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1. Exactly solvable potentials in general

A variable transformation method

Classification of solvable potentials:

shape-invariant (up to 3 par.) ∈ Natanzon class (6 par.)

2. Exactly solvable PT -symmetric potentials

Adaptating the techniques to PT : VR(−x) = VR(x) VI(−x) = −VI(x)

Exact results for shape-invariant potentials: Ψn(x), En, T (k), R(k), C

BUT: Very few studies on PT -symmetric potentials beyond the SI class

3. A new exactly solvable potential class:

A 4 parameter subset of the Natanzon class

Continuous transformation between pairs of shape-invariant limits

Bound-state energies defined implicitly by a quartic equation

Different properties in four different parameter domains



1. Exactly solvable potentials in general

Let’s focus on the top left quarter with 2F1

i.e. Jacobi polynomials P
(α,β)
n (z) for bound states



Exact solutions of the Schrödinger equation

An old method Bhattacharjie and Sudarshan 1962

Variable transformation:

Schrödinger eq. =⇒ differential equation of special function F now P (α,β)
n (z)

d2ψ

dx2
+ (E − V (x))ψ(x) = 0 insert ψ(x) = f(x)P (α,β)

n (z(x))

and compare with the Jacobi differential equation

to get
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The solutions are

ψ(x) ∼ (z′(x))−
1

2 (1 + z(x))
β+1

2 (1 − z(x))
α+1

2 P (α,β)
n (z(x)) .

The yet unknown z(x) can be obtained from a differential equation

(

dz
dx

)2
φ(z) ≡

(

dz
dx

)2 pI(1−z2)+pII+pIIIz
(1−z2)2

= C .

by direct integration
∫

φ1/2(z)dz = C1/2x+ ǫ .

ǫ: integration constant, coordinate shift

This is to generate a constant term on the r.h.s. of E − V (x) = ...

Note: sometimes only x(z) can be determined =⇒ implicit potentials



The list of shape-invariant potentials solved by Jacobi polynomials

(z′)2 = C z(x) V (x) x ∈ Name
(Class)

C(1 − z2) −a2 i sinh(x) (B2 − A2 − A)sech2(ax) (−∞,∞) Scarf II
(PI) +B(2A + 1)sech(ax) tanh(ax)

−a2 cosh(ax) (B2 + A2 + A)cosech2(ax) [0,∞) gen. Pöschl–Teller
−B(2A + 1)cosech(ax) coth(ax)

a2 sin(ax) (B2 + A2 − A)sec2(ax) [− π
2a

, π
2a

] Scarf I
−B(2A − 1)sec(ax) tan(ax)

4a2 cos(2ax) A(A − 1) sec2(ax) [0, π
2a

] Pöschl–Teller I
+B(B − 1)cosec2(ax)

−4a2 cosh(2ax) −A(A + 1)sech2(ax) [0,∞) Pöschl–Teller II

+B(B − 1)cosech2(ax)

C(1 − z2)2 a2 tanh(ax) −A(A + 1)sech2(ax) (−∞,∞) Rosen–Morse II
(PII) +2B tanh(ax)

a2 coth(ax) A(A − 1)cosech2(ax) [0,∞) Eckart
−2B coth(ax)

−a2 i tan(ax) A(A + 1)sec2(ax) [− π
2a

, π
2a

] Rosen–Morse I
+2B tan(ax)

Obtained by selecting certain single terms on the right handside of E − V (x) = ...

The Pöschl–Teller I and II potentials are equivalent with the Scarf I and II

How to PT -symmetrize these?



2. Exactly solvable PT -symmetric potentials

First a brief historical overview

Numerical results came first Bender and Boettscher 1998

Results for V (x) = x2(ix)δ

Real eigenvalues for δ > 0

Complex eigenvalues appear gradually for δ < 0

Trajectory off the real line for δ > 2

Semi-analytical example Znojil and Lévai 2001

The PT symmetric square well

Gradual mechanism of the spontaneous breakdown of PT symmetry

What about exactly solvable examples?



How to PT -symmetrize exactly solvable potentials

G. Lévai, M. Znojil, J. Phys A 33 (2000) 7165.

Adjust potential parameters making use of PT z(x) = ±z(x)

Directly applicable to potentials defined on x ∈ (−∞,∞) Scarf II, Rosen–Morse II

Reconsider boundary conditions avoid singularities

imaginary integration constant ǫ = −ic

Apply it to potentials defined on x ∈ (0,∞),

z(x) x ∈ y = x− ic PT z(y) = ±z(y) Example

sinh(x) (−∞,∞) − sinh(y) Scarf II
cosh(x) (−∞,∞) cosh(y) gen. Pöschl–Teller
sin(x) (−π/2, π/2) − sin(z) Scarf I

Note: Introducing ic does not change the spectrum
...so it cannot introduce spontaneous PT breaking

In some other cases the problem has to be defined on a more general trajectory

The boundary conditions cannot be satisfied on y = x− ic

This is the case for the Coulomb and Morse potentials with F (z) = L(α)
n (z)



The guinea pig: The Scarf II potential

V (x) = −
1

cosh2 x




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Relations for the parameters:

PT symmetry: =⇒ α, β are real or imaginary
α ↔ β: =⇒ V (x) ↔ V (−x)
V (x) invariant under α ↔ −α =⇒ qα ≡ ±α quasi-parity

ψ(q)
n (x) = C(q)

n (1 − i sinh(x+ iǫ))
qα

2
+ 1

4 (1 + i sinh(x+ iǫ))
β

2
+ 1

4P (qα,β)
n (i sinh(x+ iǫ))

Normalizable if n(q) < −[Re(qα + β) + 1]/2

The second set corresponds to resonances in the Hermitian setting (α∗ = β)

E(q)
n = −

(

n+
qα + β + 1

2

)2

Complex conjugate pairs if α is imaginary Spontaneous breakdown of PT symmetry

“Sudden” mechanism: all the E(q)
n turn complex at the same time



-120

-100

-80

-60

-40

-20

0

20

40

60

y

-4 -2 0 2 4 6
x

α = −2, β = −14 n(+) < 8, n(−) < 6, E(q)
n < 0 for all n



The black sheep: The Rosen–Morse II potential

G. Lévai, E. Magyari, J. Phys. A 42 (2009) 195302

V (x) = −
s(s+ 1)

cosh2(x)
+ 2iλ tanh(x)

PT symmetry: =⇒ s(s+ 1), λ are real

Bound-state solutions:

ψn(x) = Cn(1 − tanh x)
α
2 (1 + tanhx)

β

2P (α,β)
n (tanh x)

αn = s− n+
iλ

s− n
, βn = s− n−

iλ

s− n

Only one solution can be regular at the same time Re(α) > 0, Re(β) > 0

En = −(s− n)2 +
λ2

(s− n)2
, n = 0, 1, . . . nmax < s .

Peculiarities of the spectrum

No quasi-parity

No complex energy eigenvalues no spontaneous breakdown of PT symmetry

But En > 0 if s− |λ|1/2 ≤ n < s increasing non-hermiticity

Furthermore for |λ| > s2 all En > 0
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s = 9.5, λ = 12 n ≤ 9, VR(x) is the same as for the Scarf II potential

Is the difference due to the dominant imaginary component?

VR(±∞) = 0 BUT VI(±∞) = ±2iλ 6= 0



An old friend: The DKV potential outside the SI class

R. Dutt, A. Khare, Y. P. Varshni, J. Phys. A 28 (1995) L107

V (x) = −B[1 + exp(−2x)]−1/2 + A[1 + exp(−2x)]−1 −
3

4
[1 + exp(−2x)]−2

= −2B[1 + tanh(x)]1/2 −
(

A

4
−

3

32

)

tanh(x) +
3

64
cosh−2(x)

ψn(x) = Cnz
1/2(x)(z(x) + 1)βn/2(z(x) − 1)αn/2P (αn,βn)

n (z(x)) z(x) = [1 + e−2x]1/2

En = −

(

n +
αn + βn + 1

2

)2

αn + βn is determined implicitly by a cubic algebraic equation

Normalizability requires n + αn+βn+1
2

< 0

Always the lowest real root yields En

Identified as a Natanzon-class potential

R. Roychoudhury, P. Roy, M. Znojil, G. Lévai, J. Math. Phys. 42 (2001) 1996



How to PT -symmetrize the DKV potential?

Not separable to even and odd components...

BUT take x→ ix

M. Znojil, G. Lévai, P. Roy, R. Roychoudhury, Phys. Lett. A 290 (2001) 249

Formally everything remains the same

hyperbolic functions −→ trigonometric functions PLUS i factors

Now the acceptable energy eigenvalues will be complex conjugate pairs

obtained by two complex conjugate roots of the cubic equation

Spontaneous breakdown of PT symmetry

But are there real igenvalues too?



What do we know about solvable PT -symmetric potentials?

defined on Sp. PT br. q Ps. norm T (k), R(k) etc.

Scarf II x sudden Y 6= (−1)n Y

gen. Pöschl–Teller x− ic sudden Y Y

Scarf I confined No No (−1)n n.a. C

Rosen–Morse II x No No (−1)n Y

Eckart x− ic sudden Y

Rosen–Morse I confined No No (−1)n n.a.

DKV x ? ?



3. A new exactly solvable potential class

Remember the equation defining the z(x) function:

(

dz

dx

)2

φ(z) ≡

(

dz

dx

)2
pI(1 − z2) + pII + pIIIz

(1 − z2)2
= C .

Shape-invariant potentials obtained for pI 6= 0 or pII 6= 0

Now take a combination: pI = 1, pII = δ

Implicit potential: only x(z) is known in closed form. . .

. . . nevertheless, everything can be evaluated exactly



The actual form of the potential:

E − V (x) =

(
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2
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−
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4
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+
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−

2CΛz(x)

δ + 1 − z2(x)

Σ = δ

(

n+
α + β + 1

2

)2

− δ +

(

α + β

2
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+

(
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2

)2

−
1

4

Λ =
α + β

2

α− β

2
α = αn , β = βn

Ψn(x) = Nn(δ + 1 − z2(x))1/4(1 − z(x))α/2(1 + z(x))β/2P (α,β)
n (z(x))

A four-parameter (2+2) potential:

C and δ control the variable transformation

Σ and Λ set the coupling coefficients Λ = 0: symmetric Ginocchio case

A special case of the 3+3 parameter Natanzon class



What is always the same:

The potential, the energy expression, the wavefunction, the spectral equation:

(δ + 1)ω4 + δ(2n+ 1)ω3 +

(

δ

4
(2n+ 1)2 − δ − Σ −

1

4

)

ω2 + Λ2 = 0

The defining differential equation

(z′)2

(1 − z2)2
(δ + 1 − z2) = C

What changes is:

The x(z), i.e. the z(x) function: it depends on C and δ

C < 0, δ ≥ 0 =⇒ z2 ≤ 0 z(x) imaginary and unbound

C > 0, δ ≥ 0 =⇒ 0 ≤ z2 ≤ 1 z(x) real and bounded

C < 0, δ ≤ 0 =⇒ z2 ≥ 1 z(x) real and unbound

z(x) combined with the boundary conditions restricts the ω roots and thus En(ω)

PT z(x) = z∗(−x) = ±z(x) also selects if Λ is real or imaginary

Note: for C > 0, δ ≤ 0 z(x) is complex and has no definite PT parity



What about the spontaneous breakdown of PT symmetry?

Paris is full of (slightly) broken symmetries

Not to mention the character of the left and the right bank...



The C = −a2 < 0, δ ≥ 0 case: z(x) imaginary and unbound, z2 ≤ 0, Λ real

The x(z) solution:
vanishing Re z (not to be confused with Řež)

C1/2x = arctan[z(δ + 1 − z2)−1/2] + δ1/2Artanh[δ1/2z(δ + 1 − z2)−1/2] .

δ → 0: z(x) = i sinh(ax) Scarf II limit complex En exist

δ → ∞: z(x) = i tan(ax) Rosen–Morse I limit no complex En exist

The wavefunctions:

Ψn(x) = Nn(δ + 1 − z2(x))1/4(1 − z(x))α/2(1 + z(x))β/2P (α,β)
n (i sinh(x))

α = ω + Λ
ω
, β = ω − Λ

ω

Normalizability condition: Re ω < −n− 1
2

(δ + 1)ω4 + δ(2n+ 1)ω3 +

(

δ

4
(2n+ 1)2 − δ − Σ −

1

4

)

ω2 + Λ2 = 0

The extrema of these curves can be determined exactly



δ = 1 δ = 10 δ = 100

VR(x) and VI(x) for C = −1, Σ = 11.0624 and Λ = 1.26. The δ → ∞ limit is the
Rosen–Morse I potential. (Note the different scales.) Resembles the PT square well.



Partial map of the (δ, C) plane
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Different types of z(x) solutions occur in each quadrant

The axes are impenetrable



Are there complex conjugate ω roots?

C = −1, δ = 1.25, Σ = 15.1, Λ = 7.4

The shifted spectral equation (ω + n+ 1/2 < 0) for C = −1, δ = 1.25, Σ = 15.1, Λ = 7.4

The curves belong to n = 0, 1, 2 and 3, counting from the left

Increasing Λ shifts the curves upwards.

The roots then turn into complex starting from the left, i.e. small n.



Re(V (x)) and Im(V (x)) for C = −1, δ = 1.25, Σ = 15.1, Λ = 7.4

Energy eigenvalues:

n = 0 E
(+)
0 = −2.555 + 2.108i E

(−)
0 = −2.555 − 2.108i two complex conjugate eigenvalues

n = 1 E
(+)
1 = −1.439 E

(−)
1 = −0.555 two real eigenvalues

n = 2 E
(+)
2 = −0.606 one real eigenvalue

Gradual mechanism for the spontaneous PT breaking

Starts from below, like in the case of the PT square well



The C = a2 > 0, δ ≥ 0 case: z(x) real and bounded, 0 ≥ z2 ≥ 1, Λ imaginary

C1/2x = arctan[z(δ + 1 − z2)−1/2] + δ1/2Artanh[δ1/2z(δ + 1 − z2)−1/2] .

Formally the same as in the C < 0 case, because x(iz) = ix(z)

δ → 0: z(x) = sin(ax) Scarf I limit no complex En exist

δ → ∞: z(x) = tanh(ãx) Rosen–Morse II limit no complex En exist

Now Im(V (x)) does not vanish asymptotically

The wave functions:

Ψn(x) = Nn(δ + 1 − z2(x))1/4(1 − z(x))α/2(1 + z(x))β/2P (α,β)
n (i sinh(x))

α = ω + Λ
ω
, β = ω − Λ

ω

Normalizability condition: Re(α) > 0, Re(β) > 0

Now the roots have to be searched for in the ω > 0 domain.



Are there complex conjugate ω roots?

The spectral equation for C = 1, δ = 100, Σ = 11.0624, Λ = 1.26 i

The curves belong to n = 0, 1, 2, 3, 4 and 5, counting from the right

Increasing Λ shifts the curves downwards, including the local maximum at ω(0) = 0.

But Π(ω(+)) < Π(ω(0)) −→ No chance for complex roots.

The descendant potential inherited the properties of its parents...



Re(V (x)) and Im(V (x)) for C = 1, δ = 100, Σ = 11.0624, Λ = 1.26 i

The energy eigenvalues are real and positive, starting from E0 = 4.454



A still partial map of the (δ, C) plane
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Different types of z(x) solutions occur in each quadrant

The axes are impenetrable



The C = a2 < 0, δ ≤ 0 case: z(x) real and unbound, z2 ≥ 1, Λ imaginary

Now x(z) is different for δ < −1:

(−C)1/2x− ic = Artanh[z(z2 − 1 − δ)−1/2] − δ1/2Artanh[(z2 − δ − 1)1/2(−δ)−1/2z−1] .

and −1 < δ < 0:

(−C)1/2x− ic = Artanh[z−1(z2 − 1 − δ)1/2] − δ1/2Artanh[(−δ)1/2z(z2 − δ − 1)−1/2] .

δ → 0: z(x) = cosh(ax) generalized Pöschl–Teller limit

δ → ∞: z(x) = − coth(ãx) Eckart limit

The potentials would be singular without the x− ic imaginary coordinate shift

Ψn(x) = Nn(δ + 1 − z2(x))1/4(1 − z(x))α/2(1 + z(x))β/2P (α,β)
n (i sinh(x))

α = ω + Λ
ω
, β = ω − Λ

ω

Normalizability condition: Re(ω) < −n− 1/2

Another special limit: δ → −1 the DKV limit

The spectral equation reduces to a cubic one as it should



The complete analysis is missing here.

Complex ω roots and thus complex energy eigenvalues exist here too

We illustrate only the effect of the imaginary coordinate shift for the two limits:

generalized Pöschl–Teller Eckart

α = 3.2, β = −13.2, c = 0.3 s = 4.2, λ = 2.6, c = 0.3

E0 = −20.25 E0 = −17.2567,
E4 = −0.25 E4 = 168.96,



A still incomplete map of the (δ, C) plane
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Different types of z(x) solutions occur in each quadrant
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The map of the (δ, C) plane What about C > 0, δ ≤ 0?

General complex z(x), more complicated situation
However, the limits for δ → 0, −1 and −∞ are known
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Discussion. Part 1: the general case

To obtain more flexible spectra we introduced a new potential family

– Implicit z(x), AND En but tunable spectrum

– It depends on 2+2 parameters and is the subset of the general Natanzon class (3+3)

– It contains all the shape invariant potentials with Jacobi polynomial type solutions

– It also generalizes known Natanzon type potentials (symmetric Ginocchio, DKV)

– Pairs of shape-invariant potentials can directly be connected continuously

Scarf II + Rosen–Morse I, Scarf I + Rosen–Morse II, gen. Pöschl–Teller + Eckart

– In some limits it approximates the finite square well



Discussion. Part 2: the PT -symmetric case

– For C < 0, δ > 0 spontaneous PT breakdown occurs gradually

like the BB potential for δ < 0
with the difference that complex En appears from low n

– For C > 0, δ > 0 spontaneous PT breakdown does not occur

Too strong non-hermiticity may not let complex eigenvalues develop

like the BB potential for δ > 0

(non-Hermiticity is like wine)

– For C < 0, δ < 0 the problem has to be defined off the real x axis

like the BB potential for δ > 2

– For C > 0, δ < 0 only the special limits have been explored

– Scattering solutions yet to be studied in the relevant cases


