Solvable $\mathcal{P} \mathcal{T}$-symmetric potentials
beyond the shape-invariant class

Géza Lévai
Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary
PHHQP11, August 26-31 2012, Paris

1. Exactly solvable potentials in general

A variable transformation method
Classification of solvable potentials:

$$
\text { shape-invariant (up to } 3 \text { par.) } \in \text { Natanzon class (} 6 \text { par.) }
$$

2. Exactly solvable $\mathcal{P} \mathcal{T}$-symmetric potentials

Adaptating the techniques to $\mathcal{P} \mathcal{T}: \quad V_{R}(-x)=V_{R}(x) \quad V_{I}(-x)=-V_{I}(x)$
Exact results for shape-invariant potentials: $\Psi_{n}(x), E_{n}, T(k), R(k), \mathcal{C}$

BUT: Very few studies on $\mathcal{P} \mathcal{T}$-symmetric potentials beyond the SI class

3. A new exactly solvable potential class:

A 4 parameter subset of the Natanzon class
Continuous transformation between pairs of shape-invariant limits Bound-state energies defined implicitly by a quartic equation

Different properties in four different parameter domains

1. Exactly solvable potentials in general

Let's focus on the top left quarter with ${ }_{2} F_{1}$
i.e. Jacobi polynomials $P_{n}^{(\alpha, \beta)}(z)$ for bound states

Exact solutions of the Schrödinger equation

An old method
Variable transformation:
Schrödinger eq. \Longrightarrow differential equation of special function F
now $P_{n}^{(\alpha, \beta)}(z)$

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{~d} x^{2}}+(E-V(x)) \psi(x)=0 \quad \text { insert } \quad \psi(x)=\mathbf{f}(x) P_{n}^{(\alpha, \beta)}(\mathbf{z}(x))
$$

and compare with the Jacobi differential equation
to get

$$
\begin{aligned}
E-V(x)= & \frac{z^{\prime \prime \prime}(x)}{2 z^{\prime}(x)}-\frac{3}{4}\left(\frac{z^{\prime \prime}(x)}{z^{\prime}(x)}\right)^{2}+\frac{\left(z^{\prime}(x)\right)^{2}}{1-z^{2}(x)}\left(n+\frac{\alpha+\beta}{2}\right)\left(n+\frac{\alpha+\beta}{2}+1\right) \\
& +\frac{\left(z^{\prime}(x)\right)^{2}}{\left(1-z^{2}(x)\right)^{2}}\left[1-\left(\frac{\alpha+\beta}{2}\right)^{2}-\left(\frac{\alpha-\beta}{2}\right)^{2}\right] \\
& -\frac{2 z(x)\left(z^{\prime}(x)\right)^{2}}{\left(1-z^{2}(x)\right)^{2}}\left(\frac{\alpha+\beta}{2}\right)\left(\frac{\alpha-\beta}{2}\right) .
\end{aligned}
$$

The solutions are

$$
\psi(x) \sim\left(z^{\prime}(x)\right)^{-\frac{1}{2}}(1+z(x))^{\frac{\beta+1}{2}}(1-z(x))^{\frac{\alpha+1}{2}} P_{n}^{(\alpha, \beta)}(z(x)) .
$$

The yet unknown $\mathbf{z}(x)$ can be obtained from a differential equation

$$
\left(\frac{\mathrm{d} z}{\mathrm{~d} x}\right)^{2} \phi(z) \equiv\left(\frac{\mathrm{d} z}{\mathrm{~d} x}\right)^{2} \frac{p_{\mathrm{I}}\left(1-z^{2}\right)+p_{\mathrm{I}}+p_{\mathrm{II}} z}{\left(1-z^{2}\right)^{2}}=C .
$$

by direct integration

$$
\int \phi^{1 / 2}(\mathbf{z}) \mathrm{d} \mathbf{z}=C^{1 / 2} x+\epsilon
$$

ϵ : integration constant, coordinate shift

This is to generate a constant term on the r.h.s. of $E-V(x)=\ldots$

Note: sometimes only $x(\mathbf{z})$ can be determined \Longrightarrow implicit potentials

The list of shape-invariant potentials solved by Jacobi polynomials

$\left(z^{\prime}\right)^{2}=$ (Class)	C	$z(x)$	$V(x)$	$x \in$	Name
$C\left(1-z^{2}\right)$ (PI)	$-a^{2}$	$\mathrm{i} \sinh (x)$	$\begin{aligned} & \left(B^{2}-A^{2}-A\right) \operatorname{sech}^{2}(a x) \\ & +B(2 A+1) \operatorname{sech}(a x) \tanh (a x) \end{aligned}$	$(-\infty, \infty)$	Scarf II
	$-a^{2}$	$\cosh (a x)$	$\begin{aligned} & \left(B^{2}+A^{2}+A\right) \operatorname{cosech}^{2}(a x) \\ & -B(2 A+1) \operatorname{cosech}(a x) \operatorname{coth}(a x) \end{aligned}$	$[0, \infty)$	gen. Pöschl-Teller
	a^{2}	$\sin (a x)$	$\begin{aligned} & \left(B^{2}+A^{2}-A\right) \sec ^{2}(a x) \\ & -B(2 A-1) \sec (a x) \tan (a x) \end{aligned}$	$\left[-\frac{\pi}{2 a}, \frac{\pi}{2 a}\right]$	Scarf I
	$4 a^{2}$	$\cos (2 a x)$	$\begin{aligned} & A(A-1) \sec ^{2}(a x) \\ & +B(B-1) \operatorname{cosec}^{2}(a x) \end{aligned}$	$\left[0, \frac{\pi}{2 a}\right]$	Pöschl-Teller I
	$-4 a^{2}$	$\cosh (2 a x)$	$\begin{aligned} & -A(A+1) \operatorname{sech}^{2}(a x) \\ & +B(B-1) \operatorname{cosech}^{2}(a x) \end{aligned}$	$[0, \infty)$	Pöschl-Teller II
$\begin{aligned} & C\left(1-z^{2}\right)^{2} \\ & (\mathrm{PII}) \end{aligned}$	a^{2}	$\tanh (a x)$	$\begin{aligned} & -A(A+1) \operatorname{sech}^{2}(a x) \\ & +2 B \tanh (a x) \end{aligned}$	$(-\infty, \infty)$	Rosen-Morse II
	a^{2}	$\operatorname{coth}(a x)$	$\begin{aligned} & A(A-1) \operatorname{cosech}^{2}(a x) \\ & -2 B \operatorname{coth}(a x) \end{aligned}$	$[0, \infty)$	Eckart
	$-a^{2}$	$\mathrm{i} \tan (a x)$	$\begin{aligned} & A(A+1) \sec ^{2}(a x) \\ & +2 B \tan (a x) \end{aligned}$	$\left[-\frac{\pi}{2 a}, \frac{\pi}{2 a}\right]$	Rosen-Morse I

Obtained by selecting certain single terms on the right handside of $E-V(x)=\ldots$
The Pöschl-Teller I and II potentials are equivalent with the Scarf I and II
How to $\mathcal{P} \mathcal{T}$-symmetrize these?

2. Exactly solvable $\mathcal{P} \mathcal{T}$-symmetric potentials

First a brief historical overview

Numerical results came first
Results for $V(x)=x^{2}(\mathrm{i} x)^{\delta}$
Real eigenvalues for $\delta>0$
Complex eigenvalues appear gradually for $\delta<0$
Trajectory off the real line for $\delta>2$

Semi-analytical example

The $\mathcal{P} \mathcal{T}$ symmetric square well
Gradual mechanism of the spontaneous breakdown of $\mathcal{P} \mathcal{T}$ symmetry

What about exactly solvable examples?

How to $\mathcal{P} \mathcal{T}$-symmetrize exactly solvable potentials
G. Lévai, M. Znojil, J. Phys A 33 (2000) 7165.

Adjust potential parameters making use of $\mathcal{P} \mathcal{T} z(x)= \pm z(x)$

Directly applicable to potentials defined on $x \in(-\infty, \infty) \quad$ Scarf II, Rosen-Morse II
Reconsider boundary conditions
avoid singularities
imaginary integration constant $\epsilon=-\mathrm{i} c$
Apply it to potentials defined on $x \in(0, \infty)$,

$$
\begin{array}{cccl}
z(x) & x \in & y=x-\mathrm{i} c & \mathcal{P} \mathcal{T} z(y)= \pm z(y) \\
\sinh (x) & (-\infty, \infty) & & \text { Example } \\
\cosh (x) & (-\infty, \infty) & -\sinh (y) & \text { Scarf II } \\
\sin (x) & (-\pi / 2, \pi / 2) & \cosh (y) & \text { gen. Pöschl-Teller } \\
\end{array}
$$

Note: Introducing ic does not change the spectrum
...so it cannot introduce spontaneous $\mathcal{P} \mathcal{T}$ breaking
In some other cases the problem has to be defined on a more general trajectory
The boundary conditions cannot be satisfied on $y=x-\mathrm{i} c$
This is the case for the Coulomb and Morse potentials with $F(z)=L_{n}^{(\alpha)}(z)$

The guinea pig: The Scarf II potential

$$
V(x)=-\frac{1}{\cosh ^{2} x}\left[\left(\frac{\alpha+\beta}{2}\right)^{2}+\left(\frac{\alpha-\beta}{2}\right)^{2}-\frac{1}{4}\right]+\frac{2 \mathrm{i} \sinh x}{\cosh ^{2} x}\left(\frac{\beta+\alpha}{2}\right)\left(\frac{\beta-\alpha}{2}\right)
$$

Relations for the parameters:

$$
\begin{array}{llc}
\mathcal{P I} \text { symmetry: } & \Longrightarrow & \alpha, \beta \text { are real or imaginary } \\
\alpha \leftrightarrow \beta: & \Longrightarrow & V(x) \leftrightarrow V(-x) \\
V(x) \text { invariant under } \alpha \leftrightarrow-\alpha & \Longrightarrow & q \alpha \equiv \pm \alpha \quad \text { quasi-parity } \\
\psi_{n}^{(q)}(x)=C_{n}^{(q)}(1-\mathrm{i} \sinh (x+\mathrm{i} \epsilon))^{\frac{q \alpha}{2}+\frac{1}{4}}(1+\mathrm{i} \sinh (x+\mathrm{i} \epsilon))^{\frac{\beta}{2}+\frac{1}{4}} P_{n}^{(q \alpha, \beta)}(\mathrm{i} \sinh (x+\mathrm{i} \epsilon))
\end{array}
$$

Normalizable if $\quad n^{(q)}<-[\operatorname{Re}(q \alpha+\beta)+1] / 2$
The second set corresponds to resonances in the Hermitian setting $\left(\alpha^{*}=\beta\right)$

$$
E_{n}^{(q)}=-\left(n+\frac{q \alpha+\beta+1}{2}\right)^{2}
$$

Complex conjugate pairs if α is imaginary Spontaneous breakdown of $\mathcal{P} \mathcal{T}$ symmetry
"Sudden" mechanism: all the $E_{n}^{(q)}$ turn complex at the same time

$\alpha=-2, \quad \beta=-14 \quad n^{(+)}<8, \quad n^{(-)}<6, \quad E_{n}^{(q)}<0 \quad$ for all n

The black sheep: The Rosen-Morse II potential

G. Lévai, E. Magyari, J. Phys. A 42 (2009) 195302

$$
V(x)=-\frac{s(s+1)}{\cosh ^{2}(x)}+2 \mathrm{i} \lambda \tanh (x)
$$

$\mathcal{P} \mathcal{T}$ symmetry: $\Longrightarrow s(s+1), \lambda$ are real
Bound-state solutions:

$$
\begin{aligned}
\psi_{n}(x) & =C_{n}(1-\tanh x)^{\frac{\alpha}{2}}(1+\tanh x)^{\frac{\beta}{2}} P_{n}^{(\alpha, \beta)}(\tanh x) \\
\alpha_{n} & =s-n+\frac{\mathrm{i} \lambda}{s-n}, \quad \beta_{n}=s-n-\frac{\mathrm{i} \lambda}{s-n}
\end{aligned}
$$

Only one solution can be regular at the same time

$$
\operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0
$$

$$
E_{n}=-(s-n)^{2}+\frac{\lambda^{2}}{(s-n)^{2}}, \quad n=0,1, \ldots n_{\max }<s
$$

Peculiarities of the spectrum

No quasi-parity
No complex energy eigenvalues no spontaneous breakdown of $\mathcal{P} \mathcal{T}$ symmetry

But $\quad E_{n}>0 \quad$ if $\quad s-|\lambda|^{1 / 2} \leq n<s \quad$ increasing non-hermiticity
Furthermore for $|\lambda|>s^{2} \quad$ all $\quad E_{n}>0$

Is the difference due to the dominant imaginary component?

$$
V_{R}(\pm \infty)=0 \quad \text { BUT } \quad V_{I}(\pm \infty)= \pm 2 \mathrm{i} \lambda \neq 0
$$

$$
\begin{gathered}
V(x)=-B[1+\exp (-2 x)]^{-1 / 2}+A[1+\exp (-2 x)]^{-1}-\frac{3}{4}[1+\exp (-2 x)]^{-2} \\
=-2 B[1+\tanh (x)]^{1 / 2}-\left(\frac{A}{4}-\frac{3}{32}\right) \tanh (x)+\frac{3}{64} \cosh ^{-2}(x) \\
\psi_{n}(x)=C_{n} z^{1 / 2}(x)(z(x)+1)^{\beta_{n} / 2}(z(x)-1)^{\alpha_{n} / 2} P_{n}^{\left(\alpha_{n}, \beta_{n}\right)}(z(x)) \quad z(x)=\left[1+\mathrm{e}^{-2 x}\right]^{1 / 2} \\
E_{n}=-\left(n+\frac{\alpha_{n}+\beta_{n}+1}{2}\right)^{2} \\
\alpha_{n}+\beta_{n} \text { is determined implicitly by a cubic algebraic equation }
\end{gathered}
$$

Normalizability requires $n+\frac{\alpha_{n}+\beta_{n}+1}{2}<0$
Always the lowest real root yields E_{n}
Identified as a Natanzon-class potential
R. Roychoudhury, P. Roy, M. Znojil, G. Lévai, J. Math. Phys. 42 (2001) 1996

How to $\mathcal{P} \mathcal{T}$-symmetrize the DKV potential?

Not separable to even and odd components...
BUT take $x \rightarrow \mathrm{i} x$
M. Znojil, G. Lévai, P. Roy, R. Roychoudhury, Phys. Lett. A 290 (2001) 249

Formally everything remains the same
hyperbolic functions \longrightarrow trigonometric functions PLUS i factors
Now the acceptable energy eigenvalues will be complex conjugate pairs
obtained by two complex conjugate roots of the cubic equation Spontaneous breakdown of $\mathcal{P} \mathcal{T}$ symmetry

But are there real igenvalues too?

What do we know about solvable $\mathcal{P} \mathcal{T}$-symmetric potentials?
defined on $\quad \mathrm{Sp} . \mathcal{P} \mathcal{T}$ br. q Ps. norm $T(k), R(k)$ etc.

Scarf II	x	sudden	Y	$\neq(-1)^{n}$	Y
gen. Pöschl-Teller	$x-\mathrm{i} c$	sudden	Y		Y
Scarf I	confined	No	No	$(-1)^{n}$	n.a.
Rosen-Morse II	x	No	No	$(-1)^{n}$	Y
Eckart	$x-\mathrm{i} c$	sudden	Y		
Rosen-Morse I	confined	No	No	$(-1)^{n}$	n.a.
DKV	x	$?$	$?$		

3. A new exactly solvable potential class

Remember the equation defining the $z(x)$ function:

$$
\left(\frac{\mathrm{d} z}{\mathrm{~d} x}\right)^{2} \phi(z) \equiv\left(\frac{\mathrm{d} z}{\mathrm{~d} x}\right)^{2} \frac{p_{\mathrm{I}}\left(1-z^{2}\right)+p_{\mathrm{II}}+p_{\mathrm{III}} z}{\left(1-z^{2}\right)^{2}}=C .
$$

Shape-invariant potentials obtained for $p_{\text {I }} \neq 0$ or $p_{\text {II }} \neq 0$

Now take a combination: $\quad p_{\mathrm{I}}=1, \quad p_{\mathrm{II}}=\delta$
Implicit potential: only $x(z)$ is known in closed form...
...nevertheless, everything can be evaluated exactly

The actual form of the potential:

$$
\begin{aligned}
E-V(x)= & \left(n+\frac{\alpha+\beta+1}{2}\right)^{2}-\frac{3 C \delta}{4} \frac{(3 \delta+2)}{\left(\delta+1-z^{2}(x)\right)^{2}}+\frac{5 C \delta^{2}}{4} \frac{(\delta+1)}{\left(\delta+1-z^{2}(x)\right)^{3}} \\
& -\frac{C \Sigma}{\delta+1-z^{2}(x)}-\frac{2 C \Lambda z(x)}{\delta+1-z^{2}(x)} \\
\Sigma= & \delta\left(n+\frac{\alpha+\beta+1}{2}\right)^{2}-\delta+\left(\frac{\alpha+\beta}{2}\right)^{2}+\left(\frac{\alpha-\beta}{2}\right)^{2}-\frac{1}{4} \\
& \Lambda=\frac{\alpha+\beta}{2} \frac{\alpha-\beta}{2} \quad \alpha=\alpha_{n}, \quad \beta=\beta_{n} \\
\Psi_{n}(x)= & N_{n}\left(\delta+1-z^{2}(x)\right)^{1 / 4}(1-z(x))^{\alpha / 2}(1+z(x))^{\beta / 2} P_{n}^{(\alpha, \beta)}(z(x))
\end{aligned}
$$

A four-parameter $(2+2)$ potential:
C and δ control the variable transformation
Σ and Λ set the coupling coefficients
$\Lambda=0$: symmetric Ginocchio case
A special case of the $3+3$ parameter Natanzon class

What is always the same:

The potential, the energy expression, the wavefunction, the spectral equation:

$$
(\delta+1) \omega^{4}+\delta(2 n+1) \omega^{3}+\left(\frac{\delta}{4}(2 n+1)^{2}-\delta-\Sigma-\frac{1}{4}\right) \omega^{2}+\Lambda^{2}=0
$$

The defining differential equation

$$
\frac{\left(z^{\prime}\right)^{2}}{\left(1-z^{2}\right)^{2}}\left(\delta+1-z^{2}\right)=C
$$

What changes is:

The $x(z)$, i.e. the $z(x)$ function: it depends on C and δ

$$
\begin{array}{rlr}
C<0, \delta \geq 0 & \Longrightarrow \quad z^{2} \leq 0 \quad z(x) \text { imaginary and unbound } \\
C>0, \delta \geq 0 \quad \Longrightarrow \quad 0 \leq z^{2} \leq 1 \quad z(x) \text { real and bounded } \\
C<0, \delta \leq 0 \quad \Longrightarrow \quad z^{2} \geq 1 \quad z(x) \text { real and unbound }
\end{array}
$$

$z(x)$ combined with the boundary conditions restricts the ω roots and thus $E_{n}(\omega)$
$\mathcal{P} \mathcal{T} z(x)=z^{*}(-x)= \pm z(x)$ also selects if Λ is real or imaginary
Note: for $C>0, \delta \leq 0 z(x)$ is complex and has no definite $\mathcal{P} \mathcal{T}$ parity

What about the spontaneous breakdown of $\mathcal{P} \mathcal{T}$ symmetry?

Paris is full of (slightly) broken symmetries

Not to mention the character of the left and the right bank...

The $C=-a^{2}<0, \delta \geq 0$ case: $z(x)$ imaginary and unbound, $z^{2} \leq 0, \Lambda$ real
The $x(z)$ solution:
vanishing $\operatorname{Re} z \quad$ (not to be confused with Rež)

$$
\begin{array}{rlr}
& C^{1 / 2} x=\arctan \left[z\left(\delta+1-z^{2}\right)^{-1 / 2}\right]+\delta^{1 / 2} \operatorname{Artanh}\left[\delta^{1 / 2} z\left(\delta+1-z^{2}\right)^{-1 / 2}\right] . \\
\delta \rightarrow 0: \quad z(x)=\mathrm{i} \sinh (a x) & \text { Scarf II limit } & \text { complex } E_{n} \text { exist } \\
\delta \rightarrow \infty: & z(x)=\mathrm{i} \tan (a x) & \text { Rosen-Morse I limit }
\end{array}
$$

The wavefunctions:

$$
\begin{gathered}
\Psi_{n}(x)=N_{n}\left(\delta+1-z^{2}(x)\right)^{1 / 4}(1-z(x))^{\alpha / 2}(1+z(x))^{\beta / 2} P_{n}^{(\alpha, \beta)}(\mathrm{i} \sinh (x)) \\
\alpha=\omega+\frac{\Lambda}{\omega}, \quad \beta=\omega-\frac{\Lambda}{\omega}
\end{gathered}
$$

Normalizability condition: $\quad \operatorname{Re} \omega<-n-\frac{1}{2}$

$$
(\delta+1) \omega^{4}+\delta(2 n+1) \omega^{3}+\left(\frac{\delta}{4}(2 n+1)^{2}-\delta-\Sigma-\frac{1}{4}\right) \omega^{2}+\Lambda^{2}=0
$$

The extrema of these curves can be determined exactly

$V_{R}(x)$ and $V_{I}(x)$ for $C=-1, \Sigma=11.0624$ and $\Lambda=1.26$. The $\delta \rightarrow \infty$ limit is the Rosen-Morse I potential. (Note the different scales.) Resembles the $\mathcal{P} \mathcal{T}$ square well.

Partial map of the (δ, C) plane

Different types of $z(x)$ solutions occur in each quadrant
The axes are impenetrable

Are there complex conjugate ω roots?

$C=-1, \delta=1.25, \Sigma=15.1, \Lambda=7.4$

The shifted spectral equation $(\omega+n+1 / 2<0)$ for $C=-1, \delta=1.25, \Sigma=15.1, \Lambda=7.4$
The curves belong to $n=0,1,2$ and 3 , counting from the left
Increasing Λ shifts the curves upwards.
The roots then turn into complex starting from the left, i.e. small n.
$\operatorname{Re}(V(x))$ and $\operatorname{Im}(V(x))$ for $C=-1, \delta=1.25, \Sigma=15.1, \Lambda=7.4$

Energy eigenvalues:

$$
\begin{array}{lll}
n=0 & E_{0}^{(+)}=-2.555+2.108 \mathrm{i} & E_{0}^{(-)}=-2.555-2.108 \mathrm{i} \\
n=1 & E_{1}^{(+)}=-1.439 & E_{1}^{(-)}=-0.555
\end{array} \quad \text { two complex conjugate eigenvalues }
$$

Gradual mechanism for the spontaneous $\mathcal{P} \mathcal{T}$ breaking
Starts from below, like in the case of the $\mathcal{P} \mathcal{T}$ square well

The $C=a^{2}>0, \delta \geq 0$ case: $z(x)$ real and bounded, $0 \geq z^{2} \geq 1, \Lambda$ imaginary

$$
C^{1 / 2} x=\arctan \left[z\left(\delta+1-z^{2}\right)^{-1 / 2}\right]+\delta^{1 / 2} \operatorname{Artanh}\left[\delta^{1 / 2} z\left(\delta+1-z^{2}\right)^{-1 / 2}\right] .
$$

Formally the same as in the $C<0$ case, because $x(\mathrm{i} z)=\mathrm{i} x(z)$
$\delta \rightarrow 0: \quad z(x)=\sin (a x) \quad$ Scarf I limit no complex E_{n} exist
$\delta \rightarrow \infty: \quad z(x)=\tanh (\tilde{a} x) \quad$ Rosen-Morse II limit no complex E_{n} exist
Now $\operatorname{Im}(V(x))$ does not vanish asymptotically
The wave functions:

$$
\begin{gathered}
\Psi_{n}(x)=N_{n}\left(\delta+1-z^{2}(x)\right)^{1 / 4}(1-z(x))^{\alpha / 2}(1+z(x))^{\beta / 2} P_{n}^{(\alpha, \beta)}(\mathrm{i} \sinh (x)) \\
\alpha=\omega+\frac{\Lambda}{\omega}, \quad \beta=\omega-\frac{\Lambda}{\omega}
\end{gathered}
$$

Normalizability condition: $\quad \operatorname{Re}(\alpha)>0, \quad \operatorname{Re}(\beta)>0$
Now the roots have to be searched for in the $\omega>0$ domain.

Are there complex conjugate ω roots?

The spectral equation for $C=1, \delta=100, \Sigma=11.0624, \Lambda=1.26$ i
The curves belong to $n=0,1,2,3,4$ and 5 , counting from the right Increasing Λ shifts the curves downwards, including the local maximum at $\omega^{(0)}=0$.

But $\Pi\left(\omega^{(+)}\right)<\Pi\left(\omega^{(0)}\right)$
\longrightarrow No chance for complex roots.
The descendant potential inherited the properties of its parents...
$\operatorname{Re}(V(x))$ and $\operatorname{Im}(V(x))$ for $C=1, \delta=100, \Sigma=11.0624, \Lambda=1.26 \mathrm{i}$

The energy eigenvalues are real and positive, starting from $E_{0}=4.454$

A still partial map of the (δ, C) plane

Different types of $z(x)$ solutions occur in each quadrant
The axes are impenetrable

The $C=a^{2}<0, \delta \leq 0$ case: $z(x)$ real and unbound, $z^{2} \geq 1, \Lambda$ imaginary Now $x(z)$ is different for $\delta<-1$:

$$
(-C)^{1 / 2} x-\mathrm{i} c=\operatorname{Artanh}\left[z\left(z^{2}-1-\delta\right)^{-1 / 2}\right]-\delta^{1 / 2} \operatorname{Artanh}\left[\left(z^{2}-\delta-1\right)^{1 / 2}(-\delta)^{-1 / 2} z^{-1}\right]
$$

and $-1<\delta<0$:

$$
\begin{aligned}
& (-C)^{1 / 2} x-\mathrm{i} c=\operatorname{Artanh}\left[z^{-1}\left(z^{2}-1-\delta\right)^{1 / 2}\right]-\delta^{1 / 2} \operatorname{Artanh}\left[(-\delta)^{1 / 2} z\left(z^{2}-\delta-1\right)^{-1 / 2}\right] . \\
& \delta \rightarrow 0: \quad z(x)=\cosh (a x) \quad \text { generalized Pöschl-Teller limit } \\
& \delta \rightarrow \infty: \quad z(x)=-\operatorname{coth}(\tilde{a} x) \quad \text { Eckart limit }
\end{aligned}
$$

The potentials would be singular without the $x-\mathrm{i} c$ imaginary coordinate shift

$$
\begin{aligned}
& \quad \Psi_{n}(x)=N_{n}\left(\delta+1-z^{2}(x)\right)^{1 / 4}(1-z(x))^{\alpha / 2}(1+z(x))^{\beta / 2} P_{n}^{(\alpha, \beta)}(\mathrm{i} \sinh (x)) \\
& \alpha=\omega+\frac{\Lambda}{\omega}, \quad \beta=\omega-\frac{\Lambda}{\omega}
\end{aligned}
$$

Normalizability condition: $\quad \operatorname{Re}(\omega)<-n-1 / 2$
Another special limit: $\quad \delta \rightarrow-1 \quad$ the DKV limit
The spectral equation reduces to a cubic one as it should

The complete analysis is missing here.
Complex ω roots and thus complex energy eigenvalues exist here too
We illustrate only the effect of the imaginary coordinate shift for the two limits:

generalized Pöschl-Teller

$$
\begin{gathered}
\alpha=3.2, \beta=-13.2, \quad c=0.3 \\
E_{0}=-20.25 \\
E_{4}=-0.25
\end{gathered}
$$

Eckart

$$
\begin{gathered}
s=4.2, \lambda=2.6, c=0.3 \\
E_{0}=-17.2567, \\
E_{4}=168.96,
\end{gathered}
$$

A still incomplete map of the (δ, C) plane

Different types of $z(x)$ solutions occur in each quadrant
The axes are impenetrable

General complex $z(x)$, more complicated situation
However, the limits for $\delta \rightarrow 0,-1$ and $-\infty$ are known

Discussion. Part 1: the general case

To obtain more flexible spectra we introduced a new potential family

- Implicit $z(x)$, AND E_{n} but tunable spectrum
- It depends on $2+2$ parameters and is the subset of the general Natanzon class (3+3)
- It contains all the shape invariant potentials with Jacobi polynomial type solutions
- It also generalizes known Natanzon type potentials (symmetric Ginocchio, DKV)
- Pairs of shape-invariant potentials can directly be connected continuously

Scarf II + Rosen-Morse I, Scarf I + Rosen-Morse II, gen. Pöschl-Teller + Eckart

- In some limits it approximates the finite square well

Discussion. Part 2: the $\mathcal{P} \mathcal{T}$-symmetric case

- For $C<0, \delta>0$ spontaneous $\mathcal{P} \mathcal{T}$ breakdown occurs gradually
like the $B B$ potential for $\delta<0$
with the difference that complex E_{n} appears from low n
- For $C>0, \delta>0$ spontaneous $\mathcal{P} \mathcal{T}$ breakdown does not occur

Too strong non-hermiticity may not let complex eigenvalues develop
like the $B B$ potential for $\delta>0$
(non-Hermiticity is like wine)

- For $C<0, \delta<0$ the problem has to be defined off the real x axis
like the $B B$ potential for $\delta>2$
- For $C>0, \delta<0$ only the special limits have been explored
- Scattering solutions yet to be studied in the relevant cases

