Solvable \mathcal{PT} -symmetric potentials

.

beyond the shape-invariant class

Géza Lévai

Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary

PHHQP11, August 26–31 2012, Paris

1. Exactly solvable potentials in general

A variable transformation method

Classification of solvable potentials:

shape-invariant (up to 3 par.) \in Natanzon class (6 par.)

2. Exactly solvable \mathcal{PT} -symmetric potentials

Adaptating the techniques to \mathcal{PT} : $V_R(-x) = V_R(x)$ $V_I(-x) = -V_I(x)$

Exact results for shape-invariant potentials: $\Psi_n(x)$, E_n , T(k), R(k), C

BUT: Very few studies on \mathcal{PT} -symmetric potentials beyond the SI class

3. A new exactly solvable potential class:

A 4 parameter subset of the Natanzon class

Continuous transformation between pairs of shape-invariant limits

Bound-state energies defined implicitly by a quartic equation

Different properties in four different parameter domains

1. Exactly solvable potentials in general

Let's focus on the top left quarter with $_2F_1$

i.e. Jacobi polynomials $P_n^{(\alpha,\beta)}(z)$ for bound states

Exact solutions of the Schrödinger equation

An old method

Bhattacharjie and Sudarshan 1962

Variable transformation:

Schrödinger eq. \implies differential equation of special function F now $P_n^{(\alpha,\beta)}(z)$

$$\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + (E - V(x))\psi(x) = 0 \qquad \text{insert} \qquad \psi(x) = \mathbf{f}(x)P_n^{(\alpha,\beta)}(\mathbf{z}(x))$$

and compare with the Jacobi differential equation

to get

$$\begin{split} E - V(x) &= \frac{z'''(x)}{2z'(x)} - \frac{3}{4} \left(\frac{z''(x)}{z'(x)} \right)^2 + \frac{(z'(x))^2}{1 - z^2(x)} \left(n + \frac{\alpha + \beta}{2} \right) \left(n + \frac{\alpha + \beta}{2} + 1 \right) \\ &+ \frac{(z'(x))^2}{(1 - z^2(x))^2} \left[1 - \left(\frac{\alpha + \beta}{2} \right)^2 - \left(\frac{\alpha - \beta}{2} \right)^2 \right] \\ &- \frac{2z(x)(z'(x))^2}{(1 - z^2(x))^2} \left(\frac{\alpha + \beta}{2} \right) \left(\frac{\alpha - \beta}{2} \right). \end{split}$$

The solutions are

$$\psi(x) \sim (z'(x))^{-\frac{1}{2}} (1+z(x))^{\frac{\beta+1}{2}} (1-z(x))^{\frac{\alpha+1}{2}} P_n^{(\alpha,\beta)}(z(x)) .$$

The yet unknown $\mathbf{z}(x)$ can be obtained from a differential equation

$$\left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2 \phi(z) \equiv \left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2 \frac{p_\mathrm{I}(1-z^2) + p_\mathrm{II} + p_\mathrm{III}z}{(1-z^2)^2} = C \ .$$

by direct integration

$$\int \phi^{1/2}(\mathbf{z}) \mathrm{d}\mathbf{z} = C^{1/2}x + \epsilon \; .$$

 ϵ : integration constant, coordinate shift

This is to generate a **constant term** on the r.h.s. of $E - V(x) = \dots$

Note: sometimes only $x(\mathbf{z})$ can be determined \implies implicit potentials

$(z')^2 = $ (Class)	C	z(x)	V(x)	$x \in$	Name	
$\frac{C(1-z^2)}{(\mathrm{PI})}$	$-a^2$	$i\sinh(x)$	$(B2 - A2 - A)\operatorname{sech}^{2}(ax)$ $+B(2A + 1)\operatorname{sech}(ax) \tanh(ax)$	$(-\infty,\infty)$	Scarf II	
	$-a^2$	$\cosh(ax)$	$(B^2 + A^2 + A)$ cosech ² (ax) -B(2A + 1)cosech(ax) coth(ax)	$[0,\infty)$	gen. Pöschl–Teller	
	a^2	$\sin(ax)$	$(B^{2} + A^{2} - A)\sec^{2}(ax)$ $-B(2A - 1)\sec(ax)\tan(ax)$	$\left[-\frac{\pi}{2a},\frac{\pi}{2a}\right]$	Scarf I	
	$4a^{2}$	$\cos(2ax)$	$A(A-1)\sec^{(ax)}(ax)$ $+B(B-1)\csc^{(ax)}(ax)$	$\left[0, \frac{\pi}{2a}\right]$	Pöschl–Teller I	
	$-4a^{2}$	$\cosh(2ax)$	$-A(A+1)\operatorname{sech}^{2}(ax)$ $+B(B-1)\operatorname{cosech}^{2}(ax)$	$[0,\infty)$	Pöschl–Teller II	
$\begin{array}{c} C(1-z^2)^2\\ (\text{PII}) \end{array}$	a^2	$\tanh(ax)$	$-A(A+1)\operatorname{sech}^{2}(ax)$ +2B tanh(ax)	$(-\infty,\infty)$	Rosen–Morse II	
(1 11)	a^2	$\coth(ax)$	$A(A-1)\operatorname{cosech}^{2}(ax)$ -2B coth(ax)	$[0,\infty)$	Eckart	
	$-a^{2}$	$i \tan(ax)$	$A(A+1)\sec^2(ax) +2B\tan(ax)$	$\left[-\frac{\pi}{2a},\frac{\pi}{2a}\right]$	Rosen–Morse I	

The list of shape-invariant potentials solved by Jacobi polynomials

Obtained by selecting certain single terms on the right hand side of $E-V(x)=\ldots$

The Pöschl–Teller I and II potentials are equivalent with the Scarf I and II

How to \mathcal{PT} -symmetrize these?

2. Exactly solvable \mathcal{PT} -symmetric potentials

First a brief historical overview

Numerical results came first

Bender and Boettscher 1998

Results for $V(x) = x^2(ix)^{\delta}$ Real eigenvalues for $\delta > 0$ Complex eigenvalues appear gradually for $\delta < 0$ Trajectory off the real line for $\delta > 2$

Semi-analytical example

Znojil and Lévai 2001

The \mathcal{PT} symmetric square well

Gradual mechanism of the spontaneous breakdown of \mathcal{PT} symmetry

What about exactly solvable examples?

How to \mathcal{PT} -symmetrize exactly solvable potentials

G. Lévai, M. Znojil, J. Phys A 33 (2000) 7165.

making use of $\mathcal{PT}z(x) = \pm z(x)$

avoid singularities

Adjust potential parameters

Directly applicable to potentials defined on $x \in (-\infty, \infty)$ Scarf II, Rosen-Morse II

Reconsider boundary conditions

imaginary integration constant $\epsilon = -ic$

Apply it to potentials defined on $x \in (0, \infty)$,

z(x)	$x \in$	y = x - ic	$\mathcal{PT}z(y) = \pm z(y)$	Example
$\sinh(x)$	$(-\infty,\infty)$		$-\sinh(y)$	Scarf II
$\cosh(x)$	$(-\infty,\infty)$		$\cosh(y)$	gen. Pöschl–Teller
$\sin(x)$	$(-\pi/2,\pi/2)$		$-\sin(z)$	Scarf I

Note: Introducing ic does not change the spectrum

...so it cannot introduce spontaneous \mathcal{PT} breaking

In some other cases the problem has to be defined on a more general trajectory

The boundary conditions cannot be satisfied on y = x - ic

This is the case for the Coulomb and Morse potentials with $F(z) = L_n^{(\alpha)}(z)$

The guinea pig: The Scarf II potential

$$V(x) = -\frac{1}{\cosh^2 x} \left[\left(\frac{\alpha + \beta}{2} \right)^2 + \left(\frac{\alpha - \beta}{2} \right)^2 - \frac{1}{4} \right] + \frac{2i\sinh x}{\cosh^2 x} \left(\frac{\beta + \alpha}{2} \right) \left(\frac{\beta - \alpha}{2} \right)$$

Relations for the parameters:

$$\begin{array}{lll} \mathcal{PT} \text{ symmetry:} & \implies & \alpha, \beta \text{ are real or imaginary} \\ \alpha \leftrightarrow \beta: & \implies & V(x) \leftrightarrow V(-x) \\ V(x) \text{ invariant under } \alpha \leftrightarrow -\alpha & \implies & q\alpha \equiv \pm \alpha \quad \text{quasi-parity} \\ \psi_n^{(q)}(x) = C_n^{(q)}(1 - \mathrm{i}\sinh(x + \mathrm{i}\epsilon))^{\frac{q\alpha}{2} + \frac{1}{4}}(1 + \mathrm{i}\sinh(x + \mathrm{i}\epsilon))^{\frac{\beta}{2} + \frac{1}{4}}P_n^{(q\alpha,\beta)}(\mathrm{i}\sinh(x + \mathrm{i}\epsilon)) \\ & \text{Normalizable if} & n^{(q)} < -[\operatorname{Re}(q\alpha + \beta) + 1]/2 \end{array}$$

The second set corresponds to resonances in the Hermitian setting $(\alpha^* = \beta)$

$$E_n^{(q)} = -\left(n + \frac{q\alpha + \beta + 1}{2}\right)^2$$

Complex conjugate pairs if α is imaginary Spontaneous breakdown of \mathcal{PT} symmetry "Sudden" mechanism: all the $E_n^{(q)}$ turn complex at the same time

 $\alpha = -2, \quad \beta = -14 \qquad \qquad n^{(+)} < 8, \qquad n^{(-)} < 6, \qquad E_n^{(q)} < 0 \quad \text{ for all } n$

The black sheep: The Rosen–Morse II potential

G. Lévai, E. Magyari, J. Phys. A 42 (2009) 195302

$$V(x) = -\frac{s(s+1)}{\cosh^2(x)} + 2i\lambda \tanh(x)$$

 \mathcal{PT} symmetry: $\implies s(s+1), \lambda$ are real

Bound-state solutions:

$$\psi_n(x) = C_n (1 - \tanh x)^{\frac{\alpha}{2}} (1 + \tanh x)^{\frac{\beta}{2}} P_n^{(\alpha,\beta)}(\tanh x)$$
$$\alpha_n = s - n + \frac{i\lambda}{s - n}, \qquad \beta_n = s - n - \frac{i\lambda}{s - n}$$

Only one solution can be regular at the same time

$$\operatorname{Re}(\alpha) > 0, \operatorname{Re}(\beta) > 0$$

$$E_n = -(s-n)^2 + \frac{\lambda^2}{(s-n)^2}$$
, $n = 0, 1, \dots n_{\max} < s$.

Peculiarities of the spectrum

No quasi-parity

No complex energy eigenvalues \mathbf{no} spontaneous breakdown of \mathcal{PT} symmetry

But $E_n > 0$ if $s - |\lambda|^{1/2} \le n < s$ increasing non-hermiticity **Furthermore** for $|\lambda| > s^2$ all $E_n > 0$

 $s = 9.5, \quad \lambda = 12$ $n \le 9, \quad V_R(x)$ is the same as for the Scarf II potential

Is the difference due to the dominant imaginary component?

$$V_R(\pm \infty) = 0$$
 BUT $V_I(\pm \infty) = \pm 2i\lambda \neq 0$

An old friend: The DKV potential

R. Dutt, A. Khare, Y. P. Varshni, J. Phys. A 28 (1995) L107

$$V(x) = -B[1 + \exp(-2x)]^{-1/2} + A[1 + \exp(-2x)]^{-1} - \frac{3}{4}[1 + \exp(-2x)]^{-2}$$

= $-2B[1 + \tanh(x)]^{1/2} - \left(\frac{A}{4} - \frac{3}{32}\right) \tanh(x) + \frac{3}{64}\cosh^{-2}(x)$

$$\psi_n(x) = C_n z^{1/2}(x)(z(x)+1)^{\beta_n/2}(z(x)-1)^{\alpha_n/2} P_n^{(\alpha_n,\beta_n)}(z(x)) \qquad z(x) = [1+e^{-2x}]^{1/2}$$

$$E_n = -\left(n + \frac{\alpha_n + \beta_n + 1}{2}\right)^2$$

 $\alpha_n+\beta_n \text{ is determined implicitly by a cubic algebraic equation}$ Normalizability requires $n+\frac{\alpha_n+\beta_n+1}{2}<0$

Always the lowest real root yields E_n

Identified as a Natanzon-class potential

R. Roychoudhury, P. Roy, M. Znojil, G. Lévai, J. Math. Phys. 42 (2001) 1996

How to \mathcal{PT} -symmetrize the DKV potential?

Not separable to even and odd components...

BUT take $x \to ix$

M. Znojil, G. Lévai, P. Roy, R. Roychoudhury, Phys. Lett. A 290 (2001) 249

Formally everything remains the same

hyperbolic functions \longrightarrow trigonometric functions PLUS i factors

Now the acceptable energy eigenvalues will be complex conjugate pairs

obtained by two complex conjugate roots of the cubic equation

Spontaneous breakdown of \mathcal{PT} symmetry

But are there real igenvalues too?

Scarf II	x	sudden	Υ	$\neq (-1)^n$	Y	
gen. Pöschl–Teller	$x - \mathrm{i}c$	sudden	Y		Υ	
Scarf I	confined	No	No	$(-1)^n$	n.a.	\mathcal{C}
Rosen–Morse II	x	No	No	$(-1)^n$	Y	
Eckart	$x - \mathrm{i}c$	sudden	Υ			
Rosen–Morse I	confined	No	No	$(-1)^n$	n.a.	
DKV	x	?	?			

What do we know about solvable $\mathcal{PT}\text{-symmetric potentials?}$

defined on Sp. \mathcal{PT} br. q Ps. norm T(k), R(k) etc.

3. A new exactly solvable potential class

Remember the equation defining the z(x) function:

$$\left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2 \phi(z) \equiv \left(\frac{\mathrm{d}z}{\mathrm{d}x}\right)^2 \frac{p_{\mathrm{I}}(1-z^2) + p_{\mathrm{II}} + p_{\mathrm{III}}z}{(1-z^2)^2} = C \; .$$

Shape-invariant potentials obtained for $p_{\rm I} \neq 0$ or $p_{\rm II} \neq 0$

Now take a combination: $p_{\rm I} = 1, \quad p_{\rm II} = \delta$

Implicit potential: only x(z) is known in closed form...

 \dots nevertheless, everything can be evaluated **exactly**

The actual form of the potential:

$$E - V(x) = \left(n + \frac{\alpha + \beta + 1}{2}\right)^2 - \frac{3C\delta}{4} \frac{(3\delta + 2)}{(\delta + 1 - z^2(x))^2} + \frac{5C\delta^2}{4} \frac{(\delta + 1)}{(\delta + 1 - z^2(x))^3} - \frac{C\Sigma}{\delta + 1 - z^2(x)} - \frac{2C\Lambda z(x)}{\delta + 1 - z^2(x)}$$
$$\Sigma = \delta \left(n + \frac{\alpha + \beta + 1}{2}\right)^2 - \delta + \left(\frac{\alpha + \beta}{2}\right)^2 + \left(\frac{\alpha - \beta}{2}\right)^2 - \frac{1}{4}$$
$$\Lambda = \frac{\alpha + \beta}{2} \frac{\alpha - \beta}{2} \qquad \alpha = \alpha_n , \qquad \beta = \beta_n$$

$$\Psi_n(x) = N_n(\delta + 1 - z^2(x))^{1/4} (1 - z(x))^{\alpha/2} (1 + z(x))^{\beta/2} P_n^{(\alpha,\beta)}(z(x))$$

A four-parameter (2+2) potential:

C and δ control the variable transformation

 Σ and Λ set the coupling coefficients $\Lambda = 0$: symmetric Ginocchio case

A special case of the 3+3 parameter Natanzon class

What is always the same:

The potential, the energy expression, the wavefunction, the spectral equation:

$$(\delta+1)\omega^4 + \delta(2n+1)\omega^3 + \left(\frac{\delta}{4}(2n+1)^2 - \delta - \Sigma - \frac{1}{4}\right)\omega^2 + \Lambda^2 = 0$$

The defining differential equation

$$\frac{(z')^2}{(1-z^2)^2}(\delta+1-z^2) = C$$

What changes is:

The x(z), i.e. the z(x) function: it depends on C and δ

 $\begin{array}{lll} C < 0, \ \delta \ge 0 & \Longrightarrow & z^2 \le 0 & z(x) \ \text{imaginary and unbound} \\ C > 0, \ \delta \ge 0 & \Longrightarrow & 0 \le z^2 \le 1 & z(x) \ \text{real and bounded} \\ C < 0, \ \delta \le 0 & \Longrightarrow & z^2 \ge 1 & z(x) \ \text{real and unbound} \end{array}$

z(x) combined with the boundary conditions restricts the ω roots and thus $E_n(\omega)$

 $\mathcal{PT}z(x) = z^*(-x) = \pm z(x)$ also selects if Λ is real or imaginary

Note: for C > 0, $\delta \leq 0$ z(x) is complex and has no definite \mathcal{PT} parity

What about the spontaneous breakdown of \mathcal{PT} symmetry?

Paris is full of (slightly) broken symmetries

Not to mention the character of the left and the right bank...

The $C = -a^2 < 0$, $\delta \ge 0$ case: z(x) imaginary and unbound, $z^2 \le 0$, Λ real The x(z) solution:

vanishing Re z (not to be confused with $\tilde{R}e\check{z}$)

$$C^{1/2}x = \arctan[z(\delta + 1 - z^2)^{-1/2}] + \delta^{1/2}\operatorname{Artanh}[\delta^{1/2}z(\delta + 1 - z^2)^{-1/2}].$$

$$\delta \to 0$$
: $z(x) = i \sinh(ax)$ Scarf II limit complex E_n exist
 $\delta \to \infty$: $z(x) = i \tan(ax)$ Rosen-Morse I limit no complex E_n exist

The wavefunctions:

$$\Psi_n(x) = N_n(\delta + 1 - z^2(x))^{1/4} (1 - z(x))^{\alpha/2} (1 + z(x))^{\beta/2} P_n^{(\alpha,\beta)}(\operatorname{i}\sinh(x))$$

$$\alpha = \omega + \frac{\Lambda}{\omega}, \qquad \beta = \omega - \frac{\Lambda}{\omega}$$
elizability condition:

Normalizability condition: Re $\omega < -n - \frac{1}{2}$

$$(\delta+1)\omega^4 + \delta(2n+1)\omega^3 + \left(\frac{\delta}{4}(2n+1)^2 - \delta - \Sigma - \frac{1}{4}\right)\omega^2 + \Lambda^2 = 0$$

The extrema of these curves can be determined exactly

 $V_R(x)$ and $V_I(x)$ for C = -1, $\Sigma = 11.0624$ and $\Lambda = 1.26$. The $\delta \to \infty$ limit is the Rosen–Morse I potential. (Note the different scales.) Resembles the \mathcal{PT} square well.

Partial map of the (δ, C) plane

Different types of z(x) solutions occur in each quadrant The axes are **impenetrable**

Are there complex conjugate ω roots?

 $C=-1,\,\delta=1.25,\,\Sigma=15.1,\,\Lambda=7.4$

The shifted spectral equation $(\omega + n + 1/2 < 0)$ for C = -1, $\delta = 1.25$, $\Sigma = 15.1$, $\Lambda = 7.4$ The curves belong to n = 0, 1, 2 and 3, counting from the left

Increasing Λ shifts the curves upwards.

The roots then turn into complex starting from the left, i.e. small n.

 $\operatorname{Re}(V(x))$ and $\operatorname{Im}(V(x))$ for C = -1, $\delta = 1.25$, $\Sigma = 15.1$, $\Lambda = 7.4$

Energy eigenvalues:

n = 0 $E_0^{(+)} = -2.555 + 2.108i$ $E_0^{(-)} = -2.555 - 2.108i$ two complex conjugate eigenvalues n = 1 $E_1^{(+)} = -1.439$ $E_1^{(-)} = -0.555$ two real eigenvalues n = 2 $E_2^{(+)} = -0.606$ one real eigenvalue

Gradual mechanism for the spontaneous \mathcal{PT} breaking

Starts from below, like in the case of the \mathcal{PT} square well

The $C = a^2 > 0, \ \delta \ge 0$ case: z(x) real and bounded, $0 \ge z^2 \ge 1, \Lambda$ imaginary

$$C^{1/2}x = \arctan[z(\delta + 1 - z^2)^{-1/2}] + \delta^{1/2}\operatorname{Artanh}[\delta^{1/2}z(\delta + 1 - z^2)^{-1/2}].$$

Formally the same as in the C < 0 case, because x(iz) = ix(z)

$$\delta \to 0$$
: $z(x) = \sin(ax)$ Scarf I limit no complex E_n exist
 $\delta \to \infty$: $z(x) = \tanh(\tilde{a}x)$ Rosen-Morse II limit no complex E_n exist

Now Im(V(x)) does not vanish asymptotically

The wave functions:

$$\Psi_n(x) = N_n(\delta + 1 - z^2(x))^{1/4} (1 - z(x))^{\alpha/2} (1 + z(x))^{\beta/2} P_n^{(\alpha,\beta)}(\operatorname{isinh}(x))$$
$$\alpha = \omega + \frac{\Lambda}{\omega}, \qquad \beta = \omega - \frac{\Lambda}{\omega}$$

Normalizability condition: $\operatorname{Re}(\alpha) > 0, \quad \operatorname{Re}(\beta) > 0$

Now the roots have to be searched for in the $\omega > 0$ domain.

Are there complex conjugate ω roots?

The spectral equation for $C=1,\,\delta=100,\,\Sigma=11.0624,\,\Lambda=1.26$ i

The curves belong to n = 0, 1, 2, 3, 4 and 5, counting from the right

Increasing Λ shifts the curves downwards, including the local maximum at $\omega^{(0)} = 0$.

But $\Pi(\omega^{(+)}) < \Pi(\omega^{(0)}) \longrightarrow$ No chance for complex roots.

The descendant potential inherited the properties of its parents...

 $\operatorname{Re}(V(x))$ and $\operatorname{Im}(V(x))$ for C = 1, $\delta = 100$, $\Sigma = 11.0624$, $\Lambda = 1.26$ i

The energy eigenvalues are real and positive, starting from $E_0 = 4.454$

A still partial map of the (δ, C) plane

Different types of z(x) solutions occur in each quadrant The axes are **impenetrable**

The $C = a^2 < 0$, $\delta \le 0$ case: z(x) real and unbound, $z^2 \ge 1$, Λ imaginary Now x(z) is different for $\delta < -1$:

$$(-C)^{1/2}x - ic = \operatorname{Artanh}[z(z^2 - 1 - \delta)^{-1/2}] - \delta^{1/2}\operatorname{Artanh}[(z^2 - \delta - 1)^{1/2}(-\delta)^{-1/2}z^{-1}]$$

and $-1 < \delta < 0$:

$$(-C)^{1/2}x - ic = \operatorname{Artanh}[z^{-1}(z^2 - 1 - \delta)^{1/2}] - \delta^{1/2}\operatorname{Artanh}[(-\delta)^{1/2}z(z^2 - \delta - 1)^{-1/2}]$$

 $\delta \to 0$: $z(x) = \cosh(ax)$ generalized Pöschl–Teller limit

 $\delta \to \infty$: $z(x) = -\coth(\tilde{a}x)$ Eckart limit

The potentials would be singular without the x - ic imaginary coordinate shift

$$\Psi_n(x) = N_n(\delta + 1 - z^2(x))^{1/4} (1 - z(x))^{\alpha/2} (1 + z(x))^{\beta/2} P_n^{(\alpha,\beta)}(\operatorname{isinh}(x))$$

 $\alpha = \omega + \tfrac{\Lambda}{\omega}, \qquad \qquad \beta = \omega - \tfrac{\Lambda}{\omega}$

Normalizability condition: $\operatorname{Re}(\omega) < -n - 1/2$

Another special limit: $\delta \rightarrow -1$ the DKV limit

The spectral equation reduces to a cubic one as it should

The complete analysis is missing here.

Complex ω roots and thus complex energy eigenvalues exist here too

We illustrate only the effect of the imaginary coordinate shift for the two limits:

generalized Pöschl–Teller

 $\alpha = 3.2, \ \beta = -13.2, \ c = 0.3$

 $E_0 = -20.25$ $E_4 = -0.25$

A still incomplete map of the (δ, C) plane

Different types of z(x) solutions occur in each quadrant The axes are **impenetrable**

General complex z(x), more complicated situation However, the limits for $\delta \to 0, -1$ and $-\infty$ are known

Discussion. Part 1: the general case

To obtain more flexible spectra we introduced a new potential family

- Implicit z(x), **AND** E_n but tunable spectrum
- It depends on 2+2 parameters and is the subset of the general Natanzon class (3+3)
- It contains all the shape invariant potentials with Jacobi polynomial type solutions
- It also generalizes known Natanzon type potentials (symmetric Ginocchio, DKV)
- Pairs of shape-invariant potentials can directly be connected continuously
- Scarf II + Rosen–Morse I, Scarf I + Rosen–Morse II, gen. Pöschl–Teller + Eckart
- In some limits it approximates the finite square well

Discussion. Part 2: the \mathcal{PT} -symmetric case

– For $C < 0, \delta > 0$ spontaneous \mathcal{PT} breakdown occurs gradually

like the BB potential for $\delta < 0$ with the difference that complex E_n appears from low n

– For $C > 0, \, \delta > 0$ spontaneous \mathcal{PT} breakdown does not occur

Too strong non-hermiticity may not let complex eigenvalues develop

like the BB potential for $\delta > 0$

(non-Hermiticity is like wine)

– For $C < 0, \delta < 0$ the problem has to be defined off the real x axis

like the BB potential for $\delta > 2$

- For $C > 0, \, \delta < 0$ only the special limits have been explored
- Scattering solutions yet to be studied in the relevant cases