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@ Stationary Schrodinger eqn (eigenvalue eqn)

h(#)|gn(t)) = En(t)|Pn(t)) (1)

@ Time-dependent Schrddinger eqn (evolution eqn)

. d
ih (1)) = h(t)[®(1)) ()
e Eq.(2) guarantees unitarity

d
3 (21 ()| 22(t)) =0

@ Remarks
@ Any Hermitian evolution would be unitary.
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@ Stationary Schrodinger eqn (eigenvalue eqn)

h(B)[on(t)) = En(t)|¢a(t)) (1)

@ Time-dependent Schrddinger eqn (evolution eqn)

. d
ih (1)) = h(t)[®(1)) ()
e Eq.(2) guarantees unitarity

d
a<<1>1(t)|‘1>2(t)> =0
@ Remarks

@ Any Hermitian evolution would be unitary.
@ Eq.(2) cannot be derived from Eq.(1).
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Introduction

@ Stationary Schrodinger eqn (eigenvalue eqn)

h(B)[on(t)) = En(t)|¢a(t)) (1)

@ Time-dependent Schrddinger eqn (evolution eqn)

. d
ih (1)) = h(t)[®(1)) ()
e Eq.(2) guarantees unitarity

d
— (P (1)|Pa(t)) =0
7\ 21(0)|P2(1))
@ Remarks
@ Any Hermitian evolution would be unitary.
@ Eq.(2) cannot be derived from Eq.(1).

© The “dual-role” of h(t) is a axiom in QM.
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@ Stationary Schrodinger eqn is invariant under arbitrary unitary
transformations

H(t) =UBMOUR), 1¢,() = Ut)lon(t))
h(®)|¢n(t)) = En(t)@n(t)) = B(1)],(1)) = En(t)] (1)
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@ Stationary Schrodinger eqn is invariant under arbitrary unitary
transformations

H(t) =UBMOUR), 1¢,() = Ut)lon(t))
h(®)|¢n(t)) = En(t)@n(t)) = B(1)],(1)) = En(t)] (1)

@ Time-dependent Schrodinger eqn is invariant under only
time-independent unitary transformations.

W) = UUT, |@/(1)) = U]D ()
B IB(1)) = h()IR(0) — 0 TI# (1) = (1) (1)
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Introduction Schrédinger Equations

@ Stationary Schrodinger eqn is invariant under arbitrary unitary
transformations

H(t) =UBMOUR), 1¢,() = Ut)lon(t))
h(®)|¢n(t)) = En(t)@n(t)) = B(1)],(1)) = En(t)] (1)

@ Time-dependent Schrodinger eqn is invariant under only
time-independent unitary transformations.

W(t)=UhUT, (1)) = U|®(1))

B IB(1)) = h()IR(0) — 0 TI# (1) = (1) (1)

@ For a time-dependent transformation, the full Schrodinger egn
becomes

ih%@/(t)) - [h’(t) - mUUT] 1@/ (t))
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@ Inner products in QM [Ballentine, Quantum Mechanics|

Q (v, ¢) is a complex number,

Q (¥, ¢) = (¢,1)*, where x denotes complex conjugate,

Q ( ,cl¢1 + ca¢2) = c1(¥, d1) + c2(1, p2), where ¢; and ¢ are
complex numbers,

Q (¢, ¢) >0, with equality holding iff ¢ = 0.
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@ Inner products in QM [Ballentine, Quantum Mechanics|

Q (v, ¢) is a complex number,
Q (¥, 0) = (¢,7)*, where x denotes complex conjugate,
Q (¥, c101 + cag2) = c1(2, ¢1) + c2(¢, p2), where ¢ and cp are

complex numbers,
Q (¢, ¢) >0, with equality holding iff ¢ = 0.

o In general, (¢, ¢) = (Y|W|e).
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@ Inner products in QM [Ballentine, Quantum Mechanics|

Q (¥, ) is a complex number,
Q (¥, ¢) = (¢,1)*, where x denotes complex conjugate,

Q (zp, 191 + caa) = c1(, 1) + c2(1h, ¢2), where ¢1 and ¢y are
complex numbers,

Q (¢, ¢) >0, with equality holding iff ¢ = 0.

o In general, (¢, ¢) = (Y|W|e).

@ The metric operator is a Hermitian matrix: W = Wt
@ All the eigenvalues of W are positive: AW > 0.
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@ Inner products in QM [Ballentine, Quantum Mechanics|
Q (¥, ) is a complex number,
Q (¥, ¢) = (¢,1)*, where x denotes complex conjugate,
o (¢;01¢1 + ca2) = c1(, ¢1) + c2(¢, d2), where ¢1 and ¢ are
complex numbers,
Q (¢, ¢) >0, with equality holding iff ¢ = 0.
o In general, (1, 6) = (|W]).
@ The metric operator is a Hermitian matrix: W = Wt
@ All the eigenvalues of W are positive: AW > 0.
© In some convention, one may choose W = PC.
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@ Inner products in QM [Ballentine, Quantum Mechanics|

Q (¥, ) is a complex number,
Q (¥, 9) = (¢,%)*, where x denotes complex conjugate,

o (¢,01¢1 + ca2) = c1(¥, ¢1) + c2(2), #2), where ¢1 and ¢ are

complex numbers,
Q (¢, ¢) >0, with equality holding iff ¢ = 0.

@ In general, (¢, ¢) = (Y|W|¢).
@ The metric operator is a Hermitian matrix: W = Wt

@ All the eigenvalues of W are positive: AW > 0.
© In some convention, one may choose W = PC.

@ A self-adjoint operator in finite dimensions

(v, H¢) = (HY,¢) = WH=HW.
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Introduction Hilbert Space

@ Inner products in QM [Ballentine, Quantum Mechanics|

Q (¥, ) is a complex number,
Q (¥, ¢) = (¢,1)*, where x denotes complex conjugate,

Q (¥, c101 + cag2) = c1(2, ¢1) + c2(¢, p2), where ¢ and cp are
complex numbers,

Q (¢, ¢) >0, with equality holding iff ¢ = 0.
@ In general, (¢, ¢) = (Y|W|p).

@ The metric operator is a Hermitian matrix: W = Wt
@ All the eigenvalues of W are positive: AW > 0.
© In some convention, one may choose W = PC.

@ A self-adjoint operator in finite dimensions
(v, Ho) = (Hy,¢) = WH=HW.

@ A time-dependent H(t) calls for a time-dependent W (¢).
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e Time-Dependent PTQM
@ The Evolution Equation in PTQM
@ Mapping between QM and PTQM

Qing-hai Wang [E##] (NUS) Time-Dependent PTQM



Time-Dependent PTQM

@ Stationary Schrodinger eqn is same as in QM

H()[n(t)) = En()|tbn(t))
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@ Stationary Schrodinger eqn is same as in QM

H(6)[¢n(t)) = En(t)|1n(t))
@ Demand unitarity in evolution
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Time-Dependent PTQM

@ Stationary Schrodinger eqn is same as in QM

H(6)[¢n(t)) = En(t)|1n(t))
@ Demand unitarity in evolution

d
3 V1O ()] P2(t)) = 0.

@ Schrodinger-like equation
. d
ih [T (1)) = A[)[T(2))

with .
ihW = ATW — WA.
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Time-Dependent PTQM

o Assume A = H + A, where
WH=HW, WA=-A'W.
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Time-Dependent PTQM

o Assume A = H + A, where
WH=HW, WA=-A'W.

@ The partition is unique.
@ A can be determined by unitarity,

A=—LaWW.

e H cannot be determined by the unitary condition.
@ An axiom in PTQM: H = H.
@ Evolution equation in PTQM

1h—|\I/) (H — %W*W) ).
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Time-Dependent PTQM

@ The metric is positive definite,

W =nn.
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@ The metric is positive definite,
W =ntn.
@ There are many square-roots of W,

W =ntnp=(Un)" (Un) with U =U".
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@ The metric is positive definite,
W =ntn.
@ There are many square-roots of W,
W =ntnp=(Un)" (Un) with U =U".
@ Mapped Hamiltonian is Hermitian,
h=nHn ' =h

e Map on wavefunctions: |®) = n|U).
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Time-Dependent PTQM

@ The metric is positive definite,
W =ntn.
@ There are many square-roots of W,
W =ntnp=(Un)" (Un) with U =U".
@ Mapped Hamiltonian is Hermitian,
h=nHn ' =h

e Map on wavefunctions: |®) = n|U).
@ Stationary Schrodinger eqn mapped accordingly,

Qing-hai Wang [£##%] (NUS) Time-Dependent PTQM



Time-Dependent PTQM

@ Mapped evolution equation,

ih%@) = h|®) with h=h+iih [7‘777‘1 - (ﬁﬂ_lﬂ :
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Time-Dependent PTQM

@ Mapped evolution equation,
. d 7 . 7 1 sl (e —1 t
1ha\<1>) = h|®) with h=h+ ik |0 (=)'

o In general, h # h.
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Time-Dependent PTQM

@ Mapped evolution equation,
. i 7 . 7 1 sl (e —1 t
1hdt\<1>) = h|®) with h = h+ 5ih|9n (=)'

o In general, h # h.
@ “Proper mapping:”

: -1 -1 T
npmpernproper - (npropel’nproper) .
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@ Mapped evolution equation,
. d 7 . 7 1 sl (e —1 t
1ha\<1>) = h|®) with h = h+ 5ih|9n (=)'

o In general, h # h.
@ “Proper mapping:”

. —1 1 T
npmpernproper - (Tlpropel’nproper) .

@ For an improper mapping, 7' = Unproper, U satisfies

U= (™) = ()| U
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Time-Dependent PTQM

@ Mapped evolution equation,
. i 7 . 7 1 sl (e —1 t
1hdt\<1>) = h|®) with h = h+ 5ih|9n (=)'

o In general, h # h.
@ “Proper mapping:”

. —1 1 T
npmpernproper - (Tlpropel’nproper) .

@ For an improper mapping, 7' = Unproper, U satisfies
[7—=1 [(77/77, 1) (77/77/ 1) ] U

@ The lack of the initial condition: Unitary equivalence.
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Time-Dependent PTQM

@ For a proper mapping, the evolution equation reduces to
L d 1.
1hE|\If) = (H —ihn~'n) |¥).

[Znojil PRD 2008, SIGMA 2009]
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@ For a proper mapping, the evolution equation reduces to
L d 1.
1hE|\If) = (H —ihn~'n) |¥).

[Znojil PRD 2008, SIGMA 2009]
@ Application in conventional QM
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@ For a proper mapping, the evolution equation reduces to
L d 1.
1hE|\If) = (H —ihn~'n) |¥).

[Znojil PRD 2008, SIGMA 2009]
@ Application in conventional QM
o W=1.
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Time-Dependent PTQM

@ For a proper mapping, the evolution equation reduces to
L d 1.
1hE|\If) = (H —ihn~'n) |¥).

[Znojil PRD 2008, SIGMA 2009]
@ Application in conventional QM
o W=1.
o n=U with U"! =UT.
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Time-Dependent PTQM

@ For a proper mapping, the evolution equation reduces to
L d 1.
1h&|\11> = (H —ihn~'n) |¥).

[Znojil PRD 2008, SIGMA 2009]
@ Application in conventional QM
o W=1.
o n=U with U~ =UT,
e If n =1 is a proper mapping, then the improper mapping
n = U gives

[(n’n’ Y= (') ] = iU = —ikU U,
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Complex Harmonic Oscillator

© Complex Harmonic Oscillator
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Complex Harmonic Oscillator

@ Hamiltonian

1 Y y?2
H = 3 KX +215§ — 527> G+ (Y +iB) (pG + ¢p) + ZﬁQ} .
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Complex Harmonic Oscillator

@ Hamiltonian
1 Y Y2
H= 3 KX +215§ — 527) G+ (Y +iB) (pG + ¢p) + ZﬁQ} .

@ Real spectrum,

E,=(n+Y)mZxX - Y2
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Complex Harmonic Oscillator

@ Hamiltonian

1 Y y?2
H = 3 KX +215§ — 527) G+ (Y +iB) (pG + ¢p) + ZﬁQ} .

@ Real spectrum,
E, = (n + %) hWZX —Y?2.

@ The metric operator

15
W =exp <—7—i—q2) .
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Complex Harmonic Oscillator

@ A Dyson's map n = Uny
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Complex Harmonic Oscillator

@ A Dyson's map n = Uny
e with a Hermitian nj,

m=exp (=2 ) =l
0 2hZ 0
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Complex Harmonic Oscillator

@ A Dyson's map n = Uny
e with a Hermitian nj,

m=exp (=2 ) =l
0 2hZ 0

@ and a unitary factor

U =exp {—% <§q2 —l—a)] .

Qing-hai Wang [E##] (NUS) Time-Dependent PTQM



Complex Harmonic Oscillator

@ A Dyson's map n = Uny
e with a Hermitian nj,

m=exp (=2 ) =l
0 2hZ 0

@ and a unitary factor

U =exp {—% <§d2 —l—a)] .

@ Mapped Hamiltonian

h = nHnpt
1 2 ~2 A A A A ~2
(X +28Y +€2) @+ (Y +£2) (pq + ap) + Zp°] -

Qing-hai Wang [E##] (NUS) Time-Dependent PTQM



Complex Harmonic Oscillator

@ Mapped evolution operator

h = h+ %ih [7'77)_1 — (ﬁn_l)T]
= h+ 18+
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Time-Dependent PTQM



Complex Harmonic Oscillator

@ Mapped evolution operator
o= b in i = ()]
= h+ 18+

@ A proper mapping: ¢ =0 and a = 0.
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Complex Harmonic Oscillator

@ Mapped evolution operator
o= b in i = ()]
= h+ 18+

@ A proper mapping: ¢ =0 and a = 0.

@ The mapped Hermitian Hamiltonian is Berry's generalized
harmonic oscillator

heno = 3 [X@ + Y (pq+ 4p) + Zp] -
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Complex Harmonic Oscillator

@ Mapped evolution operator
o= b in i = ()]
= h+ 18+

@ A proper mapping: ¢ =0 and a = 0.

@ The mapped Hermitian Hamiltonian is Berry's generalized
harmonic oscillator

heno = 3 [X@ + Y (pq+ 4p) + Zp] -

@ The original PT-symmetric H has the same Berry phase with
this hano.
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Berry Phase in PTQM

@ Berry Phase in PTQM
@ Adiabatic Evolution
@ 2 x 2 Example
@ Mapping to a Hermitian Hamiltonian
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Berry Phase in PTQM

@ Instantaneous eigenstates of H

HIX@)][n(t)) = En[X(0)][¢n[X(0)])
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Berry Phase in PTQM

@ Instantaneous eigenstates of H

HIX(@)][n(t)) = Eu[X(8)][1n]X(1)])
@ Expanding the solution of the Schrodinger-like time evolution
Eqn by the complete set,

|\IJ> = Z aneien w)n)?

where the dynamical phase is 6,,(t) = — ¢ ft dr E,[X(7)].
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Berry Phase in PTQM

@ Instantaneous eigenstates of H

HIX(@)][n(t)) = Eu[X(8)][1n]X(1)])
@ Expanding the solution of the Schrodinger-like time evolution
Eqn by the complete set,

T) =Y ane™|v),

where the dynamical phase is 6,,(t) = — ¢ ft dr E,[X(7)].
@ The time-dependent coefficient,

i = —an (11 + 5016
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Berry Phase in PTQM

@ Adiabatic approximation: No contribution from n ## m terms.
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Berry Phase in PTQM

@ Adiabatic approximation: No contribution from n ## m terms.
o Adiabatic phase: a,,(t) ~ a,,(0)e""®) . where the phase satisfies

i = 1 (ol W ) + Sl )
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Berry Phase in PTQM

@ Adiabatic approximation: No contribution from n ## m terms.
o Adiabatic phase: a,,(t) ~ a,,(0)e""®) . where the phase satisfies

i = 1 (ol W ) + Sl )

@ Geometry phase in PTQM:

) =i / AX - [( Gl WV )+ Ll (VW) 5]
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Berry Phase in PTQM

@ Adiabatic approximation: No contribution from n ## m terms.
o Adiabatic phase: a,,(t) ~ a,,(0)e""®) . where the phase satisfies

i = 1 (ol W ) + Sl )
@ Geometry phase in PTQM:
=1 [ X [0l V) + 2l (TW)])].

@ Berry phase in PTQM:

2B =i 74 0 - [ [ ) + L (VW )]
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Berry Phase in PTQM

@ Hamiltonian

Hyyo=e0qy + (anr +ibsindn’ + ibcos&n“") ‘o
o e+ acosf —ibsinfsind (asin + ibcos fsin§ + bcos §)e ¢
~ | (asin@ 4 ibcos O sin § — bcos §)el? e —acosf + ibsinfsin §

with

(sin @ cos p, sin @ sin p, cos §),

=}
I

=]
Il

(cos @ cos @, cos Osin ¢, —sin §),

n? = (—singp,cosp,0).
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Berry Phase in PTQM

@ Hamiltonian

Hyyo=e0qy + (anr +ibsindn’ + ibcos&n“") ‘o
o e+ acosf —ibsinfsind (asin + ibcos fsin§ + bcos §)e ¢
~ | (asin@ 4 ibcos O sin § — bcos §)el? e —acosf + ibsinfsin §

with

(sin @ cos p, sin @ sin p, cos §),

=}
I

=]
Il

(cos @ cos @, cos Osin ¢, —sin §),

n? = (—singp,cosp,0).

o Eigenvalues: EL =e+ Va? — b2
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Berry Phase in PTQM

@ Metric
W = pi[aoy + (vn" +beosdn’ — bsindn?) - o],

where ap > 0 and 1% < a? — b2
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Berry Phase in PTQM

@ Metric
W = pi[aoy + (vn" +beosdn’ — bsindn?) - o],
where ap > 0 and 1% < a? — b2
o Eigenstates

e ¥(asinf + ibcos d cosf + bsin §)

[e) = N —acosf +ibcosdsinf 4 va? — b2

Qing-hai Wang [E##] (NUS) Time-Dependent PTQM



Berry Phase in PTQM

@ Metric

W = pi[aoy + (vn" +beosdn’ — bsindn?) - o],

where ap > 0 and 1% < a? — b2

o Eigenstates
0y) = N e ¥ (asinf 4 ibcosd cos + bsin )
=T _gcos 4 ibcos dsin 0 £ a2 — b2

@ Since 1 & v can always be absorbed in N, we choose
p = sign(a) and v = 0. After u & v are fixed, W (t) = W[X(t)].
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Berry Phase in PTQM

@ Metric

W=u [aao—l— (I/IIT—FbCOS(SIle —bsinén“’) -a‘] ,

where ap > 0 and 1% < a? — b2

o Eigenstates

0y) = N e ¥ (asinf 4 ibcosd cos + bsin )
= TNE L _gcosf +ibeosdsin £+ vaZ — b2

@ Since 1 & v can always be absorbed in N, we choose
p = sign(a) and v = 0. After u & v are fixed, W (t) = W[X(t)].
@ Without loss of generality, assume that a > 0.
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Berry Phase in PTQM

@ Metric

W=u [aao—l— (I/IIT—FbCOS(SIle —bsinén“’) -a‘} ,

where ap > 0 and 1% < a? — b2

o Eigenstates
e ¥(asinf + ibcos d cosf + bsin §)
—acosf +ibcosdsinf £+ /a? — b?
@ Since 1 & v can always be absorbed in N, we choose

p = sign(a) and v = 0. After u & v are fixed, W (t) = W[X(t)].
@ Without loss of generality, assume that a > 0.
@ The metric we used

|¢i> :N:i:

W:aao+b(cos<5n6 —sinén‘P) ‘o
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Berry Phase in PTQM

o Parameters 6, ¢, & § change periodically in time.
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Berry Phase in PTQM

o Parameters 6, ¢, & § change periodically in time.
@ Geometry phase for |i))

fyi:/[ij de + F{ d6 + F dd],

where
A 0
e
Fi _ 1 bsin &
2a+ bsinfcosd F va? — b?cos b
5 1 b b+ asinfcosd
F:l: =

:lzéx/a? —02a+bsinfcosd + Va2 — b2cosl
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Berry Phase in PTQM

o Berry phase 7% = § [Ffdp + F1d6] .
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Berry Phase in PTQM

o Berry phase 7% = § [Ffdp + F1d6] .

o
@ Introduce a vector field by A, =2 (Fj o I n¢>.

rsmO
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Berry Phase in PTQM

o Berry phase 7% = § [Ffdp + F1d6] .
o
e Introduce a vector field by A, =2 (Fj o+ rsm9n¢>'

@ By Stokes' theorem,

e (&
zi—ifAidr:ﬁ/ VXAidS
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Berry Phase in PTQM

o Berry phase 7% = § [Ffdp + F1d6] .
o
e Introduce a vector field by A, =2 (F—i o+ rsm9n¢>'

@ By Stokes' theorem,

e (&
zi—ifAidr:ﬁ/ VXAidS

@ In terms of solid angle and winding number,

B

1 a a
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Berry Phase in PTQM

o Berry phase 7% = § [Ffdp + F1d6] .
o
Introduce a vector field by A, =2 (Fj o+ r51n9n¢>.

By Stokes’ theorem,

e (&
zi—ifAidr:ﬁ/ VXAidS

@ In terms of solid angle and winding number,

1 a a
B_ > 4 @
e =F5 aQ—b2Q+ (1i a2—b2> nT.

Fictitious magnetic field:

a wh a r h
By= (14— ) Z5(@)0(y)n® F —————
= (12 ) T =
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Berry Phase in PTQM

@ Two square-roots of W

o 1 x4 — bsinfcosé b(cos f cos § + isin )e ¥
= = Y \/5 b(cos 6 cos § — isin §)el? x4 +bsinfcosé )
+

where Y+ = Va + va? — b2
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Berry Phase in PTQM

@ Two square-roots of W

o 1 x4 — bsinfcosé b(cos f cos § + isin )e ¥
= = Y \/5 b(cos 6 cos § — isin §)el? x4 +bsinfcosé )
+

where Y+ = Va + va? — b2

@ Mapped Hamiltonian

hy = 77:|:H2><277;1 =eog Va2 —0b®n"-o.
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Berry Phase in PTQM

@ Two square-roots of W

o 1 x4 — bsinfcosé b(cos f cos § + isin )e ¥
= = Y \/5 b(cos 6 cos § — isin §)el? x4 +bsinfcosé )
+

where Y+ = Va + va? — b2
@ Mapped Hamiltonian

hy = 77:|:H2><277;1 =eog Va2 —0b®n"-o.

@ A proper mapping is Nproper = UTnx.
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Berry Phase in PTQM

@ The eqn for U

a—U—ignr oU, where (=F v
| STVE BaxvE_»)

0
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Berry Phase in PTQM

@ The eqn for U

a—U—ignT oU, where (=F v
| STVE BaxvE_»)

1ol
@ Solution

U = exp(i¢dn" - o)l
~( cos(¢0) + icosfsin(¢C) isin @ sin((6)e™'? I
N isin @ sin((4)e'¥ cos(Cd) —icosfsin(C0) o
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Berry Phase in PTQM

@ The eqn for U

a—U—ignT oU, where (=F v
| STVE BaxvE_»)

1ol
@ Solution

U = exp(i¢dn" - o)l
~( cos(¢0) + icosfsin(¢C) isin @ sin((6)e™'? I
N isin @ sin((4)e'¥ cos(Cd) —icosfsin(C0) o

@ Mapped Hamiltonian: UohiUg.

Qing-hai Wang [E##] (NUS) Time-Dependent PTQM



Berry Phase in PTQM

@ The eqn for U

a—U—ignT oU, where (=F v
| STVE BaxvE_»)

1ol
@ Solution

U = exp(i¢én" - o)l
~( cos(¢0) + icosfsin(¢C) isin @ sin((6)e™'? I
N isin @ sin((4)e'¥ cos(Cd) —icosfsin(C0) o

@ Mapped Hamiltonian: UohiUg.
@ The mapping is a periodic function of ¢ with period 27 /(.
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Berry Phase in PTQM

@ The eqn for U

ou
o0

—cosfsind —icosd)e? —sinf@sind

= 14‘ cos 5( ( sin @ sin § (—cos@siné +icosd)e i¥ ) U

o _1(: coS 6 e_l‘p"3/2e_10”2/2e15”3/2026_15”3/2e10"2/2e“p”3/2U.
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Berry Phase in PTQM

@ The eqn for U

ou o < S sin 0sin § (—cos@siné +icosd)e i¥ U
o0 = 16 Cos (— cos fsin § — icos §)el¥ —sinfsind
_ _1(: cosd e_lwa3/2€_1002/2el603/20'26_1603/281002/2€1¢03/2U.
@ Solution

U = e %08/2671002/2 oy [i (—Ccos5ei‘$"3/2026_i5"3/2 + %0'2) 0] Up.
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Berry Phase in PTQM

@ Assume the mapped Hamiltonian has the form

he:600+\/m< cos®  sin® e_i‘l’>.

sin® e® —cos®
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Berry Phase in PTQM

@ Assume the mapped Hamiltonian has the form

he:600+\/m< cos®  sin® e_i‘l’>.

sin® e® —cos®

@ Choose Uy = g for simplicity.
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Berry Phase in PTQM

@ Assume the mapped Hamiltonian has the form

he:GUO+M( cos®  sin® e_i‘l’>.

sin® e® —cos®

@ Choose Uy = g for simplicity.
@ The mapped Hamiltonian has the parameters

cos©® = cos [6’\/1 —4¢(1 = ¢) cos? 5] :
R 2¢ cos? 6 + 2i( sin § cos §
B V1—4((1—)cos?d
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Berry Phase in PTQM

@ Assume the mapped Hamiltonian has the form

h9=600+\/H( cos®  sin® e_i‘l’>.

sin® e® —cos®

@ Choose Uy = g for simplicity.
@ The mapped Hamiltonian has the parameters

cos©® = cos [6’\/1 —4¢(1 = ¢) cos? 5] :
R 2¢ cos? 6 + 2i( sin § cos §
B V1—4((1—)cos?d

@ Remarks
© It is independent of .
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Berry Phase in PTQM

@ Assume the mapped Hamiltonian has the form

h9=600+\/m< cos®  sin® e_i‘l’>.

sin® e® —cos®

@ Choose Uy = g for simplicity.
@ The mapped Hamiltonian has the parameters

cos® = cos [9\/1 —4¢(1 = ¢) cos? 5] :
R 2¢ cos? 6 + 2i( sin § cos §
B V1—4((1—)cos?d

@ Remarks
© It is independent of .
@ Periodicity of 6 is changed.
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Berry Phase in PTQM

@ Assume the mapped Hamiltonian has the form

h9:600+m( cos®  sin® e_i‘l’>.

sin® e® —cos®

@ Choose Uy = g for simplicity.
@ The mapped Hamiltonian has the parameters

cos® = cos [9\/1 —4¢(1 = ¢) cos? (5] :
R 2¢ cos? 6 + 2i( sin § cos §
B V1—4((1—)cos?d

@ Remarks
© It is independent of .
@ Periodicity of 6 is changed.
© Multiple-valued function for © & .
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Berry Phase in PTQM

The red line is a closed path in (6, ) space with ( = 0.8, § = 1.05,
& ¢ : 0 — 2m. The blue line is the mapped curve in (O, ®) space.
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Berry Phase in PTQM

® as a function of ¢ for ( = 0.8, # = 1.05, & ¢ : 0 — 27.
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Conclusions

© Conclusions
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Conclusions

@ An axiom in PTQM is proposed.

. d 1
1hE|\II>_(H—§W W) D).
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Conclusions

@ An axiom in PTQM is proposed.
. d ih
1hE|\II> = (H— EW W) |W).

@ Conventional full Schrodinger eqn is a special case of
Schrodinger-like eqn in PTQM.
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Conclusions

@ An axiom in PTQM is proposed.

. d in
1hE|\II>_(H—EW W) D).

@ Conventional full Schrodinger eqn is a special case of
Schrodinger-like eqn in PTQM.

@ A proper map links a PTQM Hamiltonian to a Hermitian
Hamiltonian with “dual roles.”
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Conclusions

@ An axiom in PTQM is proposed.

. d in
1hE|\II>_(H—EW W) D).

@ Conventional full Schrodinger eqn is a special case of
Schrodinger-like eqn in PTQM.

@ A proper map links a PTQM Hamiltonian to a Hermitian
Hamiltonian with “dual roles.”

e Finding the proper map may be non-trivial.
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@ An axiom in PTQM is proposed.

. d in
1hE|\II>_(H—§W W) D).

@ Conventional full Schrodinger eqn is a special case of
Schrodinger-like eqn in PTQM.

@ A proper map links a PTQM Hamiltonian to a Hermitian
Hamiltonian with “dual roles.”

e Finding the proper map may be non-trivial.

@ In PTQM, a new geometry phase is found. The associated
fictitious magnetic field has a fractional and tunable magnetic
monopole and an observable Dirac string.
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@ An axiom in PTQM is proposed.

. d in
1hE|\II>_(H—§W W) D).

@ Conventional full Schrodinger eqn is a special case of
Schrodinger-like eqn in PTQM.

@ A proper map links a PTQM Hamiltonian to a Hermitian
Hamiltonian with “dual roles.”

e Finding the proper map may be non-trivial.

@ In PTQM, a new geometry phase is found. The associated
fictitious magnetic field has a fractional and tunable magnetic
monopole and an observable Dirac string.

@ Experiments?
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