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Introduction

Huge success of complex quantum theory leads further
developments in mainly two major directions;

Technics of complex quantum theory are used in different
branches to get insight of the theory as,

Quantum Optics: Experimental observation of PT symmetry
breaking; Interesting properties of PT material.

Open Quantum System: Environmentally induced effects in
quantum systems are studied through techniques of PT
symmetric non-Hermitian systems.

Quacy-Exactly Solvable System: PT Symmetric non-Hermitian QES
systems have been studied extensively.

Information Theory: State discrimination for pure states (Bender et. al

arXiv:1011.1871) and entangled states (A.Ghatak & B.P.M, JPA 45, 2012).
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Introduction

Complex extensions of other branches of physics,

QFT: iφ3 theory, complex QED etc have been studied in details.
C-operator has been calculated.
Sign of β-functions gets reversed, hence the theories which

were not asymptotically free, becomes asymptotically free,
theories which lacks stable critical points develop such point.

Many Particle System: Calogero AN−1, BN models have been
extend with PT-symmetry non-Hermitian term, retaining their
exact solvability and integrability (in certain models).

Complex Classical Mechanics (CCM): Correspondence principle
become more pronounced in the complex domain. Particle
shows tunneling like effects.
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Complex Classical Mechanics (CCM)

Strong analogies between the probabilistic behavior of quantum
system defined by Hermitian Hamiltonian and the deterministic
behavior of classical system extended into complex domain.

With complex energy a classical particle can travel from one allowed
region to another allowed region separated by classically forbidden
path.

A classical particle with complex energy can tunnel.

Correspondence between classical and quantum systems is better
understood in the complex domain.

Refs:
C.M. Bender et.al, Phys.Rev.Lett.104:061601(2010)
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CCM

Correspondence between complex quantum mechanics and complex
classical mechanics is established [Mostly numerical studies].

Quantum probability density matches with the complex classical
probability density for high energies.
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The QES System

H = p2
− (ζ cosh 2x − iM)2(1)

H is invariant under combined Parity (P) and Time Reversal (T)

P: x −→ iπ

2
− x; p −→ −p

T: t −→ −t; i −→ −i; p −→ −p

QES solutions:

For M = 1

E = 1 − ζ2; φ(x) = constant(2)

the notation for the wavefunction,

ψ(x) = φ(x) exp
iζ

2
cosh 2x(3)

PT symmetry is unbroken as i cosh 2x is invariant under PT.
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The QES System

For M = 2

E+ = 3 − ζ2 + 2iζ; φ(x) = cosh x

E− = 3 − ζ2
− 2iζ; φ(x) = sinh x(4)

Note PT symmetry is broken spontaneously, as

cosh(x)
PT
−→ −i sinh(x)

sinh(x)
PT
−→ i cosh(x)(5)
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The QES System

For M = 3

E0 = 5 − ζ2; φ(x) = sinh 2x

E± = 7 − ζ2
± 2

√

1 − 4ζ2; φ± = A cosh 2x ± iB(6)

With
B

A
=

4ζ

E − 9 + ζ2
(7)

We have all three eigenvalues are real for ζ ≤ ζc. The PT symmetry is
unbroken as,

i cosh(2x)
PT
−→ i cosh(2x)

sinh(2x)
PT
−→ sinh(2x)(8)
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DSG Potential

Anti-isospectral transformation or duality transformation:

If under x −→ ix ≡ y the potential v(x) −→ v̄(y), and if the potential v(x)
has M QES levels with energy eigenvalue and eigenfunctions
Ek (k = 0, 1, 2 · · ·M − 1) and ψk(x) respectively then the energy
eigenvalues and eigenfunctions of v̄(y) are given by

Ēk = −EM−1−k, ψ̄k(y) = ψM−1−k(ix)(9)

Under anti-isospectral transformation, x −→ ix ≡ θ, DSHG potential
changes to DSG potential given by

V (θ) = (ζ cos 2θ − iM)2.
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DSHG & DSG: Conclusion

For both PT-invariant DSHG and DSG case,

For M = odd integer, ζ is small

PT symmetry is unbroken and we have real eigenvalues

For M = even integer, ζ is small or large

PT-symmetry is broken spontaneously and we have pair of
complex eigenvalues.

Refs:
Khare & Mandal, PLA 239 (1998)
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Bender-Dunne Polynomials

Every QES system is characterized with certain orthogonal
polynomial in the variable E, Pn(E), which satisfy 3-term recursion
relation.

These polynomials have remarkable properties, for a particular value
of the parameter all higher order polynomials factorized to a critical
polynomial. Zeros of this critical polynomials are the QES solutions.

Two sets of BD-polynomials are associated in this particular problem,
Pn(E) & Qn(E).

For M = 2 critical polynomials are P1(E) & Q1(E)
M = 3 critical polynomials are P2(E) & Q1(E)
M = 4 critical polynomials are P2(E) & Q2(E)
M = 5 critical polynomials are P3(E) & Q2(E)
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Bender-Dunne Polynomials

For M = 2

E+ = 3 − ζ2 + 2iζ; φ(x) = cosh x

E− = 3 − ζ2
− 2iζ; φ(x) = sinh x(10)

For M = 3

E0 = 5 − ζ2; φ(x) = sinh 2x

E± = 7 − ζ2
± 2

√

1 − 4ζ2; φ± = A cosh 2x ± iB(11)

with
B

A
=

4ζ

E − 9 + ζ2
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CCM for QES System

For a classical particle with real energy E is not allowed to travel in
the region where the potential energy V (x) > E.

This restriction is relaxed when we consider the particle in a complex
plan with complex energy E1 + iE2 as

E1 = (p2
1 − p2

2) + V1; E2 = 2p1p2 + V2(12)

where complex momenta p = p1 + ip2 and we write the potential V = V1 + iV2.

Now since p1 and p2 can have any value from −∞ to ∞ there is no
restriction as such on the particle to be bound in a particular region of
space.

Particle is allowed to move anywhere in the complex plane as long as
the Eq. (12) is satisfied. This is the prime reason that classical
particle with complex energy can travel through classically forbidden
region.
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CCM for QES System

However, even though the particle can exists anywhere in the
complex plane, it prefers the region with lower energy.

Particles follows a definite trajectory depending on initial conditions.

It has been shown that a classical particle with complex energy
executes a local random walk type motion having a open orbit.

Depending on the value of complex energy classical particles
delocalize and move freely in the potential.

The energy and momentum of the particle are governed by 2 simple
classical equations of Hamiltonian mechanics:

∂H/∂p = ∂z/∂t

∂H/∂z = −∂p/∂t
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CCM for QES System

For this system we are considering

⇒ ∂z/∂t = 2p , ∂p/∂t = −V ′(z)(13)

where,

V (z) = −(ζ cosh 2z − iM)2.

We solve these equations numerically to obtain the trajectory in
different situations.
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The 1-d Potential
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The double well potential for real x and its variation with the parameter M
for ζ = 0.1
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Potential on the Complex Plane
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The potential in complex plane for ζ = 0.1 and M = 3. The potential wells
corresponding to the real energy orbits are distributed periodically,
centered at Im(z) = 4n+1

4
π on the right, and Im(z) = 4n−1

4
π on the left of

the imaginary axis.
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Position of the Wells
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The closed orbits traced by the particle when placed at different places in
the complex potential with Real Energy E = 0.8. This shows us the
positions of the wells.
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Tunneling
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ζ = 0.1, M = 2 ζ = 0.1, M = 3

The trajectory of a particle with energy E = 1 + i in potential for ζ = 0.1 ;

when M = 2, the particle oscillates between the wells corresponding
to n = +3 on the right n = −3 on the left of the imaginary axis,

when M = 3, the particle oscillates between the wells corresponding
to n = +10 on the right and n = −10 on the left of the imaginary axis.

with tunneling time is 8.2504(R) and 8.2513(L) units.
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Tunneling
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ζ = 0.1, M = 4 ζ = 0.1, M = 5

The trajectory of a particle with energy E = 1 + i in potential for ζ = 0.1 ;

when M = 4, the particle oscillates between the wells corresponding
to n = +21 on the right and n = −20 on the left of the imaginary axis,

when M = 5, the particle oscillates between the wells corresponding
to n = +35 on the right and n = −35 on the left of the imaginary axis.
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Tunneling
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The trajectory of a particle with energy E = 1 + i in potential for ζ = 1 ;

when M = 2, the particle oscillates between the wells corresponding
to n = +3 on the right and n = −3 on the left of the imaginary axis,

when M = 3, the particle oscillates between the wells corresponding
to n = +6 on the right and n = −6 on the left of the imaginary axis.
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Tunneling
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ζ = 1, M = 4 ζ = 1, M = 5

The trajectory of a particle with energy E = 1 + i in potential for ζ = 1 ;

for M = 4, the particle oscillates between the wells corresponding to
n = +11 on the right and n = −11 on the left of the imaginary axis,

for M = 5, the particle oscillates between the wells corresponding to
n = +19 on the right and n = −19 on the left of the imaginary axis.
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Tunneling Time Vs. the Imaginary part of Energy
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The variation of tunneling time with the imaginary part of energy for a
particle initially placed in a potential well corresponding to n = 0 of PT
Symmetric potential (M = 3, ζ = 0.1) on the right side of the imaginary
axis. The real part of energy is fixed as 1 unit.
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Open Orbits with Real Energy
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Observation: first well (n = 0)
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Open Orbit with Real Energy
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Real energy= Real part of the potential
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Broken-Unbroken PT
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Observations:
y = .1 from the center of the zeroth well in the left of imaginary axis with E = .8.

No qualitative difference in PT- unbroken (ζ = .1, M = 3) and PT- broken.
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Conclusions

We have studied the complex classical mechanics of a system whose
non-Hermitian PT-invariant version is QES system

V (x) = −(ζ cosh 2x− iM)2.

This QES system exhibit very rich behavior and explicitly show the
PT-phase transition.

Where M = 1, 3, 5... and ζ < ζc, it is PT-unbroken phase.

For M = 2, 4, ... with any ζ
and M = 1, 3, 5, ... with high ζ, the system is PT-broken phase.

We treat this model classically on a complex plane to capture some
of the particular behavior of the system.
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Conclusions

We find that particle tunnels back and forth between two wells (one
on the left side and other on the right). Positions of the wells between
which it tunnels back and forth depends on the value of M, ζ and
imaginary part of E.

n increases with M .

n decreases when ζ increases.

Particle never tunnel between the wells which are located some side
of the imaginary axis.

Time spend by the particle in the left well is different from the time
spend in the right well.

Tunneling time inversely proportional to the imaginary part of the
energy. More EI more tunneling effect; Tunneling will be between
near wells (less n values).
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Conclusions

With real energy particle will take a closed path if it is placed
sufficiently closed to well.

Particle with real energy can have open orbit if it is placed initially far
away from the well. This can be understood by reducing EI gradually.
Very less EI particle will tunnel between wells which are very far.

We don’t observe any difference in the overall behavior of the particle
dynamics for PT-broken and unbroken situations. However, the
particle trajectory gets a bit irregular PT broken situation.

same conclusions can also be drawn from the complexified DSG
potentials.

PHHQP-XI-APC (Paris), Aug. 27, 2012 – p.31



Thanks for Your Attention
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