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Abstract

The electronic excitation energies of molecules or solids are most frequently
calculated via the linear response of the ground-state wave function to a
time-dependent perturbation, as done for example in time-dependent
Hartree-Fock theory, time-dependent density-functional theory or the
Bethe-Salpeter equation [1], and which leads to pseudo-Hermitian eigenvalue
equations [2,3,4,5]. If the response is calculated on a ground state that is
properly stable with respect to the perturbation considered, then one can
show that the obtained eigenvalue equation is pseudo-Hermitian with respect
to a positive-definite matrix, and the excitation energies are thus real, as they
should be. However, in practice, approximations are necessarily made and the
approximate ground state is sometimes unstable (e.g., with respect to
unphysical spin-symmetry breaking), leading to unexploitable imaginary
excitation energies. I illustrate this on the simple example of the H2 molecule
[6].
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Electronic-structure problem

We want to solve the time-independent Schrödinger equation for the
electronic states of atoms, molecules or solids:

Ĥ|Ψn〉 = En|Ψn〉

The ground state is often approximately calculated by a variational
method, i.e. by minimizing the energy with an approximate wave
function Ψ0(p) depending on some optimized parameters p:

E0 = min
p
〈Ψ0(p)|Ĥ|Ψ0(p)〉

Example: Hartree-Fock (HF), multiconfiguration self-consistent field
(MCSCF).

The excited-state energies are then often calculated by
linear-response time-dependent perturbation theory starting from
the approximate ground state.
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Excitation energies from linear-response theory (1)

Perturb the system by a time-dependent (e.g., electric) potential:

Ĥ(t) = Ĥ + λV̂ (t)

The approximate ground state Ψ0(p(t)) evolves in time through the
parameters p(t) according to the Dirac-Frenkel variational principle:

∂

∂p∗i
〈Ψ0(p(t))|Ĥ(t)− i

∂

∂t
|Ψ0(p(t))〉 = 0 (1)

Expand the wave function around the initial parameters p0:

Ψ0(p(t)) = Ψ0(p
0) +

∑

i

∆pi (t)
∂Ψ0(p

0)

∂pi
+

1

2

∑

ij

∆pi (t)∆pj(t)
∂2Ψ0(p

0)

∂pi∂pj

+ · · ·

where ∆p(t) = p(t)− p0.
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Excitation energies from linear-response theory (2)

We consider the limit of an infinitesimal perturbation λ → 0.

Using Eq. (1), the first-order parameter variations ∆p are given by

A ·∆p(t) + B ·∆p(t)∗ = iS ·
∂∆p(t)

∂t

where Aij = 〈
∂Ψ0

∂pi
|Ĥ|

∂Ψ0

∂pj
〉, Bij = 〈

∂2Ψ0

∂pi∂pj
|Ĥ|Ψ0〉 and Sij = 〈

∂Ψ0

∂pi
|
∂Ψ0

∂pj
〉

We look for free-oscillation solutions of the form:

∆p(t) = X e−iωt + Y∗ e iωt

where ω will be an approximation to an excitation energy.

It leads to a non-Hermitian generalized eigenvalue equation:
(

A B
B∗ A∗

)(

X
Y

)

= ω

(

S 0
0 −S∗

)(

X
Y

)

(2)

whose solutions come in pairs: excitation energies ω with eigenvectors
(X,Y), and de-excitation energies −ω with eigenvectors (Y∗,X∗).

5/11



Approximate excitation spectrum may not be real

Equation (2) is widely used for computing excitation spectra in
electronic-structure theory (quantum chemistry and condensed-matter
physics), and in fact also in nuclear physics. It was demonstrated here for
simple variational methods such as HF or MCSCF, but similar equations
are obtained for time-dependent density-functional theory (TDDFT) or
perturbative methods based on the Bethe-Salpeter equation (BSE).
The generic equation (2) is often called the random phase
approximation (RPA).

The true excitation energies, ω = En − E0, are of course all real, but in
practice, when approximations are used, one can get unexploitable
non-real eigenvalues ω from the generalized eigenvalue problem (2)
because it is non-Hermitian. These so-called “instabilities” in Eq. (2)
plague the computation of excitation spectra in electronic-
structure theory.
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Pseudo-Hermiticity of the linear-response problem

Defining the supermatrices L =

(

A B
B∗ A∗

)

and � =

(

S 0
0 −S∗

)

,

equation (2) is equivalent to finding the eigenvalues of H = �

−1 · L.

With usual approximations, A and S are Hermitian and B is symmetric.
This implies than L and � are Hermitian.

H is pseudo-Hermitian with respect to L, i.e. [2,3,4,5]:

H

† = L · H · L−1

Therefore, if L is positive definite then H has only real eigenvalues
ω.

Remark: H is also pseudo-Hermitian with respect to � but � is not positive
definite.
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Stability condition on the ground state

The expansion of the variational ground-state energy around the
minimum is

E0(p) = E0(p
min) +

(

∆p∗ ∆p
)

(

A B
B∗ A∗

)(

∆p
∆p∗

)

+ · · ·

where ∆p = p− pmin.

L is thus the Hessian of the ground-state energy at the minimum.

It follows that if the response is done around a ground state that is a
properly stable minimum, L is positive definite and the linear-response
equation (2) gives only real excitation energies.

In practice, non-real excitation energies can be obtained if either:
a non-variational method is used for the ground state.
the ground-state variational space is limited by imposing some symmetries
(complex-conjugation, spin or spatial symmetry) that could be
spontaneously broken due to the chosen approximate wave-function form,
but a larger variational space without these symmetry conditions is used in
the linear-response calculation.
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Example: H2 molecule in a minimal basis

First spin-singlet 1Σ+
u excitation energy:
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The variational TD-HF method gives a real excitation energy at all R
(though it is not accurate at large R).
The non-variational TD-BSE method gives a non-real excitation energy
for R & 5 bohr.
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Example: H2 molecule in a minimal basis

First spin-triplet 3Σ+
u excitation energy:
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The TD-HF method gives a non-real excitation energy for R & 3.6 bohr
because the ground-state variational space has been limited by imposing
spin-singlet symmetry.
The TD-BSE method gives a non-real excitation energy between R ≈ 4
and R ≈ 5 bohr. 10/11



Final remarks and references

With variational methods, one often faces the following dilemma: either
(1) allow unphysical spontaneous symmetry breaking in the ground-state
calculation to have only real excitation energies in the linear-response
calculation but then the quality of the ground and excited states can be
poor, or (2) impose physical symmetries in the ground-state calculation
but then the linear-response calculation can give non-real excitation
energies for excited states of different symmetry.
To avoid non-real excitation energies, the Tamm-Dancoff approximation,
B = 0, is often used, but it is not always accurate enough.
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