(s)).
Using this formula for V = —igx gives following picture:

48



WKB

Simple WKB for V = —igx vs. numerical results
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WKB

- Clear that simple WKB doesn't give interesting structure

- Alternative? Take path through turning point(s)

CMB & HFJ, arXiv:1201.1234 [hep-th]
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One turning-point

For V = —igx write A — V(x) as g(a+ ix) = gQ

- dsingle turning point at x = ib = ia
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1TP
Procedure: Away from turning-point use WKB approximations

Yi(x) ~ {6/ VAR 1 [y S e /AR

_
[QU)]M*

on left-hand side, and

1 i[® s \/ s —i [ ds s
¢R(X) ~ W {Rle [ ds+/8Q(s) + Rye S d \/BT()}

on the right.

12 /48



1TP

- Then have to impose bd” cond™ (£1) =0

and match WKB approximations to Airy solutions

Ya = KiAi(y) + K2Ai(wy)

near TP.

Here y is a scaled version of x — ib such that the Schrod. eq”
becomes the Airy eq" in the neighbourhood of ib,

namely

y = g1/3(X _ ib)e—iﬂ/ﬁ
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1TP

- Note that y can be considered large, since

y = g1/3(X _ I'b)e—iﬂ”/G

- d two different asymptotic approx™ to Airy functions for
Y M y

large:
) 1 _2,3/2
Ai(y) We‘ 3 (larg y| < m),
) 1 _2.3/2 . 2,32
Ai(y) W(e Vi) (Jarg y] = 7).

Which is appropriate depends on way you approach TP from L
and R. Note that y-plane is rotated by e "™/® w.r. to x-plane:
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1TP

Py

Relation between x- and y-planes near x = ib
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1TP

Have to further approximate WKB wave-functions for large y
and match with Airy solution.

On R just use simple approx. for both Airy functions.
- On L have to use second approx. for Ai(y).
- Altogether get 4 equations for 3 ratios L1/Ly, R1/Rz, Ki/K>

2 from ¢(£1) =0
1 from matching on L
1 from matching on R

Hence (after much algebra!) get the eigenvalue condition
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1TP

sin It + 32 =0

where
Ir = fil ds\/gQ(s)
A = 2Imlg

Ig = fli ds\/gQ(s)
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1TP

Simple and 1TP WKB for V = —igx
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1TP

Essentially same story for V = —igsinx. Now b = arcsina.

Simple and 1TP WKB for V = —igsinx
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1TP
Remarks:
Recall 1TP eigenvalue condition
sin I+ + %eA =0

First term by itself is 0TP approx"

- A =2Im fli ds+/gQ(s) is generically large " \/g

Second term negligible when A < 0. Revert to OTP approx"

No real solution when A > 0

Turn-around occurs near line (A = ag) where A =0

Mechanism for turn-around is cancellation between two terms
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1TP

However, method fails when applied to V = igx3:
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1TP WKB for V = igx3

- Reason is that A is always < 0
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1TP

But in this case there are three turning points:

Ix

Turning points for V = igx3
- Maybe correct path is through two lower turning points?

— CMB & HFJ, arXiv:1203.5702[hep-th]

22 /48



Two turning-points

e

Stokes lines for V = igx3 with a = 0.5
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2TP

- Now have different WKB approx™ in three regions:

Yr(x) } { (-1, x]
¢M(X) in [XL,XR]
Yr(x) [xr, 1]

1 - .
I T Tk GG R L)

1 i ds s —i [* ds s
Ym(x) ~ W {Mle I3, ds/gQ(s) 4 Mye [ ds\/gQ( )}

! i [ ds S —i [X ds s
Yi(x) ~ QO {Rle Jg 95 v/8Qs) | Rye [, ds1/&Q( )}

- Won't need ¥g(x) explicitly: work only in LHP, and enforce
PT symmetry of WF on imaginary axis.
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2TP

PT symmetry = Re(¢/(x)/1(x)) = 0 on imag. axis

- Resulting condition is

M M3

_ o—2ily
Mo M; ’
where Iy = [2F ds\/gQ(s)
- Condition that ¢(—1) = 0 gives
L o
L

where I = [ ds+\/gQ(s)
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2TP

Have to match #; to Airy approx. in vicinity of x; :

In this case choose Airy expansion as

Ya(x) = KiAi(y) + KaAi(w?y),

where y = (x — x;)/c
- Now ¢ = ve /3 where § = 57/6

So matching paths are:
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2TP

XL L

Relation between x- and y-planes near x = x|



2TP

- Altogether get 4 equations for 3 ratios L1/Ly, Mi/Ma, Ki/K2
1 from ¢(—1) =0
1 from PT-symmetry condition
2 from matching on L and R of x;

- Again get an eigenvalue condition, which in this case is

sinlr + efLcosly =0

where A; = 2Im/;
NB: A; — —A, if TPs are in upper half plane
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2TP
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2TP WKB for V = igx3 vs. numerical results
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2TP

Same for V = —igx®:
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2TP WKB for V = —igx® vs. numerical results

30 /48



2TP - Fractional Powers

Now 3 a cut in x-plane, which we take along +ve imaginary axis:

[x

Cut x-plane for fractional powers in V(x)
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-\ 1
2TP: V = —g(ix)2
Spectrum no longer symmetric in g:

200
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WKB for V = —g(ix%) vs. numerical results:

1TP for g <0 v
OTP for g >0 x
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2TP: V = —g(ix)z

- Jonly one TP at xp = —ia°:

TP and cut for V = —g(ix%)

- TP on 1st sheet for g <0 v
- TP on 2nd sheet for g > 0 X
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2TP: V = —g(ix)3/?

-600 -400 -200 O 200 400 600g

WKB for V = —g(ix3/?) vs. numerical results:
1TP for g <0 v
2TP for g >0 x
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2TP: V = —g(ix)3/?

TPs and cut for V = —g(ix3/?)

1TP for g <0 v
2TP for g > 0 x
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WKB for V = —g(ix®>/?) vs. numerical results:
Lower 2TP for g > 0
Upper 2TP for g < 0 x

600

9
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2TP: V = —g(ix)®/?

TPs and cut for V = —g(ix%/?)

Lower 2TP for g > 0 v
Upper 2TP for g < 0 x
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Neumann Boundary Conditions

- Boundary conditions are now ¢/(£1) = 0 rather than
P(£1)=0

- Hence expressions for L1/Ly and R;/Ry change sign

- Net result is that sign of extra e® term is reversed

- Note that 3 new ground state with A =0 at g =0,

corresponding to ¢ = const.
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1TP - Neumann

Eigenvalue equation is now

osinlr—ief =0

Gives different pairing:
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igx - Neumann
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A scaled version of this graph occurs in Zhao et al.



2TP - Neumann

Eigenvalue equation is now

- sinlr—eftcosly =0 |
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igx3® - Neumann
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Summary

- 1TP approx" works extremely well for V = igx, V = isinx
etc.

- Fails for V = igx3. Need 2TP approx".
2TP approx” works well for V = igx3, igx® etc.

- For fractional powers spectrum not symmetric in g.
Cut = WKB works for only one sign

- WKB formulae extremely simple. Exceptional points result
from interaction of 1st and 2nd terms

- Interaction causes different pairings for Neumann boundary
conditions
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Summary

- WKB formulae very accurate, even for small g, A

- General comment: breaking of PT symmetry for large g
seems generic.
With hindsight, continuum case was exceptional.
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Hydrodynamics

Approximation to Orr-Sommerfeld equation

_d? :
—ie 2¥ +q(x)p = Ap with p(£1) =0

Here £ x viscosity

q(x) is velocity profile

A is spectral parameter

©(x) o< small perturbation to stream function

T

—>

—1 =y
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Hydrodynamics

Multiplying by —i/e, and identifying g = 1/¢, get

d2
(_dx2 — igq(X)) o= —ig\p

- So in our language V = —igq(x), with g(x) real
- For PT-invariance need g(x) = x*M+1

- Simplest possibility is g(x) = x <> Couette flow
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Superconducting Wire

Time-dependent Landau-Ginzburg model

Wi + i = e + T1p — |02

Here ¢ is order parameter
p = —Ix is electric potential
M T.—T

- Linearize about 1) = 0 and write ¢ = e(T =Mty (x)

- Then get eq"

— Uy — Ixlu = Au
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Diffusion of Spin-Polarized Atoms in an Inhomogeneous
Magnetic Field

Torrey equation

oY
DV? — iw (x)] ¢ = —
[ ()] v =5
Here 1) is o transverse magnetization
wy is Larmor frequency

Approximate w; = wg + az + bx?
Look for eigenmodes 1(t) = e~ Pt

Factorize g = 0e(X)em(y)en(2)
Then get

d2
<Ddz2 —jaz + E,,) vn(z) =0

Bd¥ cond” taken to be ¢/(£L) =0
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