Feynman-Kleinert method applied to a complex PT-Potential Amel Mazouz

Département de Physique, Faculté des Sciences, Université de Khemis-Miliana, Ain Defla, Algeria.

International Workshop on «Non-Hermitian Operators in Quantum Physics » ,August 27-31,2012, Paris

1. Introduction:

According to some recent studies the energy spectrum of non-Herrititian Hamiltonians is real and positive [1-4]. This interest renewal to complex potentials is due to applications found in several research areas such as nuclear physics, quantum field theory, condensed matter physics, and biology.
The eurpose of this letter is to study the simplest form of complex potentials that is, $V(x)=(1 / 4) x^{2}+i \lambda x^{3}$, where λ is real and positive, via a systematic convergent variational perturbation theory for the path-integral representation of density matrices [4]. To our
knowledge, it is for the first time that this formalism is used for such potentials according to the variational method. The variational perturbation theory [4,15] allows a very satisfactory approximation for path-integrals whenever the accurate analytical calculation of the propagator cannot be achieved. Taking into account the generalized smearing formula [4], which accounts for the effects of quantum
uctuations, we calculate the particle density in the complex potentials with a second order approximation. the fluctuations of the path average $\bar{\pi}=\int_{d} d x(\xi)$ to deal with the free energy as the path performs violent fluctuationsk ${ }_{B}$ being the Boltzmann constant). The effects of these fluctuations may, however, easily be calculated at the end by a single numerical luctuation integral. Variational perturbation expansions are performed for each position n_{x} of the path average separately, vielding an
vth. -order approximation $W_{N}\left(x_{0}\right)$ to the local free energy $V_{t y . d}\left(x_{0}\right)$, called the effective classical potential [10]. In quantum mechanics, the partition function of a particle of mass M submitted to a one-dimensional potential $V(x)$, can be expressed as a single integral over x_{0} just as in classical statistics.
$Z=\int_{-\infty}^{+0} \frac{d x_{0}}{\sqrt{2 \pi \hbar^{2} \beta / M}}$
Having calculated, the Nth-order approximation to the partition function is obtained
$z_{x}=\int_{-} \frac{d x_{0}}{{\sqrt{2 \pi \hbar^{2} \beta / M}}^{e} .}$
In the high temperature limit, $W_{N}\left(x_{0}\right)$ converges to the initial potential $V\left(x_{0}\right)$ for any order \boldsymbol{N}. the partition function in (1) can be
writtenas $_{Z}=\oint D x \exp \{-A[x] / \hbar\}$
(3)
For the general particicl action,
$A[x]=\int_{0}^{\sigma_{t}^{t}} d \tau\left[\frac{1}{2} M \dot{x}^{2}(\tau)+V(x(\tau))\right]$,
Possesses the effective classical representation (1) with the effective classical potential
$V_{\text {eff } . d}\left(x_{0}\right)=-k_{B} T \ln \left[\left(\frac{2 \pi \hbar^{2}}{M k{ }_{B} T}\right)^{1 / 2} \oint D x \delta\left(x_{0}-\bar{x}\right) \exp \{-A[x] / \hbar\}\right] .(5)$
In the variational perturbation theory $[4-10]$, the effective classical potential is expanded perturbatively around an x_{0}-dependent
harmonic system with the trial frequency $\Omega\left(x_{0}\right)$, and its optimization leads to the approximation $W_{N}\left(x_{0}\right)$ for $V_{\text {eff.c. }}\left(x_{0}\right)$.
2. Variational perturbation theory for density matrices:
a Euclidean propagator is known, and a remainde

$$
A[x]=A^{n, x x}[x]+A_{\text {int }}[x] .
$$

With an interaction term given by
$A_{\mathrm{mm}}[x]=\int_{\mathrm{a}}^{\mathrm{A}} d \tau V_{\mathrm{m}}(x(\tau))$.
Where x_{m} in (6) is determined by the minimum of the $\mathrm{V}(\mathrm{x})$ and $x_{m}=x_{m}\left(x_{a}, x_{b}\right), x_{a}$ and x_{b} are the end points, Ω is a trial
frequency and $\beta \equiv 1 / k_{B} T$. requency and $\beta \equiv 1 / \kappa_{\bar{B}}$

$$
\left.V_{\text {int }}(x)=V(x)-\frac{1}{2} M \Omega^{2}\left[x-x_{m}\right]^{2}\right]^{2}
$$

The density matrixis defined by

$$
\underset{\rho}{\text { ensity matrix is defined by }}\left(x_{b}, x_{a}\right)=\frac{1}{Z} \tilde{\rho}\left(x_{b}, x_{a}\right)
$$

$$
\tilde{\rho}\left(x_{b}, x_{a}\right)=\int D x \exp _{\left(x_{0}, 0, A\right.}\{-A[x] / \hbar\}
$$

The path integration in (10) is evaluated by treating interaction (7) as a perturbation
 Where $\tilde{\rho}_{0}^{\Omega, x_{m}}\left(x_{b}, x_{a}\right)$ is the path-integral for a harmonic oscillator [6]]. The correlation functions in above equation can be
decomposed into connected ones by going over to the cumulants. The series obtained is truncated to an N th-order approximatnt of the decomposed into connected ones by going over to the cumulants. The series obtained is truncated to an N th-order approximatnt of the
quantum-statistics density matrix $[44$ quantum-statistics density matrix $[4]$
$\tilde{\rho}_{N}\left(x_{b}, x_{a}\right)=\tilde{\rho}_{0}^{n, x_{v}}\left(x_{b}, x_{a}\right) \exp \left[\sum_{n=1}^{N} \frac{(-1)^{n}}{n!\hbar n}\left\langle A_{\text {in }}^{n}[x]\right\rangle_{x_{k}, x_{a}, c}^{\sum_{n}}\right]$
Which explicitly depends on both variational paramters Ω and x_{m}. An effective classical potential $V_{\text {eff }, c l}\left(x_{a}, x_{b}\right)$ is
$\left.\begin{array}{l}\text { Which explicitly depends on both variational paramters } \Omega \text { and } x_{m} \text {. An effective classical potential } \\ \text { introduced, which governs the unnormalized density matrix } \\ \qquad \tilde{\rho}\left(x_{b}, x_{a}\right) \\ 2 \hbar^{2} \hbar^{2} \beta\end{array}\right)^{1 / 2} \exp \quad\left[-\beta V_{\text {eff }}, d\left(x_{b}, x_{a}\right)\right]$
Its N th-order approximation is obtained from the path-integral of a harmonic oscillator $\tilde{\rho}_{0}^{\Omega, x_{a}}\left(x_{b}, x_{a}\right)$, and from Eqs. (13), (14) via $W_{N}^{\Omega}{ }^{2} x_{m}\left(x_{b}, x_{a}\right)=\frac{1}{2 \beta} \ln \frac{\sinh \hbar \beta \Omega}{\hbar \beta \Omega}+\frac{M \Omega}{2 \hbar \beta \sinh \hbar \beta \Omega}\left\{\left(\tilde{x}_{b}^{2}+\tilde{x}_{a}^{2}\right) \operatorname{coth} \hbar \beta \Omega-2 \tilde{x}_{a} \tilde{x}_{b}\right\}$ $\frac{1}{\beta} \sum_{n=1}^{N} \frac{(-1)^{n}}{n!\hbar^{n}}\left\langle A_{\text {iit }}^{n}[x]\right\rangle_{x_{a}, x_{b}}^{\Omega, x_{m}}$

Which is optimized for each set of end points x_{b} and x_{a} in the variational parameters Ω^{2} and x_{m}^{N}, the result being denoted by
$W_{\sim}\left(x_{0}, x_{0}\right)$ The following abbeviation $\widetilde{x}(\tau)=x(\tau)-x_{m \text { in }}$ is introduced. The optimal values $\Omega^{2}\left(x_{b}, x_{a}\right)$ and $x_{m}\left(x_{b}, x_{a}\right)$ $W_{N}\left(x_{b}, x_{a}\right)$.The following abbreviation $\tilde{x}(\tau)=x(\tau)-x_{m}$ is introduced. The optimal values $\Omega^{2}\left(x_{b}, x_{a}\right)$ and $x_{m}\left(x_{b}, x_{a}\right)$ are
determined from the extreme conditions $\frac{\partial W_{N}^{\Omega, x_{m}}\left(x_{b}, x_{a}\right)}{\partial \Omega^{2}}=0, \quad \frac{\partial W_{N}^{\Omega, x_{m}}\left(x_{b}, x_{a}\right)}{\partial x_{m}}=0$.

The solutions are denoted $\Omega^{2^{*}}$ and x_{m}^{N}, both being functions of x_{B} and x_{a}
flattestregion of function (15), where the lowest higher-order derivative disappears.
(15), whe found, one has to look for the Kleinert and al.[4] found efficient formulas for evaluating expectation values of quantum-mechanical correlation functions of any power
at atraction(77 , in order to calculate the connected correlation functions in the variational perturbation expansion (15). The formulas can

[^0]The diagonal elements $a^{2}=a^{2}\left(\tau, \tau^{\prime}\right)$ represent the fluctuation width $a_{\|}^{2}=(\hbar / 2 M \Omega)$ coth $\left(\hbar \Omega / 2 k_{\Delta} T\right)$, which behaves in the classical limit as

$H=p^{2}+\frac{1}{4} x^{2}+i \lambda x^{3}$

Is real and positive[1]. It is claimed[$1,2,16-19$] that the reality and the positivity of the spectra are a consequence of PT-symmetry. Note sreal and positve[1].It is claimed $[1,2,26-19]$ that the reality and the positivity of the spectra are a consequence of $P T$-symmetry. Note
that the parity operato acts a $P P \rightarrow-p$ and $P: x \rightarrow-x$ and that antinuititity timereversaloperation acts as $T: p \rightarrow-p, T: x \rightarrow x$
and $T: i \rightarrow-i$. The notion that $P T$-symmety can replace the much more restrictive condition of hermiticity has seen worked out in the contex of

quasi-exactly solvable quantum theories [20] and of new kinds of symmetry breaking in quantum field theory [21,22].
There are many applications of non-Hermitian PT-invariant Hamittonians in physics. Hamittonians rendered non-Hermitian by an
maginary external field have been used to study the delocalization transitions in condensed matter systems such as vortex flux-line
depinning in type-ll supercoductors [23] and to study population biology [24].
The large-order behavior of Rayleigh_Schrodinger perturbation theory for the ground-state energy of the complex PT-symmetric
Let us apply the systematicic convv
point particle moving in complex potentials $[1,2]$.
In the second-order variational

Tarameters becomes less signifiant. Thus we restrict ourselves to the optimization in $\Omega\left(x_{a}\right)$, and set $x_{m}=0$
$[4]$.
The second-order density is obtained as

$$
\tilde{\rho}_{2}^{n}\left(x_{a}\right)=\frac{1}{\sqrt{2 \pi \beta}} \exp \quad\left[-\beta W_{2}{ }^{a}\left(x_{\omega}\right)\right]
$$

```
with the second-order approximation of the effective classical potential,
```


Where

$H_{n}(x)$ are the Hermite polynomials, and
$\begin{aligned} & g_{0}=\left(1-2 \Omega^{2}\right) \frac{a_{00}^{2}}{4},\end{aligned} \quad g_{1}=i \frac{3}{2} \lambda\left(2 a_{\infty 0}^{2}\right)^{3 / 2}, \quad g_{2}=\left(1-2 \Omega^{2}\right) a_{\text {oso }}^{2}$.

The effective potential is obtained:

$$
W_{2}^{2}\left(x_{a}\right)=\frac{1}{2 \beta} \frac{\sinh }{\beta \Omega} \Omega^{2}+\frac{\Omega}{\beta} x_{a}^{2} \text { tanh } \frac{\beta \Omega}{2}+\frac{\left(1-2 \Omega^{2}\right)_{a}}{4} a_{o}^{2}+\frac{C_{\beta}^{2}}{4}\left(x_{a}^{2}-a_{o \infty}^{2}\right)\left(1-2 \Omega^{2}\right)
$$

where $\quad+\frac{\lambda^{2}}{2 \beta} F_{1}\left(x_{a}\right)-\frac{\left(1-2 \Omega^{2}\right)^{2}}{32 \beta} F_{2}\left(x_{a}\right)+i \frac{\lambda}{8 \beta}\left(1-2 \Omega^{2}\right) F_{3}\left(x_{a}\right) . \quad$ (23)
 $\frac{\left[\begin{array}{c} \\ \cosh { }^{3} \beta \Omega / 2+6 \cosh \beta \Omega / 2-\cosh { }^{3}{ }^{3} \beta \beta \Omega / 2-6 \cosh 3 \\ \beta \Omega \Omega / 2\end{array}\right]}{12 \Omega^{5} \sinh { }^{3} \beta \Omega / 2}$ $\frac{3\left[x_{\alpha}^{2}-a_{\infty}^{2}\right]\left[\begin{array}{lll}9 \cosh & 3 \beta \Omega / 2-10 \cosh \quad \beta \Omega / 2+\cosh 5 & \beta \Omega / 2\end{array}\right]}{16 \Omega^{5} a_{00}^{2} \sinh ^{3} \beta \Omega / 2}$ $\frac{\left[\begin{array}{llll}x_{a}^{2}-a_{\infty 0}^{2}\end{array}\right]\left[\begin{array}{lll}58 & \cosh & \beta \Omega+4 \cosh 2 \\ \beta & \beta-69+\cosh & 4 \beta \Omega+6 \cosh \\ 6 \beta \Omega & 3\end{array}\right]}{64 \Omega^{6} a_{\text {op }}^{4} \sinh { }^{4} \beta \Omega / 2}$ $\frac{\left[\mathrm{x}_{\mathrm{a}}^{4}-6 a_{00}^{2} x_{a}^{2}+3 a_{\text {in }}^{4}\right]\left[\begin{array}{lll}101 & \cosh & \beta \Omega / 2-19 \cosh 5 \beta \Omega / 2-81 \cosh 3 \beta \Omega / 2\end{array}\right]}{521 a_{\text {mo }}^{8} \Omega^{7} \sinh { }^{5} \beta \Omega / 2}$ $\frac{9 \mathrm{a}{ }_{\mathrm{b}}^{4}[\cosh 3 \beta \Omega / 2-\cosh \beta \Omega / 2]}{2 \Omega^{3} \sinh \beta \Omega / 2}-\frac{\cosh 7 \beta \Omega / 2}{521 a_{\infty}^{s} \Omega^{2} \sinh { }^{5} \beta \Omega / 2}$,
$F_{2}\left(x_{a}\right)=-\frac{\left[2 x_{a}^{2}-a_{\infty 0}^{2}\right][2 \cosh \beta \Omega / 2 \sinh \beta \Omega / 2+\beta \Omega]^{2}}{32 \Omega^{6} a_{m}^{6} \sinh +\Omega^{4} \beta / 2}+\frac{2\left[\beta^{2} \Omega^{2}+\sinh { }^{2} 3 \beta \Omega / 2-\sinh { }^{2} \beta \Omega / 2\right]}{8 \Omega^{4} \sinh { }^{2} \beta \Omega / 2}$

$F_{3}\left(x_{u}\right)=\frac{\left[a_{\text {ad }}^{4} x_{a}^{3}+3 a_{\infty}^{6} x_{a}\right]\left[\cosh { }^{2} \beta \Omega / 2+2\right][2 \cosh \beta \Omega / 2 \sinh \beta \Omega / 2+\beta \Omega]}{16 \Omega^{3} \sinh { }^{4} \beta \Omega / 2}$
$+\frac{3 a{ }_{a}^{n} x_{a}[-1+2 \beta \Omega \sinh \beta \Omega+\cosh 2 \beta \Omega]}{8 \Omega^{8} \sinh { }^{2} \beta \Omega / 2}$
$+\frac{2 \mathrm{a}{ }_{\mathrm{o}}^{6} x_{a}^{3}-5 a_{\mathrm{o}}^{\mathrm{s}} x_{a}[-10-\cosh \beta \Omega+2 \beta \Omega \sinh 2 \beta \Omega]}{131 \Omega^{6} \sinh { }^{4} \beta \Omega / 2}$
$\frac{5 \mathrm{a}{ }_{\mathrm{m}}^{\mathrm{s}} x_{a}[20 \beta \Omega \sinh \beta \Omega+\cosh 3 \beta \Omega+10 \cosh 3 \beta \Omega / 2]}{131 \Omega^{6} \sinh { }^{4} \beta \Omega / 2}$

$+\frac{3 a_{0}^{6} x_{a}\left[4(\beta \Omega)^{2} \cosh \beta \Omega / 2+\cosh 5 \beta \Omega / 2+\cosh 3 \beta \Omega / 2\right]}{64 \Omega^{5} \sinh { }^{3} \beta \Omega / 2}$
In the above derivation, we take into account the real parts in Eq. (23) to
calculate $\tilde{\mathcal{D}}_{2}^{a}\left(x_{a}\right)$ via Eq. (111), the partition function Z_{2}, and finally
$E_{K}=\lim { }_{T \rightarrow 0}\left(-1 / \beta \ln Z_{2}\right)$. Going further in the apporimation by examining the second order in the imaginary part of Eq. (23), the imaginary

for the other hand, for λ included between 0.015625 and 0.25,
Im $\left(\begin{array}{l}\mathrm{W} \\ \left.\frac{1}{2}(x,)\right) \\ \text { tends to zero. Based on their small values, the }\end{array}\right.$ calculated imarinary parts can be neglected. In table 1 , our results are
compared with those obtained by the perturbation theory 1]
 compared with those obtained by the perturbation theory [1].
The results compiled in Table 1 show a great similarity between E_{x} and E and
obtained from perturbation theory [4]. The deviaition with the λ
confirms this similarity: 0.07% for $\lambda=0.5$ and 3% for $\lambda=2.0$.

3. Conclusion:


```
Therefore, it can also be said that there is an effective agrement of numerical calculation studies
accordingly with the mathematical point of view [3]. Finally, it is useful to have, for some PT-potential,
l
```



```
{
lol
lol
```



```
lol
```


[^0]: $\left\langle A_{\mathrm{int}}^{n}[x]\right\rangle_{x_{n}, x_{k}}^{\Omega, x_{m}}=\frac{1}{\rho_{0}^{\Omega, x_{m}}\left(x_{a}\right)} \prod_{l=1}^{n}\left[\int_{0}^{n \beta} d \tau_{l} \int_{-\infty}^{+\infty} d z_{l} V_{\mathrm{int}}\left(z_{l}+x_{m}\right)\right] \frac{1}{\sqrt{(2 \pi)^{n+1} \operatorname{det} a^{2}}} \exp \left(-\frac{1}{2} \sum_{k, l=0}^{n} z_{k} a_{k l}^{-2} z_{l}\right)$

