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1. Introduction:
According to some recent  studies the energy spectrum of non-Hermitian Hamiltonians is real and positive[1-4]. This interest renewal to 

complex potentials is due to applications found in several research areas such as nuclear physics, quantum field theory, condensed matter 
physics, and biology.
The purpose of this letter is to study the simplest  form of complex potentials that is,                                     , where        is real and 

positive, via a systematic convergent variational perturbation theory for the path-integral representation of density matrices [4]. To our 
knowledge, it is for the first time that this formalism is used for such potentials according to the variational method. The variational 
perturbation theory [4,15] allows a very satisfactory approximation for path-integrals whenever the accurate analytical calculation of the 
propagator cannot be achieved. Taking into account the generalized smearing formula [4], which accounts for the effects of quantum 
fluctuations, we calculate the particle density in the complex potentials with a second order approximation.  
This method can be schematized and summarized as follows. It is based upon a locally harmonic variational ansazt with the trial 

frequencies which are optimized differently for each expansion order. At high temperatures T , it is essential to give a special treatment to 
the fluctuations of the path average                                     to deal with the free  energy as the path performs violent fluctuations(         being 
the Boltzmann constant). The effects of these fluctuations may , however , easily be calculated at the end by a single numerical
fluctuation integral . Variational perturbation expansions are performed for each position      of the path average separately , yielding an 
Nth -order approximation                         to the local free energy                      , called the effective classical potential [10]. In quantum 
mechanics, the partition function of a particle of mass M submitted  to a one-dimensional potential V(x), can be expressed as a single 
integral over         just as in classical statistics.

Having calculated , the Nth-order approximation to the partition function is obtained,

In the high temperature limit,                      converges to the initial potential                 for any order N. the  partition function in (1) can be 
written as

For the general particle action, 

Possesses the effective classical representation (1) with the effective classical potential

In the variational perturbation theory [4-10], the effective classical potential is expanded perturbatively around an        -dependent 
harmonic system with the trial frequency                   , and its optimization leads to the approximation                 for                      .

2. Variational perturbation theory for density matrices:
To obtain a variational  approximation for the density matrix, it is useful to split  the general action (4)  into a trial one for which the 

Euclidean propagator is known, and a remainder containing the original potential
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Euclidean propagator is known, and a remainder containing the original potential

With an interaction term given by

Where in (6) is determined by the minimum of the V(x) and , and are the end points, is a trial
frequency and .
The interaction potential is the difference between the original V(x) and the one of a harmonic oscillator

The density matrix is defined by

Where is given by the following path-integral:

And the partition function is found from the trace of as

The path integration in (10) is evaluated by treating interaction (7) as a perturbation

Where is the path-integral for a harmonic oscillator [6]. The correlation functions in above equation can be
decomposed into connected ones by going over to the cumulants. The series obtained is truncated to an N th-order approximatnt of the
quantum-statistics density matrix [4]

Which explicitly depends on both variational paramters and . An effective classical potential is
introduced, which governs the unnormalized density matrix

Its N th-order approximation is obtained from the path-integral of a harmonic oscillator , and from Eqs. (13), (14) via
the cumulants expansion

Which is optimized for each set of end points and in the variational parameters and , the result being denoted by
.The following abbreviation is introduced. The optimal values and are

determined from the extreme conditions

The solutions are denoted and , both being functions of and . If no extrema are found, one has to look for the
flattest region of function (15), where the lowest higher-order derivative disappears.

Kleinert and al.[4] found efficient formulas for evaluating expectation values of quantum-mechanical correlation functions of any power
at atraction(7), in order to calculate the connected correlation functions in the variational perturbation expansion (15). The formulas can
be written as

with and                     . Here denotes a symmetric matrix whose elements are 
obtained from the harmonic Green function for periodic paths [2]:

ax

mx ),( bamm xxxx = ax bx W
Tk B/1ºb

[ ]22
int 2

1
)()( mxxMxVxV -W-=

[ ] [ ] [ ],int
, xAxAxA mx += W

[ ] ( )( ),
0

intint ò=
b

tt
h

xVdxA

),(~1
),( abab xx

Z
xx rr =

),(~
ab xxr

[ ]{ }ò
®

-=
)/,()0,(

 / exp ),(~

Tkxx
ab

Bba

xADxxx
h

hr

),(~
ab xxr

ò
+¥

¥-

= ),(~ xxdxZ r

( ) [ ] ú
û

ù
ê
ë

é -
= å

=

WW
N

n

x

cxx

n
n

n

ab
x

abN
m

ab

m xA
n

xxxx
1

,

,,int
,

0 !
1

exp),(~),(~
h

rr

( ) [ ] [ ] úû
ù

êë
é -+-=

WWW ......
2

11
1),(~,~ ,

,

2
int2

,

,int
,

0
m

ab

m

ab

m
x

xx

x

xxab
x

ab xAxAxxxx
hh

rr

W mx

),(~ ,
0 ab

x xxmWr

),(, bacleff xxV

[ ]),(exp
2

),(~
,

2/1

2 abcleffab xxV
M

xx b
bp

r -÷÷
ø

ö
çç
è

æ
=

h

( ){ }
( ) [ ]å

=

W

W

-
-

-W+
W

W
+

W
W

=

N

n

x

cxx

n
n

n

baabab
x

N

m

ba

m

xA
n

xxxx
M

xxW

1

,

,,int

22,

 
 !

1
  

1
                        

~ ~2   coth~~
    sinh2

 
  

    sinh
ln

2
1

),(

h

h
hhh

h

b

b
bbb

b
b

bx

),(~ ,
0 ab

x xxmWr

,0
),(

2

,

=
W¶

¶ W
ab

x
N xxW m

.0
),(,

=
¶

¶ W

m

ab
x

N

x

xxW m

[ ]
( )

,
2
1

exp
det2

1
)(

)(

1

0,

2

21
1 0

int,
0

,

,int ÷÷
ø

ö
çç
è

æ
-

ú
ú
û

ù

ê
ê
ë

é
+= åÕ ò ò

=

-

+
=

+¥

¥-
W

W n

lk
lklkn

n

l
mlll

a
x

x

xx

n zaz
a

xzVdzd
x

xA
m

m

ba p
t

r

bh

N2W N
mx Bx ax

N
mx2W

),( abN xxW ( ) ( ) mxxx -= tt~ ),(2
ab xxW ),( abm xxx

axz ~
0 = 00 =t 2a ( ) ( )11 +´+ nn ( )lkkl aa tt ,22 =

( )tt ¢W ,, pG

) 6 (

) 7 (

) 8 (

) 9 (

) 10 (

) 11 (

) 12 (

) 13 (

) 14 (

) 15 (

) 16 (

method applied to a complex PT-Potential
Mazouz

Physique Théorique
Département de Physique, Faculté des Sciences, 

Miliana, Ain Defla, Algeria. 

The diagonal elements represent the fluctuation width , which behaves in the classical limit as                     
and at zero temperature as                                                        .

It was shown on the basis of numerical studies that the energy of the Hamiltonian

Is real and positive[1]. It is claimed[1,2,16-19] that the reality and the positivity of the spectra are a consequence of PT-symmetry. Note
that the parity operator acts as                             and                             and that antiunitarity timereversaloperation acts as                                             
and                          . The notion that PT-symmety can replace the much more restrictive condition of  hermiticity has been worked out in the contex of 
quasi-exactly solvable quantum theories [20] and of new kinds of symmetry breaking in quantum field theory [21,22].

There are many applications of non-Hermitian PT-invariant Hamiltonians in physics. Hamiltonians rendered non-Hermitian by an 
imaginary external field have been used to study the delocalization transitions in condensed matter systems such as vortex flux-line 
depinning in type-II supercoductors [23] and to study population biology [24]. 

The large-order behavior of Rayleigh_Schrodinger perturbation theory for the ground-state energy of the complex PT-symmetric
Hamiltonian (17) was studied [1].
Let us apply the systematic convergent variational perturbation theory [4] for the path-integral representation of density matrices to

point particle moving in complex potentials [1,2].
In the second-order variational perturbation theory, the difference between the optimization procedures using one or two variational

parameters becomes less signifiant. Thus we restrict ourselves to the optimization in                  , and set                     [4].
The second-order density is obtained as

with the second-order approximation of the effective classical potential,

Where

are the Hermite polynomials, and

the  dimensionless functions are given by

And

The effective potential is obtained:

where
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3. Conclusion:
In the conclusion, it can be said that the variational perturbation theory proposed by Kleinert and al.[4]
affords reasonable and interesting results, when it is applied to the complexPT-symmetric Hamiltonian.
Therefore, it can also be said that there is an effective agreement of numerical calculation studies
accordingly with the mathematical point of view [3]. Finally, it is useful to have, for some PT-potential,
the analytical solutions by the path-integral approach which is now being undertaken.
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0.015625 0.50263 0.50263 0.50263 0.50263
0.03125 0.50998 0.50998 0.50998 0.50998
0.0625 0.53393 0.53393 0.53393 0.53393
0.125 0.59492 0.59492 0.59492 0.59492
0.25 0.71305 0.71384 0.71294 0.71295
0.5 0.91445 0.89035 0.90026 0.90092
1.0 1.0007 1.05817 1.16746 1.18978
2.0 3.16075 1.14032 1.53078 1.56208

l 1E 2E NE KE

Table 1:Energies for the potential in Eq.(19) for the different values of the parameter
The energies are taken from [2]. The last column represent the values calculated by 
the variational perturbation theory for the density matrix

l
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In the above derivation, we take into account the real parts in Eq. (23) to 
calculate via Eq. (11), the partition function , and finally

Going further in the approximation by 
examining the second order in the imaginary part of Eq. (23), the imaginary
parts that can be deduced are                                                    
for                                    and                                                                   
for
On the other hand, for       included between 0.015625 and 0.25 ,                                                 

tends to zero. Based on their small values, the 
calculated imaginary parts can be neglected. In table 1, our results are 
compared with those obtained by the perturbation theory [1].
The results compiled in Table 1 show a great similarity between and                  
obtained from perturbation theory [4]. The deviation with the              value 
confirms this similarity: 0.07%  for                    and 3% for                 . 
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