Time-Dependent \mathcal{PT} -Symmetric Quantum Mechanics ¹

Qing-hai Wang [王清海]

National University of Singapore

Non-Hermitian Operators in Quantum Physics XI Paris, 27 August 2012

¹Work in progress with Jiangbin Gong

Outline

- Introduction
- 2 Time-Dependent PTQM
- Complex Harmonic Oscillator
- Berry Phase in PTQM
- Conclusions

Schrödinger eqn in conventional QM

• Stationary Schrödinger eqn (eigenvalue eqn)

$$h(t)|\phi_n(t)\rangle = E_n(t)|\phi_n(t)\rangle \tag{1}$$

Time-dependent Schrödinger eqn (evolution eqn)

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Phi(t)\rangle = h(t)|\Phi(t)\rangle$$
 (2)

Eq.(2) guarantees unitarity

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\Phi_1(t)|\Phi_2(t)\rangle = 0$$

- Remarks
 - Any Hermitian evolution would be unitary.
 - 2 Eq.(2) cannot be derived from Eq.(1).
 - **3** The "dual-role" of h(t) is a axiom in QM.

Unitary equivalence

Stationary Schrödinger eqn is invariant under arbitrary unitary transformations

$$h'(t) = U(t)h(t)U^{\dagger}(t), \quad |\phi'_n(t)\rangle = U(t)|\phi_n(t)\rangle$$
$$h(t)|\phi_n(t)\rangle = E_n(t)|\phi_n(t)\rangle \to h'(t)|\phi'_n(t)\rangle = E_n(t)|\phi'_n(t)\rangle$$

 Time-dependent Schrödinger eqn is invariant under only time-independent unitary transformations.

$$h'(t) = Uh(t)U^{\dagger}, \quad |\Phi'(t)\rangle = U|\Phi(t)\rangle$$
$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Phi(t)\rangle = h(t)|\Phi(t)\rangle \to i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Phi'(t)\rangle = h'(t)|\Phi'(t)\rangle$$

 For a time-dependent transformation, the full Schrödinger eqn becomes

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}|\Phi'(t)\rangle = \left[h'(t) - \mathrm{i}\hbar U\dot{U}^{\dagger}\right]|\Phi'(t)\rangle$$

Inner products

- Inner products in QM [Ballentine, Quantum Mechanics]
 - (ψ,ϕ) is a complex number,
 - $(\psi,\phi)=(\phi,\psi)^*$, where * denotes complex conjugate,
 - (1) $(\psi, c_1\phi_1 + c_2\phi_2) = c_1(\psi, \phi_1) + c_2(\psi, \phi_2)$, where c_1 and c_2 are complex numbers,
 - $(\phi, \phi) \ge 0$, with equality holding iff $\phi = 0$.
- In general, $(\psi, \phi) \equiv \langle \psi | W | \phi \rangle$.
 - **1** The metric operator is a Hermitian matrix: $W = W^{\dagger}$
 - ② All the eigenvalues of W are positive: $\lambda^W > 0$.
 - 3 In some convention, one may choose $W = \mathcal{PC}$.
- A self-adjoint operator in finite dimensions

$$(\psi, H\phi) = (H\psi, \phi) \quad \Rightarrow \quad WH = H^{\dagger}W.$$

ullet A time-dependent H(t) calls for a time-dependent W(t).

6 / 31

Schrödinger-like eqn

Stationary Schrödinger eqn is same as in QM

$$H(t)|\psi_n(t)\rangle = E_n(t)|\psi_n(t)\rangle$$

Demand unitarity in evolution

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\Psi_1(t)|W(t)|\Psi_2(t)\rangle = 0.$$

Schrödinger-like equation

$$\mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Psi(t)\rangle = \Lambda(t) |\Psi(t)\rangle$$

with

$$i\hbar \dot{W} = \Lambda^{\dagger} W - W \Lambda.$$

An axiom in PTQM

ullet Assume $\Lambda = \tilde{H} + A$, where

$$W\tilde{H} = \tilde{H}^{\dagger}W, \quad WA = -A^{\dagger}W.$$

- The partition is unique.
- A can be determined by unitarity,

$$A = -\frac{1}{2}i\hbar W^{-1}\dot{W}.$$

- ullet $ilde{H}$ cannot be determined by the unitary condition.
- An axiom in PTQM: $H = \tilde{H}$.
- Evolution equation in PTQM

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}|\Psi\rangle = \left(H - \frac{\mathrm{i}\hbar}{2}W^{-1}\dot{W}\right)|\Psi\rangle.$$

Dyson's map

The metric is positive definite,

$$W=\eta^{\dagger}\eta.$$

• There are many square-roots of W,

$$W = \eta^{\dagger} \eta = (U\eta)^{\dagger} (U\eta)$$
 with $U^{-1} = U^{\dagger}$.

Mapped Hamiltonian is Hermitian,

$$h \equiv \eta H \eta^{-1} = h^{\dagger}.$$

- Map on wavefunctions: $|\Phi\rangle \equiv \eta |\Psi\rangle$.
- Stationary Schrödinger egn mapped accordingly,

$$H|\psi_n\rangle = E_n|\psi_n\rangle \quad \Rightarrow \quad h|\phi_n\rangle = E_n|\phi_n\rangle$$

Mapped evolution eqn

Mapped evolution equation,

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}|\Phi\rangle=\tilde{h}|\Phi\rangle\quad\text{with}\quad \tilde{h}=h+\tfrac{1}{2}\mathrm{i}\hbar\left[\dot{\eta}\eta^{-1}-\left(\dot{\eta}\eta^{-1}\right)^{\dagger}\right].$$

- $\bullet \ \ \text{In general,} \ \tilde{h} \neq h.$
- "Proper mapping:"

$$\dot{\eta}_{\mathrm{proper}}\eta_{\mathrm{proper}}^{-1} = \left(\dot{\eta}_{\mathrm{proper}}\eta_{\mathrm{proper}}^{-1}\right)^{\dagger}.$$

• For an improper mapping, $\eta' = U\eta_{proper}$, U satisfies

$$\dot{U} = \frac{1}{2} \left[\left(\dot{\eta}' \eta'^{-1} \right) - \left(\dot{\eta}' \eta'^{-1} \right)^{\dagger} \right] U.$$

• The lack of the initial condition: Unitary equivalence.

Comments

• For a proper mapping, the evolution equation reduces to

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}|\Psi\rangle = \left(H - \mathrm{i}\hbar\eta^{-1}\dot{\eta}\right)|\Psi\rangle.$$

[Znojil PRD 2008, SIGMA 2009]

- Application in conventional QM
 - W = 1.
 - $\eta = U$ with $U^{-1} = U^{\dagger}$.
 - \bullet If $\eta=\mathbf{1}$ is a proper mapping, then the improper mapping $\eta'=U$ gives

$$\label{eq:delta_def} \tfrac{1}{2} \left[\left(\dot{\eta}' \eta'^{-1} \right) - \left(\dot{\eta}' \eta'^{-1} \right)^\dagger \right] = \mathrm{i} \hbar \dot{U} U^\dagger = - \mathrm{i} \hbar U \dot{U}^\dagger.$$

Complex harmonic oscillator

Hamiltonian

$$H = \frac{1}{2} \left[\left(X + 2i\beta \frac{Y}{Z} - \beta^2 \frac{Y^2}{Z} \right) \hat{q}^2 + (Y + i\beta) \left(\hat{p}\hat{q} + \hat{q}\hat{p} \right) + Z\hat{p}^2 \right].$$

• Real spectrum,

$$E_n = \left(n + \frac{1}{2}\right) \hbar \sqrt{ZX - Y^2}.$$

• The metric operator

$$W = \exp\left(-\frac{1}{\hbar}\frac{\beta}{Z}\hat{q}^2\right).$$

Dyson's map

- A Dyson's map $\eta = U\eta_0$
- with a Hermitian η_0 ,

$$\eta_0 = \exp\left(-\frac{1}{2\hbar}\frac{\beta}{Z}\hat{q}^2\right) = \eta_0^{\dagger},$$

and a unitary factor

$$U = \exp\left[-\frac{\mathrm{i}}{\hbar}\left(\frac{\xi}{2}\hat{q}^2 + \alpha\right)\right].$$

Mapped Hamiltonian

$$h = \eta H \eta^{-1}$$

= $\frac{1}{2} [(X + 2\xi Y + \xi^2 Z) \hat{q}^2 + (Y + \xi Z) (\hat{p}\hat{q} + \hat{q}\hat{p}) + Z\hat{p}^2].$

Proper mapping

Mapped evolution operator

$$\tilde{h} = h + \frac{1}{2}i\hbar \left[\dot{\eta}\eta^{-1} - \left(\dot{\eta}\eta^{-1} \right)^{\dagger} \right]$$
$$= h + \frac{1}{2}\dot{\xi}\hat{q}^2 + \dot{\alpha}.$$

- A proper mapping: $\xi = 0$ and $\alpha = 0$.
- The mapped Hermitian Hamiltonian is Berry's generalized harmonic oscillator

$$h_{\rm GHO} = \tfrac{1}{2} \left[X \hat{q}^2 + Y (\hat{p} \hat{q} + \hat{q} \hat{p}) + Z \hat{p}^2 \right]. \label{eq:hoho}$$

 \bullet The original $\mathcal{PT}\text{-symmetric }H$ has the same Berry phase with this $h_{\mathrm{GHO}}.$

Expansion by instantaneous eigenstates

ullet Instantaneous eigenstates of H

$$H[\mathbf{X}(t)]|\psi_n(t)\rangle = E_n[\mathbf{X}(t)]|\psi_n[\mathbf{X}(t)]\rangle$$

 Expanding the solution of the Schrödinger-like time evolution Eqn by the complete set,

$$|\Psi\rangle = \sum_{n} a_n e^{i\theta_n} |\psi_n\rangle,$$

where the dynamical phase is $\theta_n(t) = -\frac{1}{\hbar} \int^t d\tau \, E_n[\mathbf{X}(\tau)].$

• The time-dependent coefficient,

$$\dot{a}_{m} = -a_{m} \left(\langle \psi_{m} | W | \dot{\psi}_{m} \rangle + \frac{1}{2} \langle \psi_{m} | \dot{W} | \psi_{m} \rangle \right)$$

$$+ \sum_{n \neq m} a_{n} \left(\frac{\langle \psi_{m} | W \dot{H} | \psi_{n} \rangle}{E_{n} - E_{m}} + \frac{1}{2} \langle \psi_{m} | \dot{W} | \psi_{n} \rangle \right).$$

Adiabatic Approximation

- Adiabatic approximation: No contribution from $n \neq m$ terms.
- Adiabatic phase: $a_m(t) \approx a_m(0) \mathrm{e}^{\mathrm{i}\gamma_m(t)}$. where the phase satisfies

$$\dot{\gamma}_m = \mathrm{i}\left(\langle \psi_m | W | \dot{\psi}_m \rangle + \frac{1}{2} \langle \psi_m | \dot{W} | \psi_m \rangle\right).$$

Geometry phase in PTQM:

$$\gamma_m^g = i \int d\mathbf{X} \cdot \left[\langle \phi_m | W \nabla | \psi_m \rangle + \frac{1}{2} \langle \psi_m | (\nabla W) | \psi_m \rangle \right].$$

Berry phase in PTQM:

$$\gamma_m^B = i \oint d\mathbf{X} \cdot \left[\langle \psi_m | W \nabla | \psi_m \rangle + \frac{1}{2} \langle \psi_m | \nabla W | \psi_m \rangle \right].$$

2×2 \mathcal{PT} -symmetric H

Hamiltonian

$$H_{2\times 2} = e\sigma_0 + \left(a \mathbf{n}^r + ib\sin\delta\mathbf{n}^\theta + ib\cos\delta\mathbf{n}^\varphi\right) \cdot \boldsymbol{\sigma}$$

$$= \begin{bmatrix} e + a\cos\theta - ib\sin\theta\sin\delta & (a\sin\theta + ib\cos\theta\sin\delta + b\cos\delta)e^{-i\varphi} \\ (a\sin\theta + ib\cos\theta\sin\delta - b\cos\delta)e^{i\varphi} & e - a\cos\theta + ib\sin\theta\sin\delta \end{bmatrix}$$

with

$$\mathbf{n}^{r} \equiv (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta),$$

$$\mathbf{n}^{\theta} \equiv (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta),$$

$$\mathbf{n}^{\varphi} \equiv (-\sin \varphi, \cos \varphi, 0).$$

• Eigenvalues: $E_{\pm} = e \pm \sqrt{a^2 - b^2}$.

Metric and eigenstates

Metric

$$W = \mu \left[a\sigma_0 + \left(\nu \, \mathbf{n}^r + b \cos \delta \, \mathbf{n}^\theta - b \sin \delta \, \mathbf{n}^\varphi \right) \cdot \boldsymbol{\sigma} \right],$$

where $a\mu > 0$ and $\nu^2 < a^2 - b^2$.

Eigenstates

$$|\psi_{\pm}\rangle = \mathcal{N}_{\pm} \begin{bmatrix} e^{-i\varphi} (a\sin\theta + ib\cos\delta\cos\theta + b\sin\delta) \\ -a\cos\theta + ib\cos\delta\sin\theta \pm \sqrt{a^2 - b^2} \end{bmatrix}$$

- Since μ & ν can always be absorbed in \mathcal{N}_{\pm} , we choose $\mu = \mathrm{sign}(a)$ and $\nu = 0$. After μ & ν are fixed, $W(t) = W[\mathbf{X}(t)]$.
- Without loss of generality, assume that a > 0.
- The metric we used

$$W = a\sigma_0 + b\left(\cos\delta\,\mathbf{n}^{\theta} - \sin\delta\,\mathbf{n}^{\varphi}\right) \cdot \boldsymbol{\sigma}.$$

Geometry phase

- Parameters θ , φ , & δ change periodically in time.
- ullet Geometry phase for $|\psi_{\pm}
 angle$

$$\gamma_{\pm}^{g} = \int \left[F_{\pm}^{\varphi} d\varphi + F_{\pm}^{\theta} d\theta + F_{\pm}^{\delta} d\delta \right],$$

where

$$F_{\pm}^{\varphi} = \frac{1}{2} \left(1 \pm \frac{a}{\sqrt{a^2 - b^2}} \cos \theta \right)$$

$$F_{\pm}^{\theta} = \frac{1}{2} \frac{b \sin \delta}{a + b \sin \theta \cos \delta \mp \sqrt{a^2 - b^2} \cos \theta}$$

$$F_{\pm}^{\delta} = \mp \frac{1}{2} \frac{b}{\sqrt{a^2 - b^2}} \frac{b + a \sin \theta \cos \delta}{a + b \sin \theta \cos \delta \pm \sqrt{a^2 - b^2} \cos \theta}.$$

Fictitious magnetic field

- Berry phase $\gamma_{\pm}^B = \oint \left[F_{\pm}^{\varphi} \mathrm{d} \varphi + F_{\pm}^{\theta} \mathrm{d} \theta \right]$.
- Introduce a vector field by $\mathbf{A}_{\pm} \equiv \frac{\hbar}{e} \left(\frac{F_{\pm}^{\theta}}{r} \mathbf{n}^{\theta} + \frac{F_{\pm}^{\phi}}{r \sin \theta} \mathbf{n}^{\phi} \right)$.
- By Stokes' theorem,

$$\gamma_{\pm}^{B} = \frac{e}{\hbar} \oint \mathbf{A}_{\pm} \cdot d\mathbf{r} = \frac{e}{\hbar} \iint \mathbf{\nabla} \times \mathbf{A}_{\pm} \cdot d\mathbf{S}.$$

• In terms of solid angle and winding number,

$$\gamma_{\pm}^{B} = \mp \frac{1}{2} \frac{a}{\sqrt{a^2 - b^2}} \Omega + \left(1 \pm \frac{a}{\sqrt{a^2 - b^2}}\right) n\pi.$$

• Fictitious magnetic field:

$$\mathbf{B}_{\pm} = \left(1 \pm \frac{a}{\sqrt{a^2 - b^2}}\right) \frac{\pi \hbar}{e} \delta(x) \delta(y) \mathbf{n}^z \mp \frac{a}{\sqrt{a^2 - b^2}} \frac{\mathbf{r}}{r^3} \frac{\hbar}{2e}.$$

4 = > 4 = >

Improper (Hermitian) mapping

• Two square-roots of W:

$$\eta_{\pm} = \frac{1}{\chi + \sqrt{2}} \begin{pmatrix} \chi_{\pm}^2 - b \sin\theta \cos\delta & b(\cos\theta \cos\delta + i\sin\delta) e^{-i\varphi} \\ b(\cos\theta \cos\delta - i\sin\delta) e^{i\varphi} & \chi_{\pm}^2 + b \sin\theta \cos\delta \end{pmatrix},$$

where
$$\chi_{\pm} \equiv \sqrt{a \pm \sqrt{a^2 - b^2}}$$
.

Mapped Hamiltonian

$$h_{\pm} \equiv \eta_{\pm} H_{2\times 2} \eta_{\pm}^{-1} = e\sigma_0 \pm \sqrt{a^2 - b^2} \mathbf{n}^r \cdot \boldsymbol{\sigma}.$$

• A proper mapping is $\eta_{\text{proper}} = U^{\dagger} \eta_{+}$.

Only δ varies

• The eqn for U

$$\frac{\partial U}{\partial \delta} = i\zeta \mathbf{n}^r \cdot \boldsymbol{\sigma} U, \text{ where } \zeta \equiv \mp \frac{b^2}{\sqrt{a^2 - b^2} \left(a \pm \sqrt{a^2 - b^2} \right)}.$$

Solution

$$U = \exp(i\zeta \delta \mathbf{n}^{r} \cdot \boldsymbol{\sigma}) U_{0}$$

$$= \begin{pmatrix} \cos(\zeta \delta) + i \cos \theta \sin(\zeta \delta) & i \sin \theta \sin(\zeta \delta) e^{-i\varphi} \\ i \sin \theta \sin(\zeta \delta) e^{i\varphi} & \cos(\zeta \delta) - i \cos \theta \sin(\zeta \delta) \end{pmatrix} U_{0}.$$

- Mapped Hamiltonian: $U_0h_+U_0^{\dagger}$.
- The mapping is a periodic function of δ with period $2\pi/\zeta$.

Only θ varies

ullet The eqn for U

$$\begin{array}{lcl} \frac{\partial U}{\partial \theta} & = & \mathrm{i} \zeta \cos \delta \Big(\begin{array}{ccc} \sin \theta \sin \delta & (-\cos \theta \sin \delta + \mathrm{i} \cos \delta) \mathrm{e}^{-\mathrm{i} \varphi} \\ (-\cos \theta \sin \delta - \mathrm{i} \cos \delta) \mathrm{e}^{\mathrm{i} \varphi} & -\sin \theta \sin \delta \\ \end{array} \Big) U \\ & = & -\mathrm{i} \zeta \cos \delta \, \mathrm{e}^{-\mathrm{i} \varphi \sigma_3/2} \mathrm{e}^{-\mathrm{i} \theta \sigma_2/2} \mathrm{e}^{\mathrm{i} \delta \sigma_3/2} \sigma_2 \mathrm{e}^{-\mathrm{i} \delta \sigma_3/2} \mathrm{e}^{\mathrm{i} \theta \sigma_2/2} \mathrm{e}^{\mathrm{i} \varphi \sigma_3/2} U. \end{array}$$

Solution

$$U = e^{-i\varphi\sigma_3/2} e^{-i\theta\sigma_2/2} \exp\left[i\left(-\zeta\cos\delta\,e^{i\delta\sigma_3/2}\sigma_2 e^{-i\delta\sigma_3/2} + \frac{1}{2}\sigma_2\right)\theta\right] U_0.$$

26 / 31

Only θ varies

Assume the mapped Hamiltonian has the form

$$h^{\theta} = e\sigma_0 + \sqrt{a^2 - b^2} \begin{pmatrix} \cos\Theta & \sin\Theta e^{-i\Phi} \\ \sin\Theta e^{i\Phi} & -\cos\Theta \end{pmatrix}.$$

- Choose $U_0 = \sigma_0$ for simplicity.
- The mapped Hamiltonian has the parameters

$$\begin{split} \cos\Theta &=& \cos\left[\theta\sqrt{1-4\zeta(1-\zeta)\cos^2\delta}\right], \\ e^{i\Phi} &=& \frac{1-2\zeta\cos^2\delta+2\mathrm{i}\zeta\sin\delta\cos\delta}{\sqrt{1-4\zeta(1-\zeta)\cos^2\delta}}. \end{split}$$

- Remarks
 - **1** It is independent of φ .
 - Periodicity of θ is changed.
 - Multiple-valued function for $\Theta \& \Phi$.

Only φ varies

The red line is a path in (θ, φ) space with $\zeta = -0.8$, $\theta = 1$, $\delta = 0$, & $\varphi: 0 \to 2\pi$. The blue line is the mapped curve in (Θ, Φ) space.

Only φ varies

 Φ as a function of φ for $\zeta = -0.8$, $\theta = 1$, $\delta = 0$, & $\varphi : 0 \to 2\pi$.

Conclusions

An axiom in PTQM is proposed.

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t}|\Psi\rangle = \left(H - \frac{i\hbar}{2}W^{-1}\dot{W}\right)|\Psi\rangle.$$

- Conventional full Schrödinger eqn is a special case of Schrödinger-like eqn in PTQM.
- A proper map links a PTQM Hamiltonian to a Hermitian Hamiltonian with "dual roles."
- Finding the proper map may be non-trivial.
- In PTQM, a new geometry phase is found. The associated fictitious magnetic field has a fractional and tunable magnetic monopole and an observable Dirac string.
- Experiments?

