Deformed (anti) commutation relations

Fabio Bagarello Dieetcam Università di Palermo Italy

 $\mathcal{D}M^3$ Organization of the . . . Linear pseudo-... Where do pseudo-... Connections with Non-linear pseudo-... Relation with Pseudo-fermions Application to decay What more? Home Page 44 Page 1 of 44 Go Back Full Screen Close Quit

Paris – 30 august 2012

I. Organization of the talk

1. Linear pseudo-bosons: a mathematical introduction

- I. Organization of the talk
 - 1. Linear pseudo-bosons: a mathematical introduction
 - 2. Where do pseudo-bosons appear?

- I. Organization of the talk
 - 1. Linear pseudo-bosons: a mathematical introduction
 - 2. Where do pseudo-bosons appear?
 - 3. Connections with bosons

- I. Organization of the talk
 - 1. Linear pseudo-bosons: a mathematical introduction
 - 2. Where do pseudo-bosons appear?
 - 3. Connections with bosons
 - 4. Nonlinear pseudo-bosons: a mathematical introduction

- I. Organization of the talk
 - 1. Linear pseudo-bosons: a mathematical introduction
 - 2. Where do pseudo-bosons appear?
 - 3. Connections with bosons
 - 4. Nonlinear pseudo-bosons: a mathematical introduction
 - 5. Relation with cryptohermiticity

- I. Organization of the talk
 - 1. Linear pseudo-bosons: a mathematical introduction
 - 2. Where do pseudo-bosons appear?
 - 3. Connections with bosons
 - 4. Nonlinear pseudo-bosons: a mathematical introduction
 - 5. Relation with cryptohermiticity
 - 6. Pseudo-fermions

- I. Organization of the talk
 - 1. Linear pseudo-bosons: a mathematical introduction
 - 2. Where do pseudo-bosons appear?
 - 3. Connections with bosons
 - 4. Nonlinear pseudo-bosons: a mathematical introduction
 - 5. Relation with cryptohermiticity
 - 6. Pseudo-fermions
 - 7. Applications to decay in quantum optics

- I. Organization of the talk
 - 1. Linear pseudo-bosons: a mathematical introduction
 - 2. Where do pseudo-bosons appear?
 - 3. Connections with bosons
 - 4. Nonlinear pseudo-bosons: a mathematical introduction
 - 5. Relation with cryptohermiticity
 - 6. Pseudo-fermions
 - 7. Applications to decay in quantum optics
 - 8. Conclusions

11. Linear pseudo-bosons: Some mathematics

Let \mathcal{H} be a given Hilbert space with scalar product $\langle ., . \rangle$ and norm ||.||. Let *a* and *b* be two operators acting on \mathcal{H} and satisfying (Trifonov, 2009)

$$[a, b] = \mathbb{1}, \tag{1}$$

If $b = a^{\dagger}$ then we recover CCR. Recall that a and b cannot both be bounded operators: they cannot be defined in all of \mathcal{H} . For this reason we consider the following

DM ³			
Organization of the			
Linear pseudo			
Where do pseudo			
Connections with			
Non-linear pseudo			
Relation with			
Pseudo-fermions			
Application to decay			
What more?			
Home Page			
Title Page			
4			
Page 3 of 44 Go Back Full Screen			
			Close
			Quit

II. Linear pseudo-bosons: Some mathematics

Let \mathcal{H} be a given Hilbert space with scalar product $\langle ., . \rangle$ and norm ||.||. Let *a* and *b* be two operators acting on \mathcal{H} and satisfying (Trifonov, 2009)

$$[a, b] = 1,$$
 (1)

If $b = a^{\dagger}$ then we recover CCR. Recall that a and b cannot both be bounded operators: they cannot be defined in all of \mathcal{H} . For this reason we consider the following

Assumption 1.– there exists a non-zero $\varphi_0 \in \mathcal{H}$ such that $a\varphi_0 = 0$ and $\varphi_0 \in D^{\infty}(b) := \cap_{k \ge 0} D(b^k)$.

11. Linear pseudo-bosons: Some mathematics

Let \mathcal{H} be a given Hilbert space with scalar product $\langle ., . \rangle$ and norm ||.||. Let *a* and *b* be two operators acting on \mathcal{H} and satisfying (Trifonov, 2009)

$$[a, b] = 1,$$
 (1)

If $b = a^{\dagger}$ then we recover CCR. Recall that a and b cannot both be bounded operators: they cannot be defined in all of \mathcal{H} . For this reason we consider the following

Assumption 1.– there exists a non-zero $\varphi_0 \in \mathcal{H}$ such that $a\varphi_0 = 0$ and $\varphi_0 \in D^{\infty}(b) := \cap_{k \ge 0} D(b^k)$.

Then

$$\varphi_n = \frac{1}{\sqrt{n!}} b^n \varphi_0, \quad n \ge 0, \tag{2}$$

belongs to \mathcal{H} for all $n \geq 0$.

DM ³		
Organization of the		
Linear pseudo		
Where do pseudo		
Connections with		
Non-linear pseudo		
Relation with		
Pseudo-fermions		
Application to decay		
What more?		
Home Page		
Title Page		
•• >>		
• •		
Page 3 of 44		
Go Back		
Full Screen		
Close		
Quit		

Let N := ba. Then $\varphi_n \in D(N)$, for all $n \ge 0$, and

$$N\varphi_n = n\varphi_n, \quad n \ge 0.$$
 (3)

Let us now take $\mathcal{N} := N^{\dagger} = a^{\dagger}b^{\dagger} \neq N$. We require that the following holds:

DM ³			
0	rganizati	on of the	
Li	near psei	udo	
И	/here do	pseudo	
C	onnectior	ns with	
N	on-linear	pseudo	
R	elation w	vith	
P	seudo-fer	mions	
Δ	nnlinatio	n to depose	
A	ppiicatioi	n to decay	
И	/hat more	e?	
	Home	e Page	
	Title	Page	
	44	••	
	◀		
Page 4 of 44			
Go Back			
	Full Screen		
	CI	lose	
	Q	uit	

Let N := ba. Then $\varphi_n \in D(N)$, for all $n \ge 0$, and

$$N\varphi_n = n\varphi_n, \quad n \ge 0.$$
 (3)

Let us now take $\mathcal{N} := N^{\dagger} = a^{\dagger}b^{\dagger} \neq N$. We require that the following holds:

Assumption 2.– there exists a non-zero $\Psi_0 \in \mathcal{H}$ such that $b^{\dagger}\Psi_0 = 0$ and $\Psi_0 \in D^{\infty}(a^{\dagger}) := \cap_{k \ge 0} D((a^{\dagger})^k)$.

$\mathcal{D}M^3$			
0	rganizati	on of the	
Li	near psei	udo	
И	/here do	pseudo	
C	onnectio	ns with	
N	on-linear	pseudo	
R	elation w	ith	
P	seudo-fer	mions	
A	pplicatio	n to decay	
И	/hat more	e?	
	Home Page		
	Title	Page	
	44	••	
	•		
Page 4 of 44			
	Go Back		
	Full Screen		
	Close		
	Q	uit	

Let N := ba. Then $\varphi_n \in D(N)$, for all $n \ge 0$, and

$$N\varphi_n = n\varphi_n, \quad n \ge 0.$$
 (3)

Let us now take $\mathcal{N} := N^{\dagger} = a^{\dagger}b^{\dagger} \neq N$. We require that the following holds:

Assumption 2.– there exists a non-zero $\Psi_0 \in \mathcal{H}$ such that $b^{\dagger}\Psi_0 = 0$ and $\Psi_0 \in D^{\infty}(a^{\dagger}) := \cap_{k \ge 0} D((a^{\dagger})^k)$.

Under this assumption the following vectors

$$\Psi_n = \frac{1}{\sqrt{n!}} (a^{\dagger})^n \Psi_0, \quad n \ge 0, \tag{4}$$

belong to \mathcal{H} for all $n \geq 0$, and to $D(\mathcal{N})$. Moreover

$$\mathcal{N}\Psi_n = n\Psi_n, \quad n \ge 0. \tag{5}$$

$\mathcal{D}M^3$				
0	rganizatio	on of the		
Li	near pseu	udo		
И	/here do j	oseudo		
С	onnection	s with		
N	on-linear	pseudo		
R	elation w	ith		
Ps	seudo-feri	mions		
A	oplication	to decay		
И	/hat more	?		
	Home Page			
	Title	Page		
	44	••		
	•			
Page 4 of 44				
Go Back				
	Full Screen			
	Clo	ose		
	Quit			

Example 1: the above natural assumptions are not always satisfied: let $\mathcal{H} = \mathcal{L}^2(\mathbb{R}, d\nu(x)), d\nu(x) = \frac{dx}{1+x^2}, a = ip, b = x$. Then $a\varphi_0(x) = 0$ implies that $\varphi_0(x)$ is constant. Of course $\varphi_0(x) \in \mathcal{H}$ but $b\varphi_0(x) = x\varphi_0(x) \notin \mathcal{H}$. Hence $\varphi_0(x)$ does not belong to $D^{\infty}(b)$ and Assumption 1 is violated.

DM ³		
Organization of the		
Linear pseudo		
Where do pseudo		
Connections with		
Non-linear pseudo		
Relation with		
Pseudo-fermions		
Application to decay		
What more?		
Home Page		
Title Page		
4		
• •		
Page 5 of 44		
Go Back		
Full Screen		
Close		
Quit		

Example 1: the above natural assumptions are not always satisfied: let $\mathcal{H} = \mathcal{L}^2(\mathbb{R}, d\nu(x)), d\nu(x) = \frac{dx}{1+x^2}, a = ip, b = x$. Then $a\varphi_0(x) = 0$ implies that $\varphi_0(x)$ is constant. Of course $\varphi_0(x) \in \mathcal{H}$ but $b\varphi_0(x) = x\varphi_0(x) \notin \mathcal{H}$. Hence $\varphi_0(x)$ does not belong to $D^{\infty}(b)$ and Assumption 1 is violated.

Example 2: the trivial case: harmonic oscillator. In this case $\mathcal{H} = \mathcal{L}^2(\mathbb{R}, dx)$, and taking $a = c := \frac{1}{\sqrt{2}} \left(\frac{d}{dx} + x\right)$ and $b = c^{\dagger} = \frac{1}{\sqrt{2}} \left(-\frac{d}{dx} + x\right)$, $[a, b] = [c, c^{\dagger}] = \mathbb{1}$, we find that $\varphi_0(x) = \Psi_0(x) = \frac{1}{\pi^{1/4}}e^{-x^2/2}$, which satisfies both Assumptions 1 and 2.

$\mathcal{D}M^3$		
Organization of the		
Linear pseudo		
Where do pseudo		
Connections with		
Non-linear pseudo		
Relation with		
Pseudo-fermions		
Application to decay		
What more?		
tinat more:		
Home Page		
Title Page		
•• ••		
Page 5 of 44		
Go Back		
Full Screen		
Close		

Example 3: [Trifonov] $\mathcal{H} = \mathcal{L}^2(\mathbb{R}, dx)$, $a_s = c + sc^{\dagger}$ and $b_s = sc + (1 + s^2)c^{\dagger}$. Hence $[a_s, b_s] = \mathbb{1}$ for all real *s*. $a_s\varphi_0(x) = 0 \Rightarrow \varphi_0(x) = N_s \exp\left\{-\frac{1}{2}\frac{1+s}{1-s}x^2\right\}$, while $b_s^{\dagger}\Psi_0(x) = 0 \Rightarrow \Psi_0(x) = N'_s \exp\left\{-\frac{1}{2}\frac{1+s+s^2}{1-s+s^2}x^2\right\}$. Both these functions are square integrable if -1 < s < 1. This same condition ensures also that $\varphi_0(x) \in D^{\infty}(b_s)$ and that $\Psi_0(x) \in D^{\infty}(a_s^{\dagger})$: any polynomial multiplied for a gaussian function belongs to $\mathcal{L}^2(\mathbb{R}, dx)$.

\mathcal{DM}^3		
Organization of the		
Linear pseudo		
Where do pseudo		
Connections with		
Non-linear pseudo		
Relation with		
Pseudo-fermions		
Application to decay		
What more?		
Home Page		
Title Page		
• •		
Page 6 of 44		
Go Back		
Full Screen Close		

Example 4: (two-dimensional deformation of c and c^{\dagger}) Let $a_{\alpha,\mu} := \alpha c + \frac{\alpha}{\mu} c^{\dagger}$, $b_{\alpha,\mu} := \mu \frac{\alpha^2 - 1}{\alpha} c + \alpha c^{\dagger}$, where α and μ are real constants such that $\alpha, \mu \neq 0$ and $\alpha^2 \neq \mu^2(\alpha^2 - 1)$. Hence $a_{\alpha,\mu}^{\dagger} \neq b_{\alpha,\mu}$ and $[a_{\alpha,\mu}, b_{\alpha,\mu}] = \mathbb{1}$. $a_{\alpha,\mu}\varphi_0(x) = 0$ and $b_{\alpha,\mu}^{\dagger}\Psi_0(x) = 0$ produce $\varphi_0(x) = N_{\alpha,\mu} \exp\left\{-\frac{1}{2}\frac{\mu + 1}{\mu - 1}x^2\right\}$,

and

$$\Psi_0(x) = N'_{\alpha,\mu} \exp\left\{-rac{1}{2}rac{lpha^2+\mu(lpha^2-1)}{lpha^2-\mu(lpha^2-1)}x^2
ight\}.$$

These functions satisfy Assumptions 1 and 2 if $\alpha > 1$ and $1 < \mu < 1 + \frac{1}{\alpha^2 - 1}$.

	DM ³		
0	rganization of the	•	
Li	near pseudo		
И	/here do pseudo		
С	onnections with		
N			
110	on-linear pseudo	•	
R	elation with		
Ps	seudo-fermions		
A	pplication to decay		
И	/hat more?		
What more:			
	Home Page		
	Title Page		
	•		
Page 7 of 44			
	Go Back		
	Full Screen		
	Close		
	Quit		

$$\langle \Psi_n, \varphi_m \rangle = \delta_{n,m}, \quad \forall n, m \ge 0$$
 (6)

Organization of the Linear pseudo Where do pseudo Connections with Non-linear pseudo Relation with Pseudo-fermions Application to decay What more? Home Page Title Page Title Page Title Page Go Back Full Screen Close Quit		DI	1 ³		
Linear pseudo Where do pseudo Connections with Non-linear pseudo Relation with Pseudo-fermions Application to decay What more? What more? Home Page Title Page Title Page A Go Back Full Screen Close Quit	0	rganizatio	on of the		
Where do pseudo Connections with Non-linear pseudo Relation with Pseudo-fermions Application to decay What more? Home Page Title Page Title Page All Page 8 of 44 Go Back Full Screen Close Quit	Li	near pseu	udo		
Connections with Non-linear pseudo Relation with Pseudo-fermions Application to decay What more? Home Page Title Page Title Page A Page 8 of 44 Go Back Full Screen Close Quit	И	/here do _l	oseudo		
Non-linear pseudo Relation with Pseudo-fermions Application to decay What more ? Home Page Title Page Title Page A Page 8 of 44 Go Back Full Screen Close Quit	С	onnection	s with		
Relation with Pseudo-fermions Application to decay What more? Home Page Title Page Title Page A Page 8 of 44 Go Back Full Screen Close Quit	N	on-linear	pseudo		
Pseudo-fermions Application to decay What more? Home Page Title Page Itile Pa	R	elation wi	ith		
Application to decay What more? Home Page Title Page III Page III Page 8 of 44 Go Back Full Screen Close Quit	Ps	seudo-feri	mions		
What more? Home Page Title Page () () () () Page 8 of 44 Go Back Full Screen Close Quit	A	pplication	to decay		
Home Page Title Page ↓ ↓ Page 8 of 44 Go Back Full Screen Close Quit	И	/hat more	?		
Title Page Image: Title Page <td></td> <td colspan="4">Home Page</td>		Home Page			
 ↓ ↓ Page 8 of 44 Go Back Full Screen Close Quit 		Title	Page		
 ↓ Page 8 of 44 Go Back Full Screen Close Quit 		44	••		
Page 8 of 44 Go Back Full Screen Close Quit		• •			
Go Back Full Screen Close Quit	Page 8 of 44				
Full Screen Close Quit		Go Back			
Close Quit		Full Screen			
Quit		Cla	ose		
		Qı	uit		

$$\langle \Psi_n, \varphi_m \rangle = \delta_{n,m}, \quad \forall n, m \ge 0$$
 (6)

Moreover, $\forall n \geq 0$ we have $\varphi_n \in D(a)$ and $\Psi_n \in D(b^{\dagger})$, and $a\varphi_n = \sqrt{n} \varphi_{n-1}$, as well as $b^{\dagger} \Psi_n = \sqrt{n} \Psi_{n-1}$.

DM ³			
0	rganization o	of the	
Li	inear pseudo	•	
И	Vhere do pse	udo	
С	onnections w	/ith	
N	lon-linear pse	udo	
R	elation with		
P:	seudo-fermic	ns	
A	pplication to	decay	
И	What more?		
	Home Page		
	Title Page		
	••	••	
	•	•	
Page 8 of 44			
	Go Back		
	Full Screen		
	Close		
	Quit		

$$\langle \Psi_n, \varphi_m \rangle = \delta_{n,m}, \quad \forall n, m \ge 0$$
 (6)

Moreover, $\forall n \geq 0$ we have $\varphi_n \in D(a)$ and $\Psi_n \in D(b^{\dagger})$, and $a\varphi_n = \sqrt{n} \varphi_{n-1}$, as well as $b^{\dagger} \Psi_n = \sqrt{n} \Psi_{n-1}$.

Let $\mathcal{F}_{\varphi} := \{\varphi_n, n \ge 0\}$ and $\mathcal{F}_{\Psi} := \{\Psi_n, n \ge 0\}$. Since $\langle \varphi_n, \varphi_k \rangle \neq \delta_{n,k}$, $a^{\dagger}\varphi_n = \sqrt{n+1}\varphi_{n+1}$ is false, in general. For the same reason $b \Psi_n \neq \sqrt{n+1} \Psi_{n+1}$.

DM ³				
0	rganizatio	on of the		
Li	near psei	ıdo		
W	/here do j	pseudo		
Са	onnectior	s with		
No	on-linear	pseudo		
Re	elation w	ith		
Ps	seudo-fer	mions		
A	oplicatior	to decay		
W	hat more	?		
	Home Page			
	Title Page			
[44	••		
[•			
	Page 8 of 44			
	Go Back			
	Full Screen			
	Cl	ose		
	Q	uit		

$$\langle \Psi_n, \varphi_m \rangle = \delta_{n,m}, \quad \forall n, m \ge 0$$
 (6)

Moreover, $\forall n \geq 0$ we have $\varphi_n \in D(a)$ and $\Psi_n \in D(b^{\dagger})$, and $a\varphi_n = \sqrt{n} \varphi_{n-1}$, as well as $b^{\dagger} \Psi_n = \sqrt{n} \Psi_{n-1}$.

Let $\mathcal{F}_{\varphi} := \{\varphi_n, n \ge 0\}$ and $\mathcal{F}_{\Psi} := \{\Psi_n, n \ge 0\}$. Since $\langle \varphi_n, \varphi_k \rangle \neq \delta_{n,k}$, $a^{\dagger}\varphi_n = \sqrt{n+1}\varphi_{n+1}$ is false, in general. For the same reason $b \Psi_n \neq \sqrt{n+1} \Psi_{n+1}$.

However, the sets \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are biorthogonal and, because of this, the vectors of each set are linearly independent.

Assumption 3.– \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are are complete in \mathcal{H} .

$\mathcal{D}M^3$
Organization of the
Linear pseudo
Where do pseudo
Connections with
Non-linear pseudo
Relation with
Pseudo-fermions
Application to decay
Application to decay
What more?
Home Page
Title Page
< →
• •
Page 8 of 44
Go Back
Full Screen
Close

Then, \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are bases in \mathcal{H} . The resolution of the identity looks now

$$\sum_{n=0}^{\infty} |\varphi_n \rangle \langle \Psi_n| = \sum_{n=0}^{\infty} |\Psi_n \rangle \langle \varphi_n| = \mathbb{1}, \quad (7)$$

where $1\!\!1$ is the identity operator on \mathcal{H} .

	$\mathcal{D}M^3$				
0	Prganization of	the			
Li	inear pseudo				
И	Vhere do pseud	lo			
С	onnections wit	h			
N	lon-linear pseud	do			
	Non mical pseudo				
R	elation with				
P:	seudo-fermions	5			
A	pplication to d	lecay			
14	Vhat mara?				
V	vilat more:				
	Home Page	2			
	Title Page				
	•• •				
	•	•			
	Page 9 of 4	4			
	Go Back				
	Full Screen				
	Close				
	Quit				

Then, \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are bases in \mathcal{H} . The resolution of the identity looks now

$$\sum_{n=0}^{\infty} |\varphi_n \rangle \langle \Psi_n| = \sum_{n=0}^{\infty} |\Psi_n \rangle \langle \varphi_n| = \mathbb{1}, \quad (7)$$

where 1 is the identity operator on \mathcal{H} .

Let further

$$S_{\varphi} = \sum_{n=0}^{\infty} |\varphi_n \rangle \langle \varphi_n|, \quad S_{\Psi} = \sum_{n=0}^{\infty} |\Psi_n \rangle \langle \Psi_n|.$$
(8)

These operators need not to be well defined: for instance the series could be not convergent, or even if they do, they could converge to some unbounded operator, so we have to be careful about domains.

DM ³ Organization of the
Linear pseudo
Where do pseudo
Connections with
Non-linear pseudo
Relation with
Pseudo-fermions
Application to decay
What more?
Home Page
Title Page
(1)
• •
Page 9 of 44
Go Back
Full Screen
Close
Quit

More rigorously, we introduce an operator S_{φ} acting on a vector $f \in D(S_{\varphi})$ as $S_{\varphi}f = \sum_{n=0}^{\infty} \langle \varphi_n, f \rangle \varphi_n$, and S_{Ψ} , acting on a vector $h \in D(S_{\Psi})$ as $S_{\Psi}h =$ $\sum_{n=0}^{\infty} \langle \Psi_n, h \rangle \Psi_n$. Under Assumption 3, both these operators are densely defined in \mathcal{H} . In particular:

	DI	M ³	
0	rganizatio	on of the	
Li	near pseu	ıdo	
И	/here do i	oseudo	_
C	onnection	s with	
N	on-linear	pseudo	
R	elation wi	ith	
0	1.6		
Ρ.	seudo-teri	mions	
A	pplication	to decay	
И	/hat more	?	
	Home	Page	
	Title	Page	
	44	••	
	•	►	
	Page 1	0 of 44	
	Go I	Back	
	Full S	creen	
	Cla	ose	
	Qu	uit	

More rigorously, we introduce an operator S_{φ} acting on a vector $f \in D(S_{\varphi})$ as $S_{\varphi}f = \sum_{n=0}^{\infty} \langle \varphi_n, f \rangle \varphi_n$, and S_{Ψ} , acting on a vector $h \in D(S_{\Psi})$ as $S_{\Psi}h = \sum_{n=0}^{\infty} \langle \Psi_n, h \rangle \Psi_n$. Under Assumption 3, both these operators are densely defined in \mathcal{H} . In particular:

 $S_{\varphi}\Psi_n = \varphi_n, \qquad S_{\Psi}\varphi_n = \Psi_n,$ for all $n \ge 0$. Then $\Psi_n = (S_{\Psi}S_{\varphi})\Psi_n$ and $\varphi_n = (S_{\varphi}S_{\Psi})\varphi_n$, for all $n \ge 0$. Hence (for bounded S_{φ} and S_{Ψ}):

$$S_{\Psi}S_{\varphi} = S_{\varphi}S_{\Psi} = \mathbb{1} \quad \Rightarrow \quad S_{\Psi} = S_{\varphi}^{-1}.$$
 (9)

More rigorously, we introduce an operator S_{ω} acting on a vector $f \in D(S_{\varphi})$ as $S_{\varphi}f = \sum_{n=0}^{\infty} \langle \varphi_n, f \rangle \varphi_n$, and S_{Ψ} , acting on a vector $h \in D(S_{\Psi})$ as $S_{\Psi}h =$ $\sum_{n=0}^{\infty} \langle \Psi_n, h \rangle \Psi_n$. Under Assumption 3, both these operators are densely defined in \mathcal{H} . In particular:

$$S_{\varphi}\Psi_n = \varphi_n, \qquad S_{\Psi}\varphi_n = \Psi_n,$$

for all $n \ge 0$. Then $\Psi_n = (S_{\Psi}S_{\varphi})\Psi_n$ and $\varphi_n = (S_{\varphi}S_{\Psi})\varphi_n$, for all $n \ge 0$. Hence (for bounded S_{φ} and S_{Ψ}):

for

(S

$$S_{\Psi}S_{\varphi} = S_{\varphi}S_{\Psi} = \mathbb{1} \quad \Rightarrow \quad S_{\Psi} = S_{\varphi}^{-1}.$$
 (9)

Furthermore, we can also check that they are both positive defined and symmetric. In general, however, they are unbounded.

\mathcal{DM}^{3}	
Organization of th	е
Linear pseudo	
Where do pseudo-	
Connections with .	
Non-linear pseudo	
Relation with	
Pseudo-fermions	
Application to dec	ay
What more?	
Home Page	
Tiome Tage	
Title Page	
(
• •	
Page 11 of 44	
Go Back	
Full Screen	
Close	
Quit	

Assumption 4.– \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are Riesz bases: there exist an o.n. basis $\mathcal{G} = \{g_n, n \ge 0\}$ and two bounded operators X and Y, with bounded inverses, such that

 $\varphi_n = X g_n$, and $\Psi_n = Y g_n$,

for all $n \ge 0$.

Assumption 4.– \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are Riesz bases: there exist an o.n. basis $\mathcal{G} = \{g_n, n \ge 0\}$ and two bounded operators X and Y, with bounded inverses, such that

$$\varphi_n = X g_n$$
, and $\Psi_n = Y g_n$

for all $n \ge 0$.

In thus case we call our pseudo-bosons *regular*, and both S_{φ} and S_{Ψ} are bounded operators.

Assumption 4.– \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are Riesz bases: there exist an o.n. basis $\mathcal{G} = \{g_n, n \ge 0\}$ and two bounded operators X and Y, with bounded inverses, such that

$$\varphi_n = X g_n$$
, and $\Psi_n = Y g_n$

for all $n \ge 0$.

In thus case we call our pseudo-bosons *regular*, and both S_{ω} and S_{Ψ} are bounded operators.

Remark:– Regular pseudo-bosons give rise to Riesz bases. Viceversa: each Riesz basis produce two operators *a* and *b* satisfying all the properties of regular pseudo-bosons.

 DM^3 Organization of the . . . Linear pseudo-... Where do pseudo-... Connections with Non-linear pseudo-... Relation with . . . Pseudo-fermions Application to decay What more? Home Page Title Page **∢**∢ •• Page 12 of 44 Go Back Full Screen Close Quit

 S_{Ψ} and S_{φ} are intertwining operators between non self-adjoint operators:

I	70	1 ³	
Organiz	atior	n of the .	
Linear µ	oseua	lo	
Where	do ps	seudo	÷
Connec	tions	with	
Non-lin	ear p	seudo	
Relation	n wit	h	
Relation	1 00121		
Pseudo	-ferm	ions	
Applica	tion	to decay	,
What n	nore?	,	
Н	ome l	Page	
Т	ītle F	Page	
••		••	
4		>> >	
44 4 Pat	ge 12	•• • of 44	
	ge 12 Go Ba	►► of 44 ack	
A A	ge 12 Go Ba ull Sc	►► of 44 ack reen	
	ge 12 Go Ba ull Sc Clos	Image: A state of the state	

 S_{Ψ} and S_{φ} are intertwining operators between non self-adjoint operators:

$$S_{\Psi} N = \mathcal{N} S_{\Psi}$$
 and $N S_{\varphi} = S_{\varphi} \mathcal{N}$. (10)

 S_{Ψ} and S_{φ} are intertwining operators between non self-adjoint operators:

$$S_{\Psi} N = \mathcal{N} S_{\Psi}$$
 and $N S_{\varphi} = S_{\varphi} \mathcal{N}$. (10)

Some references:

- F. B., Pseudo-bosons, Riesz bases and coherent states,
- J. Math. Phys., (2010)

F. B., Construction of pseudo-bosons systems, J. Math. Phys., (2010)

F. B., Mathematical aspects of intertwining operators: the role of Riesz bases, J. Phys. A, 175203 (2010)

111. Where do pseudo-bosons appear?

III.1. The extended quantum harmonic oscillator

[J. da Providência et al., Non hermitian operators with real spectrum in quantum mechanics, arXiv: quant-ph 0909.3054, [F.B, PLA, 2010]

$$H_{\beta} = \frac{\beta}{2} \left(p^2 + x^2 \right) + i\sqrt{2} p,$$

 $\beta > 0 \text{ and } [x, p] = i.$

Organization of the . . . Linear pseudo-... Where do pseudo-... Connections with ... Non-linear pseudo-... Relation with . . . Pseudo-fermions Application to decay What more? Home Page Title Page • 44 Page 13 of 44 Go Back Full Screen Close Quit

111. Where do pseudo-bosons appear?

III.1. The extended quantum harmonic oscillator

[J. da Providência et al., Non hermitian operators with real spectrum in quantum mechanics, arXiv: quant-ph 0909.3054, [F.B, PLA, 2010]

$$H_{\beta} = \frac{\beta}{2} \left(p^2 + x^2 \right) + i\sqrt{2} p,$$

 $\beta > 0$ and [x, p] = i. Using $a = \frac{1}{\sqrt{2}} \left(x + \frac{d}{dx} \right)$, $a^{\dagger} = \frac{1}{\sqrt{2}} \left(x - \frac{d}{dx} \right)$, $[a, a^{\dagger}] =$ **1**, and $N = a^{\dagger}a$, we can write $H_{\beta} = \beta N + (a - a^{\dagger}) + \frac{\beta}{2}$ **1** which, putting

$$A_eta = a - rac{1}{eta}, \qquad B_eta = a^\dagger + rac{1}{eta}, \qquad \Rightarrow$$

 $H_{\beta} = \beta \left(B_{\beta} A_{\beta} + \gamma_{\beta} \mathbb{1} \right),$ where $\gamma_{\beta} = \frac{2+\beta^2}{2\beta^2}$, $\forall \beta > 0$, $A_{\beta}^{\dagger} \neq B_{\beta}$ and $[A_{\beta}, B_{\beta}] = 0$

Organization of the . . . Assumption 1: find a non zero vector $arphi_0^{(eta)} \in \mathcal{H}$ such Linear pseudo-... that $A_{\beta}\varphi_0^{(\beta)} = 0$ and $\varphi_0^{(\beta)} \in D^{\infty}(B_{\beta})$. Where do pseudo-... Connections with ... Non-linear pseudo-... Relation with . . . Pseudo-fermions Application to decay What more? Home Page Title Page • 44 Page 14 of 44 Go Back Full Screen Close Quit

Assumption 1: find a non zero vector $\varphi_0^{(\beta)} \in \mathcal{H}$ such that $A_\beta \varphi_0^{(\beta)} = 0$ and $\varphi_0^{(\beta)} \in D^\infty(B_\beta)$. $A_\beta \varphi_0^{(\beta)} = 0 \Rightarrow a \varphi_0^{(\beta)} = \frac{1}{\beta} \varphi_0^{(\beta)} \Rightarrow \varphi_0^{(\beta)}$ is a standard coherent state with parameter $\frac{1}{\beta}$:

$$arphi_{0}^{(eta)} = U(eta^{-1})arphi_{0} = e^{-1/2eta^{2}} \sum_{k=0}^{\infty} \frac{eta^{-k}}{\sqrt{k!}} arphi_{k}, \qquad (1)$$

where $a\varphi_0 = 0$, and $U(\beta^{-1}) = e^{\frac{1}{\beta}(a^{\dagger}-a)}$ is the unitary (displacement) operator: $\|\varphi_0^{(\beta)}\| = \|\varphi_0\| = 1$.

	DI	M ³
0	rganizati	on of the
Li	near psei	udo
N	/here do	pseudo
С	onnectior	ns with
N	on-linear	pseudo-
	on mear	<i>pscuuo</i>
Re	elation w	ith
P	seudo-fer	mions
1.	seudo-rer	mons
A	pplicatio	n to decay
14	lbat mar	~?
~ ~ ~		
	Home	e Page
	Title	Page
	44	••
	•	
	Page 1	4 of 44
	Go	Back
	Full S	Screen
	CI	ose
	Q	uit

Assumption 1: find a non zero vector $\varphi_0^{(\beta)} \in \mathcal{H}$ such that $A_\beta \varphi_0^{(\beta)} = 0$ and $\varphi_0^{(\beta)} \in D^\infty(B_\beta)$. $A_\beta \varphi_0^{(\beta)} = 0 \Rightarrow a \varphi_0^{(\beta)} = \frac{1}{\beta} \varphi_0^{(\beta)} \Rightarrow \varphi_0^{(\beta)}$ is a standard coherent state with parameter $\frac{1}{\beta}$:

$$\varphi_0^{(\beta)} = U(\beta^{-1})\varphi_0 = e^{-1/2\beta^2} \sum_{k=0}^{\infty} \frac{\beta^{-k}}{\sqrt{k!}} \varphi_k,$$
 (1)

where $a\varphi_0 = 0$, and $U(\beta^{-1}) = e^{\frac{1}{\beta}(a^{\dagger}-a)}$ is the unitary (displacement) operator: $\|\varphi_0^{(\beta)}\| = \|\varphi_0\| = 1$.

Since $||B_{\beta}^{k} \varphi_{0}^{(\beta)}|| \leq k! e^{2/\beta}$, $k \geq 0$, $\varphi_{0}^{(\beta)}$ belongs to the domain of all the powers of B_{β} . As a consequence

$$\varphi_n^{(\beta)} = \frac{1}{\sqrt{n!}} B_\beta^n \varphi_0^{(\beta)}, \qquad (2)$$

is well defined for all $n \ge 0$.

	DI	M ³
0	rganizati	on of the
Li	near pseu	udo
И	/here do	pseudo
С	onnectior	ns with
N	on-linear	pseudo
R	elation w	ith
P:	seudo-fer	mions
A	pplicatio	n to decay
И	/hat more	e?
	Ноте	e Page
	Title	Page
	44	••
	•	
	Page 1	4 of 44
	Go	Back
	Full S	Screen
	CI	ose
	Q	uit

Assumption 2: $B_{\beta}^{\dagger}\Psi_{0}^{(\beta)} = 0 \Rightarrow \Psi_{0}^{(\beta)} = \varphi_{0}^{(-\beta)} = U(-\beta^{-1})\varphi_{0} = U^{-1}(\beta^{-1})\varphi_{0}$ and $\|(A_{\beta}^{\dagger})^{k}\Psi_{0}^{(\beta)}\| \leq k! e^{2/\beta}$, $k \geq 0$. Hence

$$\Psi_{n}^{(\beta)} = \frac{1}{\sqrt{n!}} (A_{\beta}^{\dagger})^{n} \Psi_{0}^{(\beta)}, \qquad (3)$$

is also well defined for all $n \ge 0$.

	DM ³
0	rganization of the
Li	near pseudo
И	/here do pseudo
С	onnections with
N	on-linear pseudo
R	elation with
P:	seudo-fermions
A	pplication to decay
И	/hat more?
	Home Page
	Title Page
	44
	Page 15 of 44
	Go Back
	Full Screen
	Close
	Quit

Assumption 2: $B_{\beta}^{\dagger}\Psi_{0}^{(\beta)} = 0 \Rightarrow \Psi_{0}^{(\beta)} = \varphi_{0}^{(-\beta)} = U(-\beta^{-1})\varphi_{0} = U^{-1}(\beta^{-1})\varphi_{0}$ and $\|(A_{\beta}^{\dagger})^{k}\Psi_{0}^{(\beta)}\| \leq k! e^{2/\beta}$, $k \geq 0$. Hence

$$\Psi_{n}^{(\beta)} = \frac{1}{\sqrt{n!}} (A_{\beta}^{\dagger})^{n} \Psi_{0}^{(\beta)}, \qquad (3)$$

is also well defined for all $n \ge 0$.

Calling
$$N_{\beta} = B_{\beta}A_{\beta}$$
 and $\mathcal{N}_{\beta} = N_{\beta}^{\dagger} = A_{\beta}^{\dagger}B_{\beta}^{\dagger}$, since

$$N_{\beta} \varphi_n^{(\beta)} = n \varphi_n^{(\beta)}, \qquad \mathcal{N}_{\beta} \Psi_n^{(\beta)} = n \Psi_n^{(\beta)}, \qquad (4)$$

these vectors above are biorthogonal and the following holds:

$$\left\langle \varphi_{n}^{\left(\beta\right)},\Psi_{m}^{\left(\beta\right)}\right\rangle =\delta_{n,m}\,e^{-2/\beta^{2}}.$$
 (5)

Orga	Dl	M ³ on of the
Line	ar psei	ıdo
Whe	re do	pseudo
Coni	nectior	ns with
Non-	linear	pseudo
Rela	tion w	ith
Pseu	do-fer	mions
Appl	icatio	n to decay
Wha	t more	e?
	Ноте	e Page
	Title	Page
	44	••
	•	►
	Page 1	6 of 44
	Go	Back
	Full S	Screen
	CI	ose
	Q	uit

Are $\mathcal{F}_{\varphi}^{(\beta)}$ and $\mathcal{F}_{\Psi}^{(\beta)}$ Riesz bases?

\mathcal{DM}^3
Organization of the
Linear pseudo
Where do pseudo
Connections with
Non-linear pseudo
Relation with
Pseudo-fermions
Application to decay
What more?
Home Page
Thome Tuge
Title Page
•• ••
Page 16 of 44
Go Back
Full Screen
Close
Quit

Are $\mathcal{F}_{\varphi}^{(\beta)}$ and $\mathcal{F}_{\Psi}^{(\beta)}$ Riesz bases?

No: they are related to an orthonormal basis via the following self-adjoint, unbounded and invertible operator: $V_{\beta} = e^{(a+a^{\dagger})/\beta}$, where $[a, a^{\dagger}] = 1$. More explicitly, we have $\varphi_k^{(\beta)} = e^{-1/\beta^2} V_{\beta} \varphi_k$. and $\Psi_k^{(\beta)} = e^{-1/\beta^2} V_{\beta}^{-1} \varphi_k$, where $\varphi_k = \frac{(a^{\dagger})^k}{\sqrt{k!}} \varphi_0$, and $a\varphi_0 = 0$.

Are $\mathcal{F}_{\varphi}^{(\beta)}$ and $\mathcal{F}_{\Psi}^{(\beta)}$ Riesz bases?

No: they are related to an orthonormal basis via the following self-adjoint, unbounded and invertible operator: $V_{\beta} = e^{(a+a^{\dagger})/\beta}$, where $[a, a^{\dagger}] = 1$. More explicitly, we have $\varphi_k^{(\beta)} = e^{-1/\beta^2} V_{\beta} \varphi_k$. and $\Psi_k^{(\beta)} = e^{-1/\beta^2} V_{\beta}^{-1} \varphi_k$, where $\varphi_k = \frac{(a^{\dagger})^k}{\sqrt{k!}} \varphi_0$, and $a\varphi_0 = 0$.

Moreover, calling $h_{\beta} = \beta(a^{\dagger}a + \gamma_{\beta}\mathbb{1}) = h_{\beta}^{\dagger}$, we have

$$H_{\beta}V_{\beta} = V_{\beta}h_{\beta}: \qquad (6)$$

	DI	M ³	
0	rganizatio	on of the	
Li	near pseu	ıdo	
И	/here do j	pseudo	
С	onnectior	ns with	
N	on-linear	pseudo	
R	elation w	ith	
P	seudo-fer	mions	
A	pplicatior	n to decay	
И	/hat more	e?	
	Ноте	e Page	
	Title	Page	
	44	••	
	•		
	Page 16 of 44		
	Go Back		
	Full S	Screen	
	Cl	ose	
	Q	uit	

Are $\mathcal{F}_{\varphi}^{(\beta)}$ and $\mathcal{F}_{\Psi}^{(\beta)}$ Riesz bases?

No: they are related to an orthonormal basis via the following self-adjoint, unbounded and invertible operator: $V_{\beta} = e^{(a+a^{\dagger})/\beta}$, where $[a, a^{\dagger}] = 1$. More explicitly, we have $\varphi_k^{(\beta)} = e^{-1/\beta^2} V_{\beta} \varphi_k$. and $\Psi_k^{(\beta)} = e^{-1/\beta^2} V_{\beta}^{-1} \varphi_k$, where $\varphi_k = \frac{(a^{\dagger})^k}{\sqrt{k!}} \varphi_0$, and $a\varphi_0 = 0$.

Moreover, calling $h_{\!\beta} = eta(a^{\dagger}a + \gamma_{\!\beta} 1\!\!1) = h_{\!\beta}^{\dagger}$, we have

$$H_{\beta}V_{\beta} = V_{\beta}h_{\beta}: \qquad (6)$$

 V_{β} is an intertwining operator between h_{β} and H_{β} .

0	Dl	M^3
	iganizatio	
Li	near pseu	ıdo
И	/here do	pseudo
C	onnoction	as with
C	JIIIECLIOI	15 VVILII
N	on-linear	pseudo
R	elation w	ith
7.		
<i>P</i> :	seudo-fer	mions
A	pplication	to decav
	oprication	r to accuy
И	/hat more	e?
	Ноте	e Page
	T '''	0
	litle	Page
	44	••
	•	•
	Page 1	6 of 44
	Go	Back
	Full S	Screen
	Cl	ose
	Q	uit

III.2. The Swanson hamiltonian

The non self-adjoint hamiltonian is

$$H_ heta=rac{1}{2}\left(p^2+x^2
ight)-rac{i}{2} an(2 heta)\left(p^2-x^2
ight)$$
 ,

 $heta \in \left(-rac{\pi}{4},rac{\pi}{4}
ight)\setminus\{0\}=:$ /. Introducing a and a^{\dagger} we write

$$H_ heta=N+rac{i}{2} an(2 heta)\left(a^2+(a^\dagger)^2
ight)+rac{1}{2}1\!\!1,$$

where $N = a^{\dagger}a$. If

III.2. The Swanson hamiltonian

The non self-adjoint hamiltonian is

$$H_ heta=rac{1}{2}\left(p^2+x^2
ight)-rac{i}{2} an(2 heta)\left(p^2-x^2
ight)$$
 ,

 $heta\in\left(-rac{\pi}{4},rac{\pi}{4}
ight)\setminus\{0\}=:$ /. Introducing a and a^{\dagger} we write

where $N = a^{\dagger}a$. If

$$\begin{aligned} \mathcal{A}_{\theta} &= \cos(\theta) \, a + i \sin(\theta) \, a^{\dagger} = \frac{1}{\sqrt{2}} \left(e^{i\theta} x + e^{-i\theta} \, \frac{d}{dx} \right), \\ \mathcal{B}_{\theta} &= \cos(\theta) \, a^{\dagger} + i \sin(\theta) \, a \frac{1}{\sqrt{2}} \left(e^{i\theta} x - e^{-i\theta} \, \frac{d}{dx} \right), \end{aligned}$$

then

III.2. The Swanson hamiltonian

The non self-adjoint hamiltonian is

$$H_ heta=rac{1}{2}\left(p^2+x^2
ight)-rac{i}{2} an(2 heta)\left(p^2-x^2
ight)$$
 ,

 $heta \in \left(-rac{\pi}{4},rac{\pi}{4}
ight)\setminus\{0\}=:$ /. Introducing a and a^{\dagger} we write

$$H_ heta=N+rac{i}{2} an(2 heta)\left(a^2+(a^\dagger)^2
ight)+rac{1}{2}1$$
 ,

where $N = a^{\dagger}a$. If

$$egin{aligned} &A_{ heta} = \cos(heta) \, a + i \sin(heta) \, a^{\dagger} = rac{1}{\sqrt{2}} \left(e^{i heta} x + e^{-i heta} \, rac{d}{dx}
ight), \ &B_{ heta} = \cos(heta) \, a^{\dagger} + i \sin(heta) \, a rac{1}{\sqrt{2}} \left(e^{i heta} x - e^{-i heta} \, rac{d}{dx}
ight), \end{aligned}$$

then

$$H_{\theta} = \omega_{\theta} \left(B_{\theta} A_{\theta} + \frac{1}{2} \mathbb{1} \right), \qquad (7)$$

where $\omega_{\theta} = \frac{1}{\cos(2\theta)}$. We have $A_{\theta}^{\dagger} \neq B_{\theta}$ and $[A_{\theta}, B_{\theta}] = \mathbb{1}$.

$$\begin{aligned} A_{\theta}\varphi_{0}^{(\theta)} &= 0 \Rightarrow \\ \varphi_{0}^{(\theta)}(x) &= N_{1}\exp\left\{-\frac{1}{2}e^{2i\theta}x^{2}\right\}, \end{aligned} (8) \\ B_{\theta}^{\dagger}\Psi_{0}^{(\theta)} &= 0 \Rightarrow \\ \Psi_{0}^{(\theta)}(x) &= N_{2}\exp\left\{-\frac{1}{2}e^{-2i\theta}x^{2}\right\}. \end{aligned} (9)$$

	Di	M ³
0r,	ganizati	on of the
Lir	iear psei	udo
Wi	here do	pseudo
Со	nnectio	ns with
No	on-linear	pseudo
D	1	
Re	lation w	uth
Ps	eudo-fer	rmions
Ap	plicatio	n to decay
W	hat mor	e?
WI	hat mor	e?
WI	hat more Home	e? e Page
	hat more Home Title	e? e Page e Page
	hat more Home Title	e? e Page e Page
	hat more Home Title	e? e Page e Page
	hat mor Hom Title (Page 1	e? e Page Page ••• ••• 18 of 44
	hat mor Homo Title 44 Page 1 Go	e? e Page Page ••• •• 18 of 44 Back
	hat mor Hom Title 44 Page 1 Go Full 3	e? e Page Page
	hat more Homo Title 44 Page 1 Go Full 3	e? e Page e Page Page *** ** ** ** ** ** ** ** ** ** ** ** *

$$\begin{aligned} \mathcal{A}_{\theta} \varphi_{0}^{(\theta)} &= 0 \Rightarrow \\ \varphi_{0}^{(\theta)}(x) &= N_{1} \exp\left\{-\frac{1}{2} e^{2i\theta} x^{2}\right\}, \end{aligned} \tag{8} \\ \mathcal{B}_{\theta}^{\dagger} \Psi_{0}^{(\theta)} &= 0 \Rightarrow \\ \Psi_{0}^{(\theta)}(x) &= N_{2} \exp\left\{-\frac{1}{2} e^{-2i\theta} x^{2}\right\}. \end{aligned} \tag{9}$$

Since $\Re(e^{\pm 2i\theta}) > 0 \ \forall \theta \in I$, $\Rightarrow \varphi_0^{(\theta)}(x), \Psi_0^{(\theta)}(x) \in \mathcal{L}^2(\mathbb{R})$. If $\theta \notin I$ Assumptions 1 and 2 are violated!

	DI	M ³
0	rganizati	on of the
Li	near psei	ıdo
И	/here do	pseudo
С	onnectior	ns with
N	on lineau	neoudo
11	on-inear	pseudo
R	elation w	ith
P	seudo-fer	mions
A	pplicatio	n to decay
14	lbat mar	~?
V	mat more	2?
	Ноте	e Page
	Title	Page
	44	••
	•	
	Page 1	8 of 44
	Go	Back
	Full S	Screen
	CI	ose
	Q	uit

$$\begin{aligned} \mathcal{A}_{\theta} \varphi_{0}^{(\theta)} &= 0 \Rightarrow \\ \varphi_{0}^{(\theta)}(x) &= N_{1} \exp\left\{-\frac{1}{2} e^{2i\theta} x^{2}\right\}, \\ \mathcal{B}_{\theta}^{\dagger} \Psi_{0}^{(\theta)} &= 0 \Rightarrow \end{aligned}$$
(8)

$$\Psi_0^{(\theta)}(x) = N_2 \exp\left\{-\frac{1}{2} e^{-2i\theta} x^2\right\}.$$
 (9)

Since $\Re(e^{\pm 2i\theta}) > 0 \ \forall \theta \in I$, $\Rightarrow \varphi_0^{(\theta)}(x), \Psi_0^{(\theta)}(x) \in \mathcal{L}^2(\mathbb{R})$. If $\theta \notin I$ Assumptions 1 and 2 are violated! We find:

$$\begin{split} \varphi_n^{(\theta)}(x) &= \frac{1}{\sqrt{n!}} \, B_\theta^n \, \varphi_0^{(\theta)}(x) = \frac{N_1}{\sqrt{2^n \, n!}} \, H_n\left(e^{i\theta}x\right) \, \exp\left\{-\frac{1}{2} \, e^{2i\theta} \, x^2\right\}, \\ \Psi_n^{(\theta)}(x) &= \frac{1}{\sqrt{n!}} \, (A_\theta^\dagger)^n \, \Psi_0^{(\theta)}(x) = \frac{N_2}{\sqrt{2^n \, n!}} \, H_n\left(e^{-i\theta}x\right) \, \exp\left\{-\frac{1}{2} \, e^{-2i\theta} \, x^2\right\}, \end{split}$$

where $H_n(x)$ is the n-th Hermite polynomial.

	Di	M ³
0	rganizati	on of the
Li	near psei	udo
И	/here do	pseudo
С	onnectio	ns with
NI.	on linoar	nsauda
1.44	un-nnear	pseudo
R	elation w	vith
-	1.6	
Ps	seudo-fer	mions
A	oplicatio	n to decay
		2
VI	hat mor	e <i>!</i>
	Home	e Page
	Title	Page
	44	••
	•	
	Page 1	18 of 44
	Go	Back
	Full :	Screen
	CI	lose
	Q	uit

$$\|arphi_n^{(heta)}\|^2 = |N_1|^2 \cos\left(rac{\pi}{\cos(2 heta)}
ight) P_n\left(rac{1}{\cos(2 heta)}
ight),$$

 $\|\Psi_n^{(heta)}\|^2 = |N_2|^2 \cos\left(rac{\pi}{\cos(2 heta)}
ight) P_n\left(rac{1}{\cos(2 heta)}
ight),$

where P_n is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied.

	DI	M ³	
0	rganizatio	on of the	
Li	near pseu	ıdo	
И	/here do j	pseudo	
С	onnection	s with	
N	on-linear	pseudo	
R	elation w	ith	
P:	seudo-fer	mions	
A	pplicatior	to decay	
И	/hat more	?	
	Ноте	Page	
	Title	Page	
	••	••	
	•	•	
	Page 1	9 of 44	
	Go Back		
	Full S	Screen	
	Cle	ose	
	Q	uit	

$$\|arphi_n^{(heta)}\|^2 = |N_1|^2 \cos\left(rac{\pi}{\cos(2 heta)}
ight) P_n\left(rac{1}{\cos(2 heta)}
ight),$$

 $\|\Psi_n^{(heta)}\|^2 = |N_2|^2 \cos\left(rac{\pi}{\cos(2 heta)}
ight) P_n\left(rac{1}{\cos(2 heta)}
ight),$

where P_n is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied. The biorthogonality of $\mathcal{F}_{\varphi}^{(\theta)} = \{\varphi_n^{(\theta)}(x), n \ge 0\}$ and $\mathcal{F}_{\Psi}^{(\theta)} = \{\Psi_n^{(\theta)}(x), n \ge 0\}$ produces

$$\int_{\mathbb{R}} H_n\left(e^{-i\theta}x\right) H_m\left(e^{-i\theta}x\right) e^{-e^{-2i\theta}x^2} dx = \delta_{n,m}\sqrt{2^{n+m}\pi n! m!}.$$

•

$$egin{aligned} \|arphi_n^{(heta)}\|^2 &= |N_1|^2\,\cos\left(rac{\pi}{\cos(2 heta)}
ight)\,P_n\left(rac{1}{\cos(2 heta)}
ight)\,, \ \|\Psi_n^{(heta)}\|^2 &= |N_2|^2\,\cos\left(rac{\pi}{\cos(2 heta)}
ight)\,P_n\left(rac{1}{\cos(2 heta)}
ight)\,, \end{aligned}$$

where P_n is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied. The biorthogonality of $\mathcal{F}_{\varphi}^{(\theta)} = \{\varphi_n^{(\theta)}(x), n \ge 0\}$ and $\mathcal{F}_{\Psi}^{(\theta)} = \{\Psi_n^{(\theta)}(x), n \ge 0\}$ produces

$$\int_{\mathbb{R}} H_n\left(e^{-i\theta}x\right) H_m\left(e^{-i\theta}x\right) e^{-e^{-2i\theta}x^2} dx = \delta_{n,m}\sqrt{2^{n+m}\pi n! m!}.$$

We still have to check whether the sets $\mathcal{F}_{\phi}^{(\theta)}$ and $\mathcal{F}_{\psi}^{(\theta)}$ are

	DI	M ³	
0	rganizatio	on of the	
Li	near pseu	ıdo	
И	/here do j	pseudo	
-			
C	onnection	s with	
N	on-linear	pseudo	
R	elation w	ith	
D	soudo for	mions	
1 :	seudo-ren	mons	
A	pplicatior	to decay	
И	/hat more	?	
	Home	Page	
	Title	Page	
	44	••	
	•		
	Page 19 of 44		
	Go Back		
	Full Screen		
	Close		
	Quit		

$$\|arphi_n^{(heta)}\|^2 = |N_1|^2 \cos\left(rac{\pi}{\cos(2 heta)}
ight) P_n\left(rac{1}{\cos(2 heta)}
ight),$$

 $\|\Psi_n^{(heta)}\|^2 = |N_2|^2 \cos\left(rac{\pi}{\cos(2 heta)}
ight) P_n\left(rac{1}{\cos(2 heta)}
ight),$

where P_n is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied. The biorthogonality of $\mathcal{F}_{\varphi}^{(\theta)} = \{\varphi_n^{(\theta)}(x), n \ge 0\}$ and $\mathcal{F}_{\Psi}^{(\theta)} = \{\Psi_n^{(\theta)}(x), n \ge 0\}$ produces

$$\int_{\mathbb{R}} H_n\left(e^{-i\theta}x\right) H_m\left(e^{-i\theta}x\right) e^{-e^{-2i\theta}x^2} dx = \delta_{n,m}\sqrt{2^{n+m}\pi n! m!}.$$

We still have to check whether the sets $\mathcal{F}_{\phi}^{(\theta)}$ and $\mathcal{F}_{\psi}^{(\theta)}$ are

(i) complete in $\mathcal{L}^2(\mathbb{R})$;

	DI	M ³	
0	rganizatio	on of the	
Li	near psei	ıdo	
И	/here do	pseudo	
С	onnectior	ns with	
N	on-linear	pseudo	
Re	elation w	ith	
D	roudo for	mione	
P:	seuao-ter	mions	
A	oplicatior	n to decay	
И	hat more	e?	
	Home	e Page	
	Title	Page	
	44	••	
	•		
	Page 19 of 44		
	Go Back		
	Full Screen		
	Close		
	Quit		

$$\|arphi_n^{(heta)}\|^2 = |N_1|^2 \cos\left(rac{\pi}{\cos(2 heta)}
ight) P_n\left(rac{1}{\cos(2 heta)}
ight),$$

 $\|\Psi_n^{(heta)}\|^2 = |N_2|^2 \cos\left(rac{\pi}{\cos(2 heta)}
ight) P_n\left(rac{1}{\cos(2 heta)}
ight),$

where P_n is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied. The biorthogonality of $\mathcal{F}_{\varphi}^{(\theta)} = \{\varphi_n^{(\theta)}(x), n \ge 0\}$ and $\mathcal{F}_{\Psi}^{(\theta)} = \{\Psi_n^{(\theta)}(x), n \ge 0\}$ produces

$$\int_{\mathbb{R}} H_n\left(e^{-i\theta}x\right) H_m\left(e^{-i\theta}x\right) e^{-e^{-2i\theta}x^2} dx = \delta_{n,m}\sqrt{2^{n+m}\pi n! m!}.$$

We still have to check whether the sets $\mathcal{F}_{\varphi}^{(heta)}$ and $\mathcal{F}_{\Psi}^{(heta)}$ are

- (i) complete in $\mathcal{L}^2(\mathbb{R})$;
- (ii) Riesz bases.

	DI	M ³	
0	rganizati	on of the	
1			
Lı	near psei	1do	
И	/here do	nseudo-	
	nere de		
С	onnectior	ns with	
N	on-linear	pseudo	
R	Palation with		
7.0			
Ps	seudo-fer	mions	
A	pplicatio	n to decay	
14	lbat mar	-7	
VV		= :	
	Home	e Page	
		-	
	l itle	Page	
	44	••	
	•		
	Page 19 of 44		
	C . Beat		
	Go Back		
	Full Screen		
	Close		
	Quit		

Completeness [Kolmogorov and Fomin]: if $\rho(x)$ is a Lebesgue-measurable function which is different from zero almost everywhere (a.e.) in \mathbb{R} and if there exist two positive constants δ , C such that $|\rho(x)| \leq C e^{-\delta|x|}$ a.e. in \mathbb{R} , then the set $\{x^n \rho(x)\}$ is complete in $\mathcal{L}^2(\mathbb{R})$. Therefore, Assumption 3 is satisfied.

Completeness [Kolmogorov and Fomin]: if $\rho(x)$ is a Lebesgue-measurable function which is different from zero almost everywhere (a.e.) in \mathbb{R} and if there exist two positive constants δ , C such that $|\rho(x)| \leq C e^{-\delta|x|}$ a.e. in \mathbb{R} , then the set $\{x^n \rho(x)\}$ is complete in $\mathcal{L}^2(\mathbb{R})$. Therefore, Assumption 3 is satisfied.

Riesz bases?: we introduce the unbounded, self-adjoint and invertible operator $T_{\theta} = e^{i\frac{\theta}{2}(a^2 - a^{\dagger^2})}$. Then

$$A_{\theta} = T_{\theta} a T_{\theta}^{-1}, \qquad B_{\theta} = T_{\theta} a^{\dagger} T_{\theta}^{-1}.$$
(10)

Completeness [Kolmogorov and Fomin]: if $\rho(x)$ is a Lebesgue-measurable function which is different from zero almost everywhere (a.e.) in \mathbb{R} and if there exist two positive constants δ , C such that $|\rho(x)| \leq C e^{-\delta|x|}$ a.e. in \mathbb{R} , then the set $\{x^n \rho(x)\}$ is complete in $\mathcal{L}^2(\mathbb{R})$. Therefore, Assumption 3 is satisfied.

Riesz bases?: we introduce the unbounded, self-adjoint and invertible operator $T_{\theta} = e^{i\frac{\theta}{2}(a^2 - a^{\dagger^2})}$. Then

$$A_{\theta} = T_{\theta} a T_{\theta}^{-1}, \qquad B_{\theta} = T_{\theta} a^{\dagger} T_{\theta}^{-1}.$$
(10)

 $\mathcal{T}_{ heta}$ is an IO: let $h_{ heta} = \omega_{ heta} \left(a^{\dagger} a + rac{1}{2} \mathbb{1} \right) = h_{ heta}^{\dagger}$, then

$$H_{\theta}T_{\theta} = T_{\theta}h_{\theta}, \qquad T_{\theta}H_{\theta}^{\dagger} = h_{\theta}T_{\theta}, \qquad (11)$$

and $\alpha \in \mathbb{C}$ exists such that

$$\varphi_n^{(\theta)} = \alpha \, T_\theta \, \varphi_n, \quad \text{and} \quad \Psi_n^{(\theta)} = \frac{1}{\overline{\alpha}} \, T_\theta^{-1} \, \varphi_n \quad (12)$$

	D	M ³	
0	rganizati	on of the	
Li	near psei	udo	
W	/here do	pseudo	
С	onnectior	ns with	
Non-linear pseudo			
R	elation w	ith	
Ps	seudo-fer	mions	
A	oplicatio	n to decay	
What more?			
	Ноте	e Page	
	Title	Page	
	44	••	
	•		
	Page 20 of 44		
	Go Back		
	Full Screen		
	Close		
	Quit		

 \Rightarrow nor $\mathcal{F}_{\varphi}^{(\theta)}$ neither $\mathcal{F}_{\Psi}^{(\theta)}$ are Riesz bases: our pseudobosons are non-regular. Also, we deduce that $\eta_{\varphi}^{(\theta)} = |\alpha|^2 T_{\theta}^2$ and $\eta_{\Psi}^{(\theta)} = |\alpha|^{-2} T_{\theta}^{-2}$. This is in agreement with the following (formal) computations:

$$\sum_{n=0}^{\infty} \left| arphi_n^{(heta)}
angle \langle \Psi_n^{(heta)}
ight| = lpha \, T_ heta \left(\sum_{n=0}^{\infty} \left| arphi_n
ight
angle \langle arphi_n
ight|
ight) rac{1}{lpha} \, T_ heta^{-1} = 1\!\!\!1,$$

$$\sum_{n=0}^{\infty} \left| \varphi_n^{(\theta)} \rangle \langle \varphi_n^{(\theta)} \right| = \alpha \, T_{\theta} \left(\sum_{n=0}^{\infty} \left| \varphi_n \right\rangle \langle \varphi_n | \right) (\alpha T_{\theta})^{\dagger} = |\alpha|^2 T_{\theta}^2 = S_{\varphi}^{(\beta)},$$

as well as

$$\sum_{n=0}^{\infty} \left| \Psi_n^{(\theta)} \rangle \langle \Psi_n^{(\theta)} \right| = \frac{1}{\overline{\alpha}} T_{\theta}^{-1} \left(\sum_{n=0}^{\infty} |\varphi_n\rangle \langle \varphi_n| \right) \left(\frac{1}{\overline{\alpha}} T_{\theta}^{-1} \right)^{\dagger} = \\ = |\alpha|^{-2} T_{\theta}^{-2} = S_{\Psi}^{(\beta)}.$$

 Organization of the ...

 Linear pseudo- ...

 Where do pseudo- ...

 Connections with ...

 Non-linear pseudo- ...

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page
Title Page

Go Back

Full Screen

Close

Quit

1. Landau levels (dim=2)[FB, ST Ali, JP Gazeau, JMP 2010]

Organizatio	M ³		
Linear pseu	ıdo		
Where do j	pseudo		
Connection	s with		
Non-linear	pseudo		
Relation with			
Pseudo-fer	mions		
Application	to decay		
What more	?		
Home	e Page		
Title	Page		
44	••		
•			
Page 2	Page 22 of 44		
Go I	Go Back		
Full S	Full Screen		
Cle	Close		
Quit			

- 1. Landau levels (dim=2)[FB, ST Ali, JP Gazeau, JMP 2010]
- 2. pseudo-hermitian networks [Jin and Song, arxiv 2011] (work in progress)

- 1. Landau levels (dim=2)[FB, ST Ali, JP Gazeau, JMP 2010]
- 2. pseudo-hermitian networks [Jin and Song, arxiv 2011] (work in progress)
- D_N type quantum Calogero model [FB, JMAA 2012, submitted]

IV. Connections with bosons

We have considered the following question: *which is the relation between (regular) pseudo-bosons and ordinary bosons?* The answer is given by the following theorems [F. B., J. Phys. A, **44**, 015205 (2011)]:

IV. Connections with bosons

We have considered the following question: *which is the relation between (regular) pseudo-bosons and ordinary bosons?* The answer is given by the following theorems [F. B., J. Phys. A, **44**, 015205 (2011)]:

Theorem 1 Let a and b be such that [a, b] = 1, and for which Assumptions 1-4 are satisfied. Then an unbounded, densely defined, operator c on \mathcal{H} exists, and a positive bounded operator \mathcal{T} with bounded inverse \mathcal{T}^{-1} , such that $[c, c^{\dagger}] = 1$. Moreover

$$a = T c T^{-1}, \qquad b = T c^{\dagger} T^{-1}.$$
 (1)

Viceversa, given an unbounded, densely defined, operator c on \mathcal{H} satisfying $[c, c^{\dagger}] = \mathbb{1}$ and a positive bounded operator T with bounded inverse T^{-1} , two operators a and b can be introduced for which $[a, b] = \mathbb{1}$, and for which equations (1) and Assumptions 1-4 are satisfied.

	DM^3		
	Organization of the		
L	inear pseudo		
V	Vhere do pseudo		
C	Connections with		
Ν	Non-linear pseudo		
R	Relation with		
D			
P	seudo-rermions		
A	pplication to decay		
N	Vhat more?		
	Home Page		
	Title Page		
	44 >>		
	•		
	Page 23 of 44		
	Go Back		
	Full Screen		
	Close		
	Quit		

Theorem 2 Let a and b be such that [a, b] = 1, and Assumptions 1-3 (but not 4) hold true. Then two unbounded, densely defined, operators c and R on \mathcal{H} exist, such that $[c, c^{\dagger}] = 1$ and R is positive, self adjoint and with unbounded inverse R^{-1} . Moreover

$$a = RcR^{-1}, \qquad b = Rc^{\dagger}R^{-1},$$
 (2)

and, introducing $\hat{\varphi}_n = \frac{c^{\dagger^n}}{\sqrt{n!}}\hat{\varphi}_0$, $c\varphi_0 = 0$, then $\hat{\varphi}_n \in$ $D(R) \cap D(R^{-1})$, for all $n \geq 0$, and the sets $\{R\hat{\varphi}_n\}$ and $\{R^{-1}\hat{\varphi}_n\}$ are biorthogonal bases of \mathcal{H} . Viceversa, let us consider two unbounded, densely defined, operators c and R on H satisfying $[c, c^{\dagger}] = \mathbb{1}$ with R positive, self-adjoint with unbounded inverse R^{-1} . Suppose that, introduced $\hat{\varphi}_n$ as above, $\hat{\varphi}_n \in$ $D(R) \cap D(R^{-1})$, for all $n \geq 0$, and that the sets $\{R\hat{\varphi}_n\}$ and $\{R^{-1}\hat{\varphi}_n\}$ are biorthogonal bases of \mathcal{H} . Then two operators a and b can be introduced for which $[a, b] = \mathbb{1}$, and for which equations (2) and Assumptions 1-3 (but not 4) are satisfied.

V. Non-linear pseudo-bosons

Limitation of pseudo-bosons: eigenvalues ϵ_n linear in n.

V. Non-linear pseudo-bosons

Limitation of pseudo-bosons: eigenvalues ϵ_n linear in n.

We use an idea imported from non-linear coherent states:

$$|z\rangle = e^{-|z|^2/2} \sum_{k=0}^{\infty} \frac{z^n}{\sqrt{n!}} \Phi_n$$

becomes

$$\Xi(z):=N(|z|^2)^{-1/2}\sum_{k=0}^{\infty}\frac{z^n}{\sqrt{\epsilon_n!}}\Phi_n,$$

where $\epsilon_n! = \epsilon_1 \cdots \epsilon_n$, with $\epsilon_0! = 1$ and $N(|z|^2)$ a proper normalization (inside a certain domain of convergence).

V. Non-linear pseudo-bosons

Limitation of pseudo-bosons: eigenvalues ϵ_n linear in n.

We use an idea imported from non-linear coherent states:

$$|z\rangle = e^{-|z|^2/2} \sum_{k=0}^{\infty} \frac{z^n}{\sqrt{n!}} \Phi_n$$

becomes

$$\Xi(z):=N(|z|^2)^{-1/2}\sum_{k=0}^{\infty}\frac{z^n}{\sqrt{\epsilon_n!}}\Phi_n,$$

where $\epsilon_n! = \epsilon_1 \cdots \epsilon_n$, with $\epsilon_0! = 1$ and $N(|z|^2)$ a proper normalization (inside a certain domain of convergence).

Let a and b be operators on \mathcal{H} and $\{\epsilon_n\}$ such that $0 = \epsilon_0 < \epsilon_1 < \epsilon_2 < \cdots$. Then [F. B., J. Math. Phys., **52**, 063521, (2011)]..

• **p1.** a non zero vector Φ_0 exists in \mathcal{H} such that $a \Phi_0 = 0$ and $\Phi_0 \in D^{\infty}(b)$.

DM ³ Organization of the			
Li	near psei	udo	
И	/here do	pseudo	
C	onnectior	ns with	
Ν	on lineau	manuda	
7	on-iinear	pseudo	
R	elation w	ith	
<i>P</i> .	seudo-fer	mions	
A	pplicatio	n to decay	
		2	
И	What more?		
	Home Page		
	Title	Page	
	44	••	
Page 26 of 44			
	Go Back		
	Full Screen		
	Close		
	Q	uit	

```
..the triple (a, b, \{\epsilon_n\}) is a family of non-linear regular pseudo-bosons (NLRPB) if:
```

- **p1.** a non zero vector Φ_0 exists in \mathcal{H} such that $a \Phi_0 = 0$ and $\Phi_0 \in D^{\infty}(b)$.
- p2. a non zero vector η_0 exists in \mathcal{H} such that $b^{\dagger} \eta_0 = 0$ and $\eta_0 \in D^{\infty}(a^{\dagger})$.

- **p1.** a non zero vector Φ_0 exists in \mathcal{H} such that $a \Phi_0 = 0$ and $\Phi_0 \in D^{\infty}(b)$.
- p2. a non zero vector η_0 exists in \mathcal{H} such that $b^{\dagger} \eta_0 = 0$ and $\eta_0 \in D^{\infty}(a^{\dagger})$.
- p3. Calling

$$\Phi_n := rac{1}{\sqrt{\epsilon_n!}} \, b^n \, \Phi_0, \qquad \eta_n := rac{1}{\sqrt{\epsilon_n!}} \, a^{\dagger^n} \, \eta_0,$$

we have, for all $n \ge 0$,

$$a \Phi_n = \sqrt{\epsilon_n} \Phi_{n-1}, \qquad b^{\dagger} \eta_n = \sqrt{\epsilon_n} \eta_{n-1}.$$

- **p1.** a non zero vector Φ_0 exists in \mathcal{H} such that $a \Phi_0 = 0$ and $\Phi_0 \in D^{\infty}(b)$.
- p2. a non zero vector η_0 exists in \mathcal{H} such that $b^{\dagger} \eta_0 = 0$ and $\eta_0 \in D^{\infty}(a^{\dagger})$.
- p3. Calling

$$\Phi_n := rac{1}{\sqrt{\epsilon_n!}} \, b^n \, \Phi_0, \qquad \eta_n := rac{1}{\sqrt{\epsilon_n!}} \, a^{\dagger^n} \, \eta_0,$$

we have, for all $n \ge 0$,

$$a \Phi_n = \sqrt{\epsilon_n} \Phi_{n-1}, \qquad b^{\dagger} \eta_n = \sqrt{\epsilon_n} \eta_{n-1}.$$

• **p4.** $\mathcal{F}_{\Phi} = \{\Phi_n, n \ge 0\}$ and $\mathcal{F}_{\eta} = \{\eta_n, n \ge 0\}$ are bases of \mathcal{H} .

- **p1.** a non zero vector Φ_0 exists in \mathcal{H} such that $a \Phi_0 = 0$ and $\Phi_0 \in D^{\infty}(b)$.
- p2. a non zero vector η_0 exists in \mathcal{H} such that $b^{\dagger} \eta_0 = 0$ and $\eta_0 \in D^{\infty}(a^{\dagger})$.
- p3. Calling

$$\Phi_n := rac{1}{\sqrt{\epsilon_n!}} \, b^n \, \Phi_0, \qquad \eta_n := rac{1}{\sqrt{\epsilon_n!}} \, a^{\dagger^n} \, \eta_0,$$

we have, for all $n \ge 0$,

$$a \Phi_n = \sqrt{\epsilon_n} \Phi_{n-1}, \qquad b^{\dagger} \eta_n = \sqrt{\epsilon_n} \eta_{n-1}.$$

- **p4.** $\mathcal{F}_{\Phi} = \{\Phi_n, n \ge 0\}$ and $\mathcal{F}_{\eta} = \{\eta_n, n \ge 0\}$ are bases of \mathcal{H} .
- **p5.** \mathcal{F}_{Φ} and \mathcal{F}_{η} are Riesz bases of \mathcal{H} .

Let us introduce the following (not self-adjoint) operators:

$$M = ba, \qquad \mathfrak{M} = M^{\dagger} = a^{\dagger}b^{\dagger}.$$
 (1)

Then we can check that $\Phi_n \in D(M) \cap D(b)$, $\eta_n \in D(\mathfrak{M}) \cap D(a^{\dagger})$, and that

$$b \Phi_n = \sqrt{\epsilon_{n+1}} \Phi_{n+1}, \qquad a^{\dagger} \eta_n = \sqrt{\epsilon_{n+1}} \eta_{n+1}, \quad (2)$$

as well as

$$M\Phi_n = \epsilon_n \Phi_n, \qquad \mathfrak{M}\eta_n = \epsilon_n \eta_n,$$
 (3)

$\mathcal{D}M^3$			
0	Organization of the		
Li	Linear pseudo		
И	/here do	pseudo	
С	onnection	ns with	
N	on-linear	pseudo	
R	elation w	vith	
D	coudo for	mione	
P:	seudo-ter	mons	
A	pplicatio	n to decay	
И	/hat more	e?	
	Home Page		
	Title	Page	
	44	••	
	Page 27 of 44		
	Go Back		
	Full Screen		
	CI	lose	
	Q	Duit	

Let us introduce the following (not self-adjoint) operators:

$$M = ba, \qquad \mathfrak{M} = M^{\dagger} = a^{\dagger}b^{\dagger}.$$
 (1)

Then we can check that $\Phi_n \in D(M) \cap D(b)$, $\eta_n \in D(\mathfrak{M}) \cap D(a^{\dagger})$, and that

$$b \Phi_n = \sqrt{\epsilon_{n+1}} \Phi_{n+1}, \qquad a^{\dagger} \eta_n = \sqrt{\epsilon_{n+1}} \eta_{n+1}, \quad (2)$$

as well as

$$M\Phi_n = \epsilon_n \Phi_n, \qquad \mathfrak{M}\eta_n = \epsilon_n \eta_n,$$
 (3)

Hence, if $\langle \Phi_0, \eta_0 \rangle = 1$,

$$\langle \Phi_n, \eta_m \rangle = \delta_{n,m},$$
 (4)

$\mathcal{D}M^{3}$			
Organization of the			
Li	Linear pseudo		
И	Where do pseudo		
С	onnections with		
N	on-linear pseudo		
R	elation with		
P:	seudo-fermions		
A	oplication to decay		
И	'hat more?		
	Home Page		
	Title Page		
	••		
	•		
	Page 27 of 44		
	Go Back		
	Full Screen		
	Close		
	Quit		

Moreover

$$\sum_{n} |\Phi_n \rangle < \eta_n| = \sum_{n} |\eta_n \rangle < \Phi_n| = \mathbb{1}, \quad (5)$$

while **p5** implies that $S_{\Phi} := \sum_{n} |\Phi_{n} \rangle \langle \Phi_{n}|$ and $S_{\eta} := \sum_{n} |\eta_{n} \rangle \langle \eta_{n}|$ are positive, bounded, invertible and that $S_{\Phi} = S_{\eta}^{-1}$.

DM ³			
Organization of the			
Li	Linear pseudo		
И	/here do pseudo		
С	onnections with		
N	on-linear pseudo		
R	elation with		
P:	seudo-fermions		
Δ			
A	oplication to decay		
И	What more?		
	Home Page		
	Title Page		
	•• ••		
	•		
Page 28 of 44			
	Go Back		
	Full Screen		
	Close		
	Quit		

Moreover

$$\sum_{n} |\Phi_{n}\rangle < \eta_{n}| = \sum_{n} |\eta_{n}\rangle < \Phi_{n}| = \mathbb{1}, \quad (5)$$

while **p5** implies that $S_{\Phi} := \sum_{n} |\Phi_{n}\rangle \langle \Phi_{n}|$ and $S_{\eta} := \sum_{n} |\eta_{n}\rangle \langle \eta_{n}|$ are positive, bounded, invertible and that $S_{\Phi} = S_{\eta}^{-1}$.

The new fact is that the operators a and b do not, in general, satisfy any simple commutation rule. Indeed, we can check that, for all $n \ge 0$,

$$[a, b]\Phi_n = (\epsilon_{n+1} - \epsilon_n) \Phi_n, \qquad (6)$$

which is different from [a, b] = 1, except if $\epsilon_n = n$. We end this overview mentioning also that M and \mathfrak{M} are connected by an intertwining operator:

$$MS_{\Phi} = S_{\Phi}\mathfrak{M}$$

$\mathcal{D}M^3$		
Organization of the		
Linear pseudo		
Where do pseudo		
Connections with		
Non-linear pseudo		
Polotion with		
Relation with		
Pseudo-fermions		
Application to decay		
What more?		
Home Page		
Title Page		
44 >>		
• •		
Page 28 of 44		
Go Back		
Full Screen		
Close		
Quit		

VI. Relation with cryptohermiticity

With M. Znojil we have analyzed the connections between NLRPB and CH in JPA, 2011. The starting point is the following

Definition 3 Let us consider two operators H and Θ acting on the Hilbert space \mathcal{H} , with Θ positive and invertible. Let us call H^{\dagger} the adjoint of H in \mathcal{H} with respect to its scalar product and $H^{\ddagger} = \Theta^{-1}H^{\dagger}\Theta$, when this exists. We will say that H is cryptohermitian with respect to Θ (CHwrt Θ) if $H = H^{\ddagger}$.

We will restrict here to Θ and Θ^{-1} bounded. The operators $\Theta^{\pm 1/2}$ are well defined. Hence we can introduce an operator $h := \Theta^{1/2} H \Theta^{-1/2}$. It is easy to check that $h = h^{\dagger}$. Hence the following definition appears natural:

Definition 4 Assume that H is $CHwrt\Theta$, for H and Θ as above. H is well behaved $wrt \Theta$ if h has only discrete eigenvalues ϵ_n , $n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, with eigenvectors e_n : $he_n = \epsilon_n e_n$, $n \in \mathbb{N}_0$, and $\mathcal{E} = \{e_n\}$ is a basis of \mathcal{H} .

Useful technical assumptions:

- 1. the multiplicity of each eigenvalue ϵ_n is one.
- 2. We assume $0 = \epsilon_0 < \epsilon_1 < \epsilon_2 < \ldots$

Definition 4 Assume that H is $CHwrt\Theta$, for H and Θ as above. H is well behaved wrt Θ if h has only discrete eigenvalues ϵ_n , $n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, with eigenvectors e_n : $he_n = \epsilon_n e_n$, $n \in \mathbb{N}_0$, and $\mathcal{E} = \{e_n\}$ is a basis of \mathcal{H} .

Useful technical assumptions:

- 1. the multiplicity of each eigenvalue ϵ_n is one.
- 2. We assume $0 = \epsilon_0 < \epsilon_1 < \epsilon_2 < \ldots$

Theorem 5 Let H be well behaved wrt Θ , where $\Theta, \Theta^{-1} \in B(\mathcal{H})$, and $\Theta = \Theta^{\dagger}$. Then it is possible to introduce two operators a and b on \mathcal{H} , and a sequence of real numbers $\{\epsilon_n, n \in \mathbb{N}_0\}$, such that the triple $(a, b, \{\epsilon_n\})$ is a family of NLRPB. Vice versa, if $(a, b, \{\epsilon_n\})$ is a family of NLRPB, two operators can be introduced, H and Θ , such that $\Theta, \Theta^{-1} \in B(\mathcal{H})$ and $\Theta = \Theta^{\dagger}$, and H is well behaved

wrt Θ.

Consequences:

	DI	M^3	
L	Linear pseudo		
И	Where do pseudo		
С	onnection	s with	
N	on-linear	pseudo	
R	elation wi	ith	
P	seudo-feri	mions	
A	pplication	to decay	
И	/hat more	e?	
	Home Page		
	Title	Page	
	44	••	
	• •		
	Page 31 of 44		
	Go Back		
	Full Screen		
	Cle	ose	
	Quit		

Consequences:

1. Formally we have

$$a = \sum_{n=0}^{\infty} \sqrt{\epsilon_n} |\Phi_{n-1}\rangle < \eta_n|, \quad b = \sum_{n=0}^{\infty} \sqrt{\epsilon_{n+1}} |\Phi_{n+1}\rangle < \eta_n|,$$

as well as

$$h = \sum_{n=0}^{\infty} \epsilon_n |e_n> < e_n|$$

$$H=\sum_{n=0}^{\infty}\epsilon_n|\Phi_n><\eta_n|$$

and

,

$$H^{\dagger} = \sum_{n=0}^{\infty} \epsilon_n |\eta_n > < \Phi_n|.$$

In particular *h*, *H* and H^{\dagger} are isospectrals.

2. Even if *h* is not required to be factorizable, because of our construction it turns out that it can be written as $h = b_{\Theta}a_{\Theta}$, where $a_{\Theta} = \Theta^{1/2}a \Theta^{-1/2}$ and $b_{\Theta} = \Theta^{1/2}b \Theta^{-1/2}$. Incidentally, in general $[a_{\Theta}, b_{\Theta}] = \Theta^{1/2}[a, b] \Theta^{-1/2} \neq [a, b]$, but if $[[a, b], \Theta^{1/2}] = 0$, which is the case for pseudobosons. Therefore, at least at a formal level, our construction shows that the hamiltonian *h* can be written in a factorized form.

VII. Pseudo-fermions

[F.B., J. Phys. A, 2012] The CAR are replaced here by the following rules:

 $\{a, b\} = \mathbb{1}, \quad \{a, a\} = 0, \quad \{b, b\} = 0, \quad (1)$

where the relevant situation is when $b \neq a^{\dagger}$. Compared with Assumptions 1-4 for PB, the only assumptions we might need to require now are the following

- **p1.** a non zero vector φ_0 exists in \mathcal{H} such that $a \varphi_0 = 0$.
- **p2.** a non zero vector Ψ_0 exists in \mathcal{H} such that $b^{\dagger} \Psi_0 = 0$.

However, even these two requirements are automatically satisfied, as a consequence of (1):

DM ³			
Organization of the			
Li	Linear pseudo		
И	Where do pseudo		
С	onnections with		
N	on-linear pseudo		
R	elation with		
P:	seudo-fermions		
A	oplication to decay		
И	'hat more?		
	Home Page		
	Title Page		
	•• ••		
	•		
Page 33 of 44			
	Go Back		
	Full Screen		
	Close		
	Quit		

In fact, in \mathcal{H} , it is easy to check that the only non-trivial possible choices of *a* and *b* satisfying (1) are the following:

$$a(1)=\left(egin{array}{cc} 0&1\ 0&0\end{array}
ight),\quad b(1)=\left(egin{array}{cc} eta&-eta^2\ 1&-eta\end{array}
ight),$$

In fact, in \mathcal{H} , it is easy to check that the only non-trivial possible choices of *a* and *b* satisfying (1) are the following:

$$a(1)=\left(egin{array}{cc} 0&1\ 0&0\end{array}
ight),\quad b(1)=\left(egin{array}{cc} eta&-eta^2\ 1&-eta\end{array}
ight),$$

$$a(2)=\left(egin{array}{cc} lpha & 1\ -lpha^2 & -lpha \end{array}
ight), \quad b(2)=\left(egin{array}{cc} 0 & 0\ 1 & 0 \end{array}
ight),$$

with non zero α and β ,

In fact, in \mathcal{H} , it is easy to check that the only non-trivial possible choices of *a* and *b* satisfying (1) are the following:

$$a(1)=\left(egin{array}{cc} 0 & 1 \ 0 & 0 \end{array}
ight), \quad b(1)=\left(egin{array}{cc} eta & -eta^2 \ 1 & -eta \end{array}
ight),$$

$$a(2)=\left(egin{array}{cc} lpha & 1\ -lpha^2 & -lpha \end{array}
ight), \quad b(2)=\left(egin{array}{cc} 0 & 0\ 1 & 0 \end{array}
ight),$$

with non zero α and β , or, maybe more interestingly,

$$a(3) = \left(egin{array}{cc} lpha_{11} & lpha_{12} \ -lpha_{11}^2/lpha_{12} & -lpha_{11} \end{array}
ight), \quad b(3) = \left(egin{array}{cc} eta_{11} & eta_{12} \ -eta_{11}^2/eta_{12} & -eta_{11} \end{array}
ight),$$

with $2\alpha_{11}\beta_{11} - \frac{\alpha_{11}^2\beta_{12}}{\alpha_{12}} - \frac{\beta_{11}^2\alpha_{12}}{\beta_{12}} = 1$. For all these choices, it is easy to show that the two non zero vectors φ_0 and Ψ_0 of **p1** and **p2** do exist. This is not surprising, since det(a) = det(b^{\dagger}) = 0.

For instance, if we take $\alpha_{11} = \frac{1}{3}$, $\beta_{11} = \frac{2}{3}$, and $\alpha_{12} = -\beta_{12} = -i$, we find:

$$a(3)=egin{pmatrix} 1/3 & -i\ -i/9 & -1/3 \end{pmatrix}$$
 , $b(3)=egin{pmatrix} 2/3 & i\ 4i/9 & -2/3 \end{pmatrix}$ $arphi_0=lpha\left(egin{array}{c}1\ -i/3 \end{array}
ight)$, $\Psi_0=eta\left(egin{array}{c}1\ -3i/2 \end{array}
ight)$.

It is not difficult to relate lpha and eta in such a way $\langle arphi_0, \Psi_0
angle = 1.$

\mathcal{DM}^{3}			
0	rganizati	on of the	
Li	near psei	ıdo	
И	/here do	pseudo	
С	onnectior	ns with	
N	on-linear	pseudo	
R	elation w	ith	
P	seudo-fer	mions	
		inions	
A	oplicatio	n to decay	
И	/hat more	e?	
	Home Page		
	Title Page		
	••	••	
	•		
Page 35 of 44			
Go Back			
	Full Screen		
	Close		
	Quit		

$$arphi_1:=barphi_0, \quad \Psi_1=a^\dagger \Psi_0,$$

as well as the non self-adjoint operators

$$N = ba, \quad \mathcal{N} = N^{\dagger} = a^{\dagger}b^{\dagger}.$$
 (3)

$\mathcal{D}M^3$		
Organization of the		
Linear pseudo		
Where do pseudo		
Connections with		
Non-linear pseudo		
Relation with		
Pseudo-fermions		
Application to decay		
What more?		
Home Page		
Title Page		
44 >>		
• •		
Page 36 of 44		
Go Back		
Full Screen		
Close		
Quit		

(2)

$$\varphi_1 := b\varphi_0, \quad \Psi_1 = a^{\dagger}\Psi_0, \quad (2)$$

as well as the non self-adjoint operators

$$N = ba, \quad \mathcal{N} = N^{\dagger} = a^{\dagger} b^{\dagger}.$$
 (3)

We further introduce S_{φ} and S_{Ψ} :

$$S_{\varphi}f = \sum_{n=0}^{1} \langle \varphi_n, f \rangle \varphi_n, \quad S_{\Psi}f = \sum_{n=0}^{1} \langle \Psi_n, f \rangle \Psi_n, \quad (4)$$

 $f \in \mathcal{H}$. Hence we get:

$\mathcal{D}M^3$		
Organization of the		
Linear pseudo		
Where do pseudo		
Connections with		
Non-linear pseudo		
Relation with		
Decuda formations		
P seudo-rermions		
Application to decay		
What more?		
Home Page		
Title Page		
4		
• •		
Page 36 of 44		
Go Back		
Full Screen		
Close		
Quit		

$$\varphi_1 := b\varphi_0, \quad \Psi_1 = a^{\dagger}\Psi_0, \quad (2)$$

as well as the non self-adjoint operators

$$N = ba, \quad \mathcal{N} = N^{\dagger} = a^{\dagger} b^{\dagger}.$$
 (3)

We further introduce S_{φ} and S_{Ψ} :

$$S_{\varphi}f = \sum_{n=0}^{1} \langle \varphi_n, f \rangle \varphi_n, \quad S_{\Psi}f = \sum_{n=0}^{1} \langle \Psi_n, f \rangle \Psi_n, \quad (4)$$

 $f \in \mathcal{H}$. Hence we get:

1.

$$a\varphi_1 = \varphi_0, \quad b^{\dagger} \Psi_1 = \Psi_0.$$
 (5)

$$\varphi_1 := b\varphi_0, \quad \Psi_1 = a^{\dagger}\Psi_0, \tag{2}$$

as well as the non self-adjoint operators

$$N = ba, \quad \mathcal{N} = N^{\dagger} = a^{\dagger} b^{\dagger}.$$
 (3)

We further introduce S_{φ} and S_{Ψ} :

$$S_{\varphi}f = \sum_{n=0}^{1} \langle \varphi_n, f \rangle \varphi_n, \quad S_{\Psi}f = \sum_{n=0}^{1} \langle \Psi_n, f \rangle \Psi_n, \quad (4)$$

 $f \in \mathcal{H}$. Hence we get:

1.

$$a\varphi_1 = \varphi_0, \quad b^{\dagger} \Psi_1 = \Psi_0.$$
 (5)

2.

$$N\varphi_n = n\varphi_n, \quad \mathcal{N}\Psi_n = n\Psi_n,$$
 (6)

$\mathcal{D}M^3$				
0	rganization of the			
Li	Linear pseudo			
И	/here do pseudo			
C	onnections with			
N	on-linear pseudo			
R	elation with			
	la famaiana			
<i>P</i> :	seudo-termions			
A	pplication to decay			
И	/hat more?			
	Home Page			
	Title Page			
	•• ••			
	•			
Page 36 of 44				
	Go Back			
	Full Screen			
	Close			
	Quit			

3. If $\langle arphi_0, \Psi_0
angle = 1$, then

$$\langle arphi_k, \Psi_n
angle = \delta_{k,n},$$

(7)

for k, n = 0, 1.

$\mathcal{D}M^3$			
0	rganizati	on of the	
Li	near psei	udo	
И	/here do	pseudo	
С	onnectior	ns with	
N	on-linear	pseudo	
R	elation w	ith	
P	seudo-fer	mions	
	seudo-rer	mons	
A	pplicatio	n to decay	
И	/hat more	e?	
	Home Page		
	Title Page		
	44	>>	
	•	►	
	Page 37 of 44		
	Go Back		
	Full Screen		
	CI	ose	
	Quit		

3. If $\langle \varphi_0, \Psi_0 \rangle = 1$, then

$$\langle \varphi_k, \Psi_n \rangle = \delta_{k,n},$$

for k, n = 0, 1.

4. S_{φ} and S_{Ψ} are bounded, strictly positive, selfadjoint, and invertible. They satisfy

 $\|S_{\varphi}\| \leq \|\varphi_0\|^2 + \|\varphi_1\|^2$, $\|S_{\Psi}\| \leq \|\Psi_0\|^2 + \|\Psi_1\|^2$,

$$S_{\varphi}\Psi_n = \varphi_n, \qquad S_{\Psi}\varphi_n = \Psi_n,$$
 (8)

for n = 0, 1, as well as $S_{\varphi} = S_{\Psi}^{-1}$ and the following intertwining relations

$$S_{\Psi}N = \mathcal{N}S_{\Psi}, \qquad S_{\varphi}\mathcal{N} = NS_{\varphi}.$$
 (9)

	DI	M ³
0	rganizatio	on of the
Li	near pseu	ıdo
И	/here do j	pseudo
C	onnectior	ns with
N	on-linear	pseudo
R	elation w	ith
P:	seudo-fer	mions
A	pplicatior	n to decay
И	/hat more	?
	Ноте	e Page
	Title	Page
	44	••
	•	
	Page 3	7 of 44
	Go	Back
	Full Screen	
	Cl	ose
	Q	uit

(7)

(i) N and N behave as fermionic number operators, having eigenvalues 0 and 1;

Organization of the . . . Linear pseudo-... Where do pseudo-... Connections with . . . Non-linear pseudo-... Relation with . . . Pseudo-fermions Application to decay What more? Home Page Title Page • 44 Page 38 of 44 Go Back Full Screen Close Quit

(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1;

(ii) their related eigenvectors are respectively the vec-

tors in $\mathcal{F}_{\varphi} = \{\varphi_0, \varphi_1\}$ and $\mathcal{F}_{\Psi} = \{\Psi_0, \Psi_1\};$

(i) N and N behave as fermionic number operators, having eigenvalues 0 and 1;

(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi} = \{\varphi_0, \varphi_1\}$ and $\mathcal{F}_{\Psi} = \{\Psi_0, \Psi_1\}$; (iii) *a* and *b*[†] are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

	DI	M ³	
0	rganizatio	on of the	
Li	near psei	ıdo	
И	/here do j	pseudo	
С	onnectior	ns with	
N	on-linear	pseudo	
R	elation w	ith	
D	soudo for	mions —	
P.	seudo-ter	mons	
A	oplicatior	n to decay	V
И	/hat more	e?	
	Ноте	e Page	
	Title	Page	
	44	••]
	•]
	Page 3	88 of 44	
	Go	Back	
	Full S	Screen	
	Cl	ose	
	Q	uit	

(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1;

(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi} = \{\varphi_0, \varphi_1\}$ and $\mathcal{F}_{\Psi} = \{\Psi_0, \Psi_1\}$; (iii) a and b^{\dagger} are lowering operators for \mathcal{T} and \mathcal{T} .

(iii) a and b^{\dagger} are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

(iv) *b* and a^{\dagger} are rising operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1;

(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi} = \{\varphi_0, \varphi_1\}$ and $\mathcal{F}_{\Psi} = \{\Psi_0, \Psi_1\}$;

(iii) a and b^{\dagger} are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

(iv) b and a^{\dagger} are rising operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

(v) the two sets \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are biorthonormal;

DM ³
Organization of the
Linear pseudo
Where do pseudo
Connections with
Non-linear pseudo
D L d L d
Relation with
Pseudo-fermions
Application to decay
What more?
Home Page
Title Page
44 >>
• •
Page 38 of 44
Go Back
Full Screen
Close
Quit

(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1;

(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi} = \{\varphi_0, \varphi_1\}$ and $\mathcal{F}_{\Psi} = \{\Psi_0, \Psi_1\}$;

(iii) a and b^{\dagger} are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

(iv) *b* and a^{\dagger} are rising operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

(v) the two sets \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are biorthonormal;

(vi) the very well-behaved operators \mathcal{S}_φ and \mathcal{S}_Ψ maps

 \mathcal{F}_{φ} in \mathcal{F}_{Ψ} and viceversa;

DM ³	
Organization of the	
Linear pseudo	
Where do pseudo	
Connections with	
Non-linear pseudo	
Relation with	
Pseudo-fermions	
Application to decay	
What more?	
Home Page	
Title Page	
• •	
Page 38 of 44	
Go Back	
Full Screen	
Close	
Quit	

(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1;

(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi} = \{\varphi_0, \varphi_1\}$ and $\mathcal{F}_{\Psi} = \{\Psi_0, \Psi_1\}$;

(iii) a and b^{\dagger} are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

(iv) b and a^{\dagger} are rising operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

(v) the two sets \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are biorthonormal;

(vi) the very well-behaved operators S_{φ} and S_{Ψ} maps \mathcal{F}_{φ} in \mathcal{F}_{Ψ} and viceversa;

(vii) S_{φ} and S_{Ψ} intertwine between operators which are not self-adjoint, in the very same way as they do for PB.

The Assumptions 1-4 are automatically satisfied: we get Riesz bases for free, and we don't need to impose conditions on the domains of operators. Also:

$\mathcal{D}M^3$
Organization of the
Linear pseudo
Where do pseudo
Connections with
Non-linear pseudo
Relation with
Pseudo-fermions
Application to decay
What more?
Home Page
Title Page
44 >>
Page 38 of 44
Go Back
Full Screen
Close

Theorem 6 Let c and $T = T^{\dagger}$ be two operators on \mathcal{H} such that $\{c, c^{\dagger}\} = \mathbb{1}, c^2 = 0$, and T > 0. Then, defining

$$a = T c T^{-1}, \quad b = T c^{\dagger} T^{-1},$$
 (10)

these operators satisfy (1).

Viceversa, given two operators a and b acting on \mathcal{H} , satisfying (1), it is possible to define two operators, c and T, such that $\{c, c^{\dagger}\} = \mathbb{1}$, $c^2 = 0$, $T = T^{\dagger}$ is strictly positive, and (10) holds.

	DI	M ³
0	rganizatio	on of the
1		
Li	near pseu	ıdo
И	/here do j	oseudo
С	onnection	s with
	1.	
N	on-linear	pseudo
R	elation w	ith
P:	seudo-feri	mions
Δ	polication	to docar
A	ppiication	1 to decay
И	/hat more	?
	Home	Page
	Tiome	Tage
	Title	Page
	44	••
	•	•
	Page <mark>3</mark>	9 of 44
	Go I	Back
	Full S	Screen
	Cla	ose
	Q	uit

VIII. Application to decay

The starting point is the Schrödinger equation

$$i\dot{\Psi}(t) = H_{eff}\Psi(t)$$
, with $H_{eff} = \frac{1}{2} \begin{pmatrix} -i\gamma_a & v \\ \overline{v} & -i\gamma_b \end{pmatrix}$,

where $\gamma_a, \gamma_b > 0$ and $v \in \mathbb{C}$, [Ben-Aryeh etc., JPA, 2004; Trifonov etc., JPA, 2007].

VIII.0.1. Schrödinger representation

Putting $\Phi(t) = e^{\Gamma t} \Psi(t)$, $\Gamma = \frac{1}{2}(\gamma_a + \gamma_b)$, we get $i\dot{\Phi}(t) = H\Phi(t)$, where

$$H = i\Gamma \mathbb{1}_2 + H_{eff} = \begin{pmatrix} -i\gamma & v \\ \overline{v} & i\gamma \end{pmatrix}, \quad \Phi(t) = \begin{pmatrix} \Phi_0(t) \\ \Phi_1(t) \end{pmatrix}$$

Here $\gamma = \frac{1}{2}(\gamma_a - \gamma_b)$. Calling $\Omega := |v|^2 - \gamma^2$ we find

$$\left\{ egin{array}{l} \ddot{\Phi}_0(t) = -\Omega \, \Phi_0(t), \ \ddot{\Phi}_1(t) = -\Omega \, \Phi_1(t). \end{array}
ight.$$

	DI	M ³	
0	rganizatio	on of the	
Li	near pseu	ıdo	
И	/here do j	pseudo	•
С	onnectior	s with	
N	on-linear	pseudo	
R	elation w	ith	
P:	seudo-fer	mions	
A	pplicatior	n to decay	
И	/hat more	e?	
И	/hat more Home	e? e Page	
И	/hat more Home	e? e Page	
И	/hat more Home Title	e? e Page Page	
И	/hat more Home Title	e? e Page Page •••	
И	/hat more Home Title	e Page Page	
N	/hat more Home Title 4 Page 4	e? e Page Page ♪ ♪ 0 of 44	
и (/hat more Home Title Page 4 Go d	e? Page Page	
n	/hat more Home Title 4 Page 4 Go 1 Full 5	e? Page Page	
N	/hat more Home Title 4 Page 4 Go 1 Full 5	e? Page Page	
$\Omega = 0$: the functions $\Phi_0(t)$ and $\Phi_1(t)$ are linear in t, so that

$$\Psi(t) = e^{-\Gamma t} \begin{pmatrix} \Phi_0(t) \\ \Phi_1(t) \end{pmatrix} = \begin{pmatrix} e^{-(\gamma_a + \gamma_b)\frac{t}{2}}(A_0 + B_0 t) \\ e^{-(\gamma_a + \gamma_b)\frac{t}{2}}(A_1 + B_1 t) \end{pmatrix}$$

	DI	M ³
0	rganizati	on of the
Li	near psei	ıdo
И	/here do ,	pseudo
С	onnectior	ns with
N	on-linear	pseudo
R	elation w	ith
Р:	seudo-fer	mions
Δ	nnlicatio	a to decay
~	ppiicatioi	r to decay
И	/hat more	e?
	Ноте	e Page
	Title	Page
	44	••
	•	
	Page 4	1 of 44
	Go	Back
	Full S	Screen
	CI	ose
	Q	uit

 $\Omega = 0$: the functions $\Phi_0(t)$ and $\Phi_1(t)$ are linear in t, so that

$$\Psi(t) = e^{-\Gamma t} \begin{pmatrix} \Phi_0(t) \\ \Phi_1(t) \end{pmatrix} = \begin{pmatrix} e^{-(\gamma_a + \gamma_b)\frac{t}{2}}(A_0 + B_0 t) \\ e^{-(\gamma_a + \gamma_b)\frac{t}{2}}(A_1 + B_1 t) \end{pmatrix}$$

 $\Omega > 0$. In this case the solution can be written as $\Psi(t) = e^{-(\gamma_a + \gamma_b)\frac{t}{2}} \begin{pmatrix} A_0 \cos(\sqrt{\Omega} t) + B_0 \sin(\sqrt{\Omega} t) \\ A_1 \cos(\sqrt{\Omega} t) + B_1 \sin(\sqrt{\Omega} t) \end{pmatrix}$,

 $\Omega = 0$: the functions $\Phi_0(t)$ and $\Phi_1(t)$ are linear in t, so that

$$\Psi(t) = e^{-\Gamma t} \begin{pmatrix} \Phi_0(t) \\ \Phi_1(t) \end{pmatrix} = \begin{pmatrix} e^{-(\gamma_a + \gamma_b)\frac{t}{2}}(A_0 + B_0 t) \\ e^{-(\gamma_a + \gamma_b)\frac{t}{2}}(A_1 + B_1 t) \end{pmatrix}$$

 $\Omega > 0$. In this case the solution can be written as

$$\Psi(t) = e^{-(\gamma_a + \gamma_b)\frac{1}{2}} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ A_1 \cos(\sqrt{\Omega} t) + B_1 \sin(\sqrt{\Omega} t) \end{pmatrix}$$

 $\Omega < 0. \text{ In this case the solution can be written as}$ $\Psi(t) = e^{-(\gamma_a + \gamma_b)\frac{t}{2}} \begin{pmatrix} A_0 \exp(\sqrt{|\Omega|} t) + B_0 \exp(-\sqrt{|\Omega|} t) \\ A_1 \exp(\sqrt{|\Omega|} t) + B_1 \exp(-\sqrt{|\Omega|} t) \end{pmatrix}.$

Here A_0 , A_1 , B_0 and B_1 are fixed by the initial conditions.

In all cases, when $t \to \infty$, even if in general $\|\Phi(t)\| \nrightarrow$ 0, we find that

$$|\Psi(t)\| o 0$$

VIII.0.2. Heisenberg representation

The eigenvalues of H can be written as $\lambda_{\pm} := \pm \sqrt{\Omega}$, and the eigenstates are

$$\eta_+ = \left(egin{array}{c} rac{1}{\overline{v}} \left(-i oldsymbol{\gamma} + \sqrt{\Omega}
ight) \ 1 \end{array}
ight)$$
 , $\eta_- = \left(egin{array}{c} -rac{1}{\overline{v}} \left(i oldsymbol{\gamma} + \sqrt{\Omega}
ight) \ 1 \end{array}
ight)$

Notice that $\langle \eta_+, \eta_- \rangle = \frac{2\gamma}{|\nu|^2} \left(\gamma - i\sqrt{\Omega} \right)$, which is zero only if $\gamma = 0$ $(H = H^{\dagger})$ or if $\gamma = i\sqrt{\Omega}$ $(H = -H^{\dagger})$. Also, going back to H_{eff}

$$H_{eff} \eta_{\pm} = E_{\pm} \eta_{\pm}, \qquad E_{\pm} = -\frac{i}{2} (\gamma_a + \gamma_b) \pm \sqrt{\Omega}.$$

	Dh	13
0	rganizatior	of the
Li	near pseud	lo
И	/here do ps	seudo
С	onnections	with
N	on-linear p	seudo
R	elation wit	h
P:	seudo-ferm	ions
A	pplication	to decav
	pheation	to accuy
И	/hat more?	,
И	/hat more? Home I	Dage
И	/hat more? Home I Title F	Page
И	/hat more? Home I Title F	Page Page ♪age
N	/hat more? Home I Title F	Page Page Page
N	/hat more? Home I Title F • • Page 42	Page Page >>> >>
n	/hat more? Home I Title F 44 Page 42 Go Bi	Page Page >> >> of 44
N	/hat more? Home I Title F 44 Page 42 Go Ba Full Sc	Page Page Page of 44 ack
n	/hat more? Home I Title F 4 Page 42 Go Ba Full Sc Clos	Page Page Page of 44 ack reen

VIII.0.2. Heisenberg representation

The eigenvalues of H can be written as $\lambda_{\pm} := \pm \sqrt{\Omega}$, and the eigenstates are

$$\eta_+ = \left(egin{array}{c} rac{1}{\overline{
u}} \left(-im{\gamma} + \sqrt{\Omega}
ight) \ 1 \end{array}
ight)$$
 , $\eta_- = \left(egin{array}{c} -rac{1}{\overline{
u}} \left(im{\gamma} + \sqrt{\Omega}
ight) \ 1 \end{array}
ight)$

Notice that $\langle \eta_+, \eta_- \rangle = \frac{2\gamma}{|\nu|^2} \left(\gamma - i\sqrt{\Omega}\right)$, which is zero only if $\gamma = 0$ $(H = H^{\dagger})$ or if $\gamma = i\sqrt{\Omega}$ $(H = -H^{\dagger})$. Also, going back to H_{eff}

$$H_{eff} \eta_{\pm} = E_{\pm} \eta_{\pm}, \qquad E_{\pm} = -\frac{i}{2} (\gamma_a + \gamma_b) \pm \sqrt{\Omega}.$$

It is possible now to introduce two operators *a* and *b*, such that $\{a, b\} = \mathbb{1}, a^2 = b^2 = 0$, and

$$H = \Omega\left(b a - \frac{1}{2}\mathbb{1}\right) = \Omega\left(N - \frac{1}{2}\mathbb{1}\right),$$

where N = b a.

	Di	M ³	
0	rganizati	on of the	
Li	near psei	udo	
И	Where do pseudo		
Connections with			
Non-linear pseudo			
Relation with			
Pseudo-fermions			
A	pplicatio	n to decay	
И	/hat mor	e?	
	Home Page		
	Title	Page	
	44	••	
	•		
	Page 42 of 44		
	Go	Back	
Full Screen			
	Close		

To recover the same damping we have found in Schrödinger representation, it is natural to consider the time evolution of the number operator N:

$$N_{eff}(t) = e^{iH_{eff}^{\dagger}t}N e^{-iH_{eff}t}$$

which turns out to be

$$N_{eff}(t) = e^{-2\Gamma t} \left(N e^{-i\Omega t} + \mathcal{N} N (1 - e^{-i\Omega t})
ight).$$

Then, if we estimate the norm of $N_{eff}(t)$, it is trivial to deduce that

$$\|N_{eff}(t)\| \leq 3e^{-2\Gamma t}$$

which goes to zero when t diverges. Hence, as expected, we recover damping also in Heisenberg picture.

To recover the same damping we have found in Schrödinger representation, it is natural to consider the time evolution of the number operator N:

$$N_{eff}(t) = e^{iH_{eff}^{\dagger}t}N e^{-iH_{eff}t}$$

which turns out to be

$$N_{eff}(t) = e^{-2\Gamma t} \left(N e^{-i\Omega t} + \mathcal{N} N (1 - e^{-i\Omega t})
ight).$$

Then, if we estimate the norm of $N_{eff}(t)$, it is trivial to deduce that

$$\|N_{eff}(t)\| \leq 3e^{-2\Gamma t}$$

which goes to zero when t diverges. Hence, as expected, we recover damping also in Heisenberg picture.

Remark:– Larger dimensional examples can also be constructed, see FB, J. Phys. A, submitted.

1. unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])

- unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])
- 2. pseudo-bosonic quantum field theory: any spinstatistic theorem?

- unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])
- 2. pseudo-bosonic quantum field theory: any spinstatistic theorem?
- 3. more connections with non-hermitian quantum mechanics

- unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])
- 2. pseudo-bosonic quantum field theory: any spinstatistic theorem?
- 3. more connections with non-hermitian quantum mechanics
- 4. bicoherent states and quantization...

- unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])
- 2. pseudo-bosonic quantum field theory: any spinstatistic theorem?
- 3. more connections with non-hermitian quantum mechanics
- 4. bicoherent states and quantization...
- 5. ...etc

DM
Organization of the
Linear pseudo
Where do pseudo
Connections with
Non-linear pseudo
Relation with
Pseudo-fermions
Application to decay
What more?
What more? Home Page
What more? Home Page Title Page
What more? Home Page Title Page
What more? Home Page Title Page
What more? Home Page Title Page (
What more? Home Page Title Page
What more? Home Page Title Page Page 44 of 44 Go Back Full Screen
What more? Home Page Title Page Page 44 of 44 Go Back Full Screen Close