WKB for *PT*-symmetric Sturm-Liouville Problems

H. F. Jones

Imperial College London

PHHQP XI Paris 27/08/12

Outline

Introduction

The problem Two examples WKB

One-turning-point approximation

igx ig sin(x) igx**3

Two-turning-point approximation

igx**3 igx**5 Fractional Powers

Neumann Boundary Conditions 1TP

2TP

Summary

Outline

Appendix - applications

Hydrodynamics Superconducting Wire Diffusion of Spin-Polarized Atoms in an Inhomogeneous Magnetic Field

The problem

- Want to consider the *PT*-symmetric eigenvalue problem on a finite interval [-L, L]:

$$\left(-\frac{d^2}{dx^2}+V(x)\right)\psi=\lambda\psi$$

with boundary conditions $\psi(\pm L) = 0$.

- Such problems, particularly with $V = \pm igx$, have physical significance.
- e.g. hydrodynamics (Günther et al.) →
 superconducting wire (Rubinstein et al.) →
 magnetic resonance signal (Zhao et al.) →

Example 1

Real parts of eigenvalues of V = I(ix) on the interval [-1,1]Rubinstein et al., PRL **99**, 167003 (2007)

Example 2

Eigenvalues of $V = ig \sin x$ on the interval $[-\pi/2, \pi/2]$

Bender & Kalveks, Int. J. Theor. Phys. 50, 955 (2011)

WKB

- Spectra are strikingly similar. Why? Maybe WKB approx. can cast some light.
- For large $\lambda\,$ WKB solution of

$$\left(-\frac{d^2}{dx^2}+V(x)\right)\psi=\lambda\psi$$

is

$$\psi(x) \sim \frac{1}{(\lambda - V(x))^{\frac{1}{4}}} \left(A e^{i \int_{-L}^{x} ds \sqrt{\lambda - V(s)}} + B e^{-i \int_{-L}^{x} ds \sqrt{\lambda - V(s)}} \right)$$

- Imposing bd^y cond^{ns} at $x = \pm L$ gives quantization condition

$$\sin\left(\int_{-L}^{L} ds \sqrt{\lambda - V(s)}\right) = 0$$

WKB

- i.e.

$$\int_{-L}^{L} ds \sqrt{\lambda_n - V(s)} = n\pi$$

- Path from -L to L not specified, but assumed that it doesn't pass through a turning point (zero of $\lambda - V(s)$). Using this formula for V = -igx gives following picture:

WKB

Simple WKB for V = -igx vs. numerical results

- Clear that simple WKB doesn't give interesting structure

- Alternative? Take path through turning point(s)

CMB & HFJ, arXiv:1201.1234 [hep-th]

One turning-point

For
$$V = -igx$$
 write $\lambda - V(x)$ as $g(a + ix) \equiv gQ$

- \exists single turning point at $x = ib \equiv ia$

Procedure: Away from turning-point use WKB approximations

$$\psi_L(x) \sim \frac{1}{[Q(x)]^{1/4}} \left\{ L_1 e^{i \int_x^{ib} ds \sqrt{gQ(s)}} + L_2 e^{-i \int_x^{ib} ds \sqrt{gQ(s)}} \right\}$$

on left-hand side, and

$$\psi_R(x) \sim rac{1}{[Q(x)]^{1/4}} \left\{ R_1 e^{i \int_x^{ib} ds \sqrt{gQ(s)}} + R_2 e^{-i \int_x^{ib} ds \sqrt{gQ(s)}}
ight\}$$

on the right.

- Then have to impose $bd^y \text{ cond}^{ns} \psi(\pm 1) = 0$ and match WKB approximations to Airy solutions

$$\psi_{A} = K_{1} \operatorname{Ai}(y) + K_{2} \operatorname{Ai}(\omega y)$$

near TP.

Here y is a scaled version of x - ib such that the Schröd. eqⁿ becomes the Airy eqⁿ in the neighbourhood of *ib*, namely

$$y = g^{1/3}(x - ib)e^{-i\pi/6}$$

- Note that y can be considered large, since $y = g^{1/3}(x ib)e^{-i\pi/6}$
- \exists two different asymptotic approx^{ns} to Airy functions for y large:

$$\begin{array}{lll} \operatorname{Ai}(y) & \sim & \frac{1}{2\sqrt{\pi}y^{1/4}}e^{-\frac{2}{3}y^{3/2}} & (|\arg y| < \pi), \\ \operatorname{Ai}(y) & \sim & \frac{1}{2\sqrt{\pi}y^{1/4}}\left(e^{-\frac{2}{3}y^{3/2}} + ie^{\frac{2}{3}y^{3/2}}\right) & (|\arg y| = \pi). \end{array}$$

Which is appropriate depends on way you approach TP from L and R. Note that *y*-plane is rotated by $e^{-i\pi/6}$ w.r. to *x*-plane:

Relation between x- and y-planes near x = ib

- Have to further approximate WKB wave-functions for large y and match with Airy solution.
- On R just use simple approx. for both Airy functions.
- On L have to use second approx. for Ai(y).
- Altogether get 4 equations for 3 ratios L_1/L_2 , R_1/R_2 , K_1/K_2
 - 2 from $\psi(\pm 1) = 0$
 - 1 from matching on L
 - 1 from matching on R
- Hence (after much algebra!) get the eigenvalue condition

$$\sin I_T + \frac{1}{2}e^{\Delta} = 0$$

where

$$I_T = \int_{-1}^1 ds \sqrt{gQ(s)}$$
$$\Delta \equiv 2 \text{Im} I_R$$
$$I_R = \int_{ib}^1 ds \sqrt{gQ(s)}$$

Simple and 1TP WKB for V = -igx

Essentially same story for $V = -ig \sin x$. Now $b = \arcsin a$.

Simple and 1TP WKB for $V = -ig \sin x$

Remarks:

Recall 1TP eigenvalue condition

$$\sin I_T + \frac{1}{2}e^{\Delta} = 0$$

- First term by itself is 0TP approxⁿ
- $\Delta = 2 \text{Im} \int_{ib}^{1} ds \sqrt{gQ(s)}$ is generically large $\because \sqrt{g}$
- Second term negligible when $\Delta < 0$. Revert to 0TP approxⁿ
- No real solution when $\Delta>0$
- Turn-around occurs near line ($\lambda = ag$) where $\Delta = 0$
- Mechanism for turn-around is cancellation between two terms

However, method fails when applied to $V = igx^3$:

1TP WKB for $V = igx^3$

- Reason is that Δ is always < 0

But in this case there are three turning points:

Turning points for $V = igx^3$

- Maybe correct path is through two lower turning points?

 \rightarrow CMB & HFJ, arXiv:1203.5702[hep-th]

Two turning-points

Stokes lines for $V = igx^3$ with a = 0.5

- Now have different WKB approx^{ns} in three regions:

$$\begin{array}{c} \psi_L(x) \\ \psi_M(x) \\ \psi_R(x) \end{array} \right\} \text{ in } \begin{cases} [-1, x_L] \\ [x_L, x_R] \\ [x_R, 1] \end{cases}$$

$$\begin{split} \psi_{L}(x) &\sim \frac{1}{[Q(x)]^{1/4}} \left\{ L_{1} e^{i \int_{x}^{x_{L}} ds \sqrt{gQ(s)}} + L_{2} e^{-i \int_{x}^{x_{L}} ds \sqrt{gQ(s)}} \right\} \\ \psi_{M}(x) &\sim \frac{1}{[Q(x)]^{1/4}} \left\{ M_{1} e^{i \int_{x_{L}}^{x} ds \sqrt{gQ(s)}} + M_{2} e^{-i \int_{x_{L}}^{x} ds \sqrt{gQ(s)}} \right\} \\ \psi_{L}(x) &\sim \frac{1}{[Q(x)]^{1/4}} \left\{ R_{1} e^{i \int_{x_{R}}^{x} ds \sqrt{gQ(s)}} + R_{2} e^{-i \int_{x_{R}}^{x} ds \sqrt{gQ(s)}} \right\} \end{split}$$

- Won't need $\psi_R(x)$ explicitly: work only in LHP, and enforce PT symmetry of WF on imaginary axis.

 ${\it PT}$ symmetry \Rightarrow ${
m Re}(\psi'(x)/\psi(x))=0$ on imag. axis

- Resulting condition is

$$\frac{M_1M_2^*}{M_2M_1^*} = e^{-2iI_M},$$

where
$$I_M \equiv \int_{x_L}^{x_R} ds \sqrt{gQ(s)}$$

- Condition that $\psi(-1) = 0$ gives

$$\frac{L_1}{L_2}=-e^{-2iI_L},$$

where $I_L \equiv \int_{-1}^{x_L} ds \sqrt{gQ(s)}$

- Have to match ψ_L to Airy approx. in vicinity of x_L :
- In this case choose Airy expansion as

$$\psi_A(x) = K_1 \operatorname{Ai}(y) + K_2 \operatorname{Ai}(\omega^2 y),$$

where
$$y = (x - x_L)/c$$

- Now $c=\gamma e^{-i heta/3}$, where $heta=5\pi/6$
- So matching paths are:

Relation between x- and y-planes near $x = x_L$

- Altogether get 4 equations for 3 ratios L_1/L_2 , M_1/M_2 , K_1/K_2 1 from $\psi(-1) = 0$ 1 from *PT*-symmetry condition

2 from matching on L and R of x_L

- Again get an eigenvalue condition, which in this case is

$$\sin I_T + e^{\Delta_L} \cos I_M = 0$$

where $\Delta_L \equiv 2 \text{Im} I_L$ NB: $\Delta_L \rightarrow -\Delta_L$ if TPs are in upper half plane $\leftarrow \text{ cf. ITP}$

0

2TP WKB for $V = igx^3$ vs. numerical results

2TP WKB for $V = -igx^5$ vs. numerical results

2TP - Fractional Powers

Now \exists a cut in x-plane, which we take along +ve imaginary axis:

Cut x-plane for fractional powers in V(x)

2TP:
$$V = -g(ix)^{\frac{1}{2}}$$

Spectrum no longer symmetric in g:

WKB for $V = -g(ix^{\frac{1}{2}})$ vs. numerical results: 1TP for $g < 0 \checkmark$ 0TP for $g > 0 \times$ 2TP: $V = -g(ix)^{\frac{1}{2}}$

- TP on 1st sheet for g < 0 \checkmark
- TP on 2nd sheet for g > 0 \times

2TP: $V = -g(ix)^{3/2}$

WKB for
$$V = -g(ix^{3/2})$$
 vs. numerical results:
1TP for $g < 0 \checkmark$
2TP for $g > 0 \times$

2TP: $V = -g(ix)^{3/2}$

2TP: $V = -g(ix)^{5/2}$

WKB for $V = -g(ix^{5/2})$ vs. numerical results: Lower 2TP for $g > 0 \checkmark$ Upper 2TP for $g < 0 \times$ 2TP: $V = -g(ix)^{5/2}$

Neumann Boundary Conditions

- Boundary conditions are now $\psi'(\pm 1) = 0$ rather than

 $\psi(\pm 1) = 0$

- Hence expressions for L_1/L_2 and R_1/R_2 change sign
- Net result is that sign of extra e^{Δ} term is **reversed**
- Note that \exists new ground state with $\lambda=0$ at g= ,

corresponding to $\psi = const$.

1TP - Neumann

Eigenvalue equation is now

$$\sin I_T - \frac{1}{2}e^{\Delta} = 0$$

Gives different pairing:

igx - Neumann

$\leftarrow \mathsf{cf.} \ \mathsf{Dirichlet}$

A scaled version of this graph occurs in Zhao et al.

2TP - Neumann

Eigenvalue equation is now

$$\sin I_T - e^{\Delta_L} \cos I_M = 0$$

\leftarrow cf. Dirichlet

Summary

- 1TP approxⁿ works extremely well for V = igx, $V = i \sin x$ etc.
- Fails for $V = igx^3$. Need 2TP approxⁿ. 2TP approxⁿ works well for $V = igx^3$, igx^5 etc.
- For fractional powers spectrum not symmetric in g . Cut \Rightarrow WKB works for only one sign
- WKB formulae extremely simple. Exceptional points result from interaction of 1st and 2nd terms
- Interaction causes different pairings for Neumann boundary conditions

Summary

- WKB formulae very accurate, even for small g , λ
- General comment: breaking of *PT* symmetry for large *g* seems generic.
 With hindsight, continuum case was exceptional.

Hydrodynamics

Approximation to Orr-Sommerfeld equation

$$-i\varepsilon \frac{d^2}{dx^2} \varphi + q(x)\varphi = \lambda \varphi$$
 with $\varphi(\pm 1) = 0$

Here $\varepsilon \propto$ viscosity q(x) is velocity profile λ is spectral parameter $\varphi(x) \propto$ small perturbation to stream function

Hydrodynamics

Multiplying by -i/arepsilon , and identifying g=1/arepsilon , get

$$\left(-\frac{d^2}{dx^2}-igq(x)\right)\varphi=-ig\lambda\varphi$$

- So in our language V = -igq(x), with q(x) real
- For *PT*-invariance need $q(x) = x^{2M+1}$
- Simplest possibility is $q(x) = x \leftrightarrow$ Couette flow

Superconducting Wire

Time-dependent Landau-Ginzburg model

$$\psi_t + i\varphi\psi = \psi_{xx} + \Gamma\psi - |\psi|^2\psi$$

Here ψ is order parameter $\varphi = -lx$ is electric potential $\Gamma \propto T_c - T$

- Linearize about $\psi = 0$ and write $\psi = e^{(\Gamma \lambda)t}u(x)$
- Then get eqⁿ

$$-u_{xx} - ixIu = \lambda u$$

Diffusion of Spin-Polarized Atoms in an Inhomogeneous Magnetic Field

Torrey equation

$$\left[D\nabla^2 - i\omega_L(\mathbf{x})\right]\psi = \frac{\partial\psi}{\partial t}$$

Here $\psi~$ is \propto transverse magnetization $\omega_L~$ is Larmor frequency

- Approximate $\omega_L = \omega_0 + az + bx^2$
- Look for eigenmodes $\psi(t) = arphi_eta e^{-eta t}$
- Factorize $\varphi_{\beta} = \varphi_{\ell}(x)\varphi_m(y)\varphi_n(z)$
- Then get

$$\left(D\frac{d^2}{dz^2}-iaz+E_n\right)\varphi_n(z)=0$$

Bd^y condⁿ taken to be $\psi'(\pm L) = 0$