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Let H be a given Hilbert space with scalar product
(.,.) and norm |[|.||. Let a and b be two operators

acting on ‘H and satisfying (Trifonov, 2009)
[a, 6] = 1. (1)

If b = a' then we recover CCR. Recall that a and b
cannot both be bounded operators: they cannot be
defined in all of H. For this reason we consider the

following

Assumption 1.— there exists a non-zero @g € H such
that awo = 0 and o € D*°(b) := Nk>oD(b).
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Let H be a given Hilbert space with scalar product
(.,.) and norm |[|.||. Let a and b be two operators

acting on ‘H and satisfying (Trifonov, 2009)
[a, 6] = 1. (1)

If b = a' then we recover CCR. Recall that a and b
cannot both be bounded operators: they cannot be
defined in all of H. For this reason we consider the

following

Assumption 1.— there exists a non-zero @g € H such
that awo = 0 and o € D*°(b) := Nk>oD(b).

Then

1
n:—n 1] > ' 2
® mbwo n>0 (2)

belongs to H for all n > 0.
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Let N := ba. Then ¢, € D(N), for all n > 0, and

Np, = np, n>0.

Let us now take N := NT = afpl # N.
that the following holds:

(3)

We require
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Let N := ba. Then ¢, € D(N), for all n > 0, and

Ny, = np, n>0. (3)
Let us now take N := NT = a'bl £ N. We require
that the following holds:
Assumption 2.— there exists a non-zero Wy € H such
that bT\Uo =0 and Vg € DOO(aT) — ﬁkzoD((aT)k).
Under this assumption the following vectors

1

v, = m(a*)”wo, n=>0, (4)

belong to H for all n > 0, and to D(N'). Moreover

NV, =nV,, n>0. (5)
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Example 3: [TrifonOV] H — EZ(R' dX), as = C _|_ SCT Linear pseudo-. . .
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Both these functions are square integrable if —1 <
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Doo(bs) and that WO(X) € Doo(al') any polynomial Application to decay
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Example 4: (two-dimensional deformation of ¢ and
c’) Let au = ac + Zcl, bay = u%c + acf,
where o and wu are real constants such that o, u #
0 and a® # u?(a® — 1). Hence al,, # ba, and

[80 ) bap] = 1.
aa.uPo(x) = 0 and bjx,u\llo(x) = 0 produce
1pu+1
(,DO(X) = Na,u, exp {—5 hX2} ,
and

la2+u(a2—1)xz}_

Wo(x) = N, exp {—2 o — (a2 — 1)

These functions satisfy Assumptions 1 and 2 if o > 1
and 1< u <14 =

a2—1"
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Under Assumptions 1 and 2 we have (V,, @) =
On.m (Wo, o) for all n,m > 0. Then, if (Vq, o) = 1,

(W, 0m) =0pm, VYn,m2>0 (6)

Moreover, Yn > 0 we have ¢, € D(a) and ¥V, €
D(b'), and ap, = /n@,_1, as well as

Let F, := {@n, n > 0} and Fy := {V,, n > 0}.
Since (@n, k) # Ok, a@n = V/Nn+ 1@,y is false,

in general. For the same reason

However, the sets F, and Fy are biorthogonal and,
because of this, the vectors of each set are linearly

independent.

Assumption 3.— F, and Fy are are complete in H.
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Then, F, and Fy are bases in H. The resolution of

Linear pseudo-. ..

the identity looks now Where do pseudo- . .

© ©© Connections with . . .
ZO |(Pn =< \Un‘ ~ ZO |wn =< (pn| - :“-' (7) Non-linear pseudo- . . .
n= n—=

. q q Relation with . ..
where 1 is the identity operator on H.

Pseudo-fermions

Let fu rther Application to decay
o0 S What more?
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n=0 n=0
(8) Title Page
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More rigorously, we introduce an operator S, acting
on a vector f € D(Sy) as Sof = > 2o (@n, ) @n,
and Sy, acting on a vector h € D(Sy) as Syh =
> o oW, hy W, Under Assumption 3, both these

operators are densely defined in . In particular:

S(pwn = ©n, S\U(Pn =V,

for all n > 0. Then ¥V, = (Sy Sy,)V¥V, and @, =
(S Sw)pn, for all n > 0. Hence (for bounded S, and

Sv):

SuSp,=S,Su=1 = Sy=S5," (9
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More rigorously, we introduce an operator S, acting
on a vector f € D(Sy) as Sof = > 2o (@n, ) @n,
and Sy, acting on a vector h € D(Sy) as Syh =
> o oW, hy W, Under Assumption 3, both these

operators are densely defined in . In particular:

S(pwn = ©n, S\U(Pn =V,
for all n > 0. Then ¥V, = (Sy Sy,)V¥V, and @, =
(S Sw)pn, for all n > 0. Hence (for bounded S, and
Sv):

SuSp,=S,Su=1 = Sy=S5," (9
Furthermore, we can also check that they are both

positive defined and symmetric. In general, however,

they are unbounded.
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This is not a big surprise: two biorthogonal bases are
related by a bounded operator, with bounded inverse,

if and only if they are Riesz bases. Then:
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if and only if they are Riesz bases. Then:
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Assumption 4.— F, and Fy are Riesz bases: there
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This is not a big surprise: two biorthogonal bases are
related by a bounded operator, with bounded inverse,

if and only if they are Riesz bases. Then:

Assumption 4.— F, and Fy are Riesz bases: there
exist an o.n. basis G = {g,, n > 0} and two bounded

operators X and Y, with bounded inverses, such that
®On = Xgn, and WV, = an,

for all n > 0.

In thus case we call our pseudo-bosons regular, and

both S, and Sy are bounded operators.
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This is not a big surprise: two biorthogonal bases are
related by a bounded operator, with bounded inverse,

if and only if they are Riesz bases. Then:

Assumption 4.— F, and Fy are Riesz bases: there
exist an o.n. basis G = {g,, n > 0} and two bounded

operators X and Y, with bounded inverses, such that
®On = Xgn, and WV, = an,

for all n > 0.

In thus case we call our pseudo-bosons regular, and
both S, and Sy are bounded operators.

Remark:— Regular pseudo-bosons give rise to Riesz
bases. Viceversa: each Riesz basis produce two oper-
ators a and b satisfying all the properties of regular

pseudo-bosons.
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An interesting feature of Sy and S,

Sy and S, are intertwining operators between non

self-adjoint operators:
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An interesting feature of Sy and S,

Sy and S, are intertwining operators between non

self-adjoint operators:

Sy N =N Sy

and

NS(p:S(pN.

(10)
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An interesting feature of Sy and S, [ ———

) .. Where do pseudo- . . .
Sy and S, are intertwining operators between non
Connections with . ..

self-adjoint operators:

Non-linear pseudo- . . .

Relation with . ..
S\uN:NS\u and /\/Sw:S(pN. (10)

Pseudo-fermions

Some references: Application to decay
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[J. da Providéncia et al., Non hermitian operators
with real spectrum in quantum mechanics, arXiv: quant-
ph 0909.3054, [F.B, PLA, 2010]

ngg(p2+x2) +iV2p,
B >0 and [x, p] = I.

Using a = \% (x—l—d%), al = \% (x—d%), [a, al] =
1, and N = afa, we can write Hs = BN+(a—a')+£ 1
which, putting

1 1
As=a— —, Bs=a + =, =
6] 6]

Hg =B (BgAs +vs 1),

where v = 22“252, vB > 0, Ag # Bg and [Ag, Bg] =

1.
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Assumption 1: find a non zero vector (pém € H such
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Organization of the. ..

Linear pseudo-. ..

Assumption 1: find a non zero vector (,00 ) € H such

that Agpl” = 0 and ¢} € D>(Bg).
A (p(ﬁ) — O = a(p(ﬁ) ﬁ (,0(()6) (P(B) |S a Standard Connections with . . .
coherent state with parameter [13 Non-linear pseudo- . .

K Relation with . ..

— U(B_l)(po — e_1/262 Z T (pk' (1) Pseudo-fermions
—o VK!

Application to decay

where apy = 0, and U(B™!) = e~ is the unitary What more?
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Assumption 1: find a non zero vector (,00 ) € H such
that A w(ﬁ) = 0 and cpo F) ¢ D>(Bg).

A cp(ﬁ) =0= aw(ﬁ) ﬁwgﬁ) = (p(()ﬁ) is a standard
coherent state with parameter [13

—k

= U(B Y)py = eV > — ek, (1)
2 7

1

where apy = 0, and U(B1) = es! (2'-2) s the unitary
(displacement) operator: ||<p H = ||eo]|| = 1.

Since || B (po || < k1 e?/B, k >0, (péﬁ) belongs to the

domain of all the powers of Bg. As a consequence

1
o0 = — Bioy, (2)

is well defined for all n > 0.
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Assumption 2: Bglliéﬁ) = 0= \IJ(()B) = cpg_ﬁ) =

U(—B o = U (B 1Yo and [|(AL)F W < k! ¥/P,
k > 0. Hence

1
NG

is also well defined for all n > 0.

\U,(fj) _ (Ag)nw(()ﬁ)' (3)
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Assumption 2: Bglliéﬁ) = 0= \Uéﬁ) = P —
U(—B 1Yo = U~ (B 1o and [|(AL)< w)|| < k1 e2/P,
k > 0. Hence

1
vl

is also well defined for all n > 0.

\U,(fj) _ (Ag)nw(()ﬁ)' (3)

Calling Ng = BgAg and Ng = Ng — A;Bg,, since

Mol = nld, AW = v, (3)
these vectors above are biorthogonal and the following

holds:
(o VDY =6y, e 2" (5)
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Organization of the. . .

Both F&) = {o¥), n >0} and FP) = (v n > 0}
are complete in H: < f, (pgﬁ) >=0 for all niff f = 0.

Linear pseudo-. ..

Hence Assumption 3 is satisfied.
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Both F&) = {o¥), n >0} and FP) = (v n > 0}
are complete in H: < f, (pgﬁ) >= 0 for all niff f = 0.
Hence Assumption 3 is satisfied.

Are ]:éﬁ) and .7-"5,6) Riesz bases?

No: they are related to an orthonormal basis via the

following self-adjoint, unbounded and invertible op-

erator: Vg = el@3)/B where [a af] = 1. More
explicitly, we have cpf) = (6;3/52\/,(3<Pk- i wiﬁ) _
a

e~1/p \/fj_lcpk, where @i = “Z% o, and apo = 0.
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Both F&) = {o¥), n >0} and FP) = (v n > 0}
are complete in H: < f, (pgﬁ) >= 0 for all niff f = 0.

Hence Assumption 3 is satisfied.
Are ]:éﬁ) and .7-"5,6) Riesz bases?

No: they are related to an orthonormal basis via the
following self-adjoint, unbounded and invertible op-
erator: \ = e(@ta)/B  where [a,al] = 1. More
explicitly, we have (pf(ﬁ) = e_1/52\/5<pk. and \IIE(B) =
e~1/p \/fj_lcpk, where @i = “Z% o, and apo = 0.

Moreover, calling hg = B(ata + y31l) = h', we have

HpVs = Vshg : (6)
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Both F&) = {o¥), n >0} and FP) = (v n > 0}
are complete in H: < f, (pgﬁ) >= 0 for all niff f = 0.

Hence Assumption 3 is satisfied.
Are ]:éﬁ) and .7-"5,6) Riesz bases?

No: they are related to an orthonormal basis via the
following self-adjoint, unbounded and invertible op-
erator: \ = e(@ta)/B  where [a,al] = 1. More
explicitly, we have (pf(ﬁ) = e_1/52\/5<pk. and \IIE(B) =
e~1/p \/fj_lcpk, where @i = “Z% o, and apo = 0.

Moreover, calling hg = B(ata + y31l) = h', we have

HpVs = Vshg : (6)

V5 is an intertwining operator between hg and Hp.
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The non self-adjoint hamiltonian is
1 :
Hy = 5 (P> +x*) — é tan(20) (p* — x%) ,

6 € (—%. %)\ {0} =: /. Introducing a and a' we

] 1
Ho = N + é tan(26) (2 + (a')?) + 5 1,
where N = afa. If

1 : o d
Ag = cos(f)a+ isin(f) al = — (e’ex L e d_> '
X

V2
By = cos(6) a" + isin(8) ai (e/ex et i)
V2 dx /)’

then
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The non self—adjoint hamiltonian is
Ho (p +x%) — = tan(29) (p> — x?),

6 € (—%. %)\ {0} =: /. Introducing a and a' we

write
' 1
=) )+
where N = afa. If
Ag = cos(f) a + isin(f) a' = N (e’ex 4o i)
V2 dx /)’

1 : o d
By = cos(0) a' + isin(0) a— (e’ex_e—le )
‘ e (©) V2

then
1
Ho = wp (Be As + —]1> : (7)

where wg = (26) We have AT # By and [Ag, By] =
1.
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Linear pseudo-. ..

Where do pseudo-. ..
219 2 }
)

A =0 =

(8) Connections with . . .

0 (x) = Ny exp {

Non-linear pseudo- . . .

Biwl) =0 =

Relation with . ..
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Organization of the. ..

A =0 =

Linear pseudo-. ..

}
219 2 (8)

Connections with . ..

0 (x) = Ny exp {

Non-linear pseudo- . . .
Biwl) =0 =

Relation with . ..

1 .
9)(X) _ N2 eXp { —2i6 2} (9) Pseudo-fermions
2 Application to decay
Since R(e*?%) > 0 Vo € I, = (po)(x) \IJ (x) € —
L2(R). If 6 ¢ | Assumptions 1 and 2 are violated! rome oee
We fmd Title Page
. « »
(6) 6) I 2i0 2
0 (x) = \/_Bg<p0 (x) = \/—nH (e x)exp{ 5¢€ X}, p R
(9) (9 N2 1 Page 18 of 44
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Their norms are

WO = [N cos (%) P, (%)

where P, is the n-th Legendre polynomial. Hence

Assumptions 1 and 2 are satisfied.
The blorthogonallty of .7—"(9) = {(p(g)(x), n > 0} and
WG) = (v (x), n > 0} produces

/ Hn (€7°x) Hp (e7x) e” e gy = 8 V20 M T pl ml.
R
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Their norms are

@2 — [\. |2 s P 1 )
lionlI” = [N " cos (cos(29)> n<c05(20) '

1
w2 = |, (—W ) Py (—)
| | [Nel* cos cos(20) cos(26)

where P, is the n-th Legendre polynomial. Hence

Assumptions 1 and 2 are satisfied.
The biorthogonality of .7—"(5,9) = {(p,(79)(x), n > 0} and
7:\5,9) = {\IJE,Q)(X), n > 0} produces

/ Hn (e7°x) Hm (") e " dx = 8y m V20 0l ml,
R

We still have to check whether the sets fg)) and fl(ue)

are
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Their norms are

@2 — [\. |2 s P 1 )
lionlI” = [N " cos (cos(29)> n<c05(20) '

1
w2 = |, (—W ) Py (—)
| | [Nel* cos cos(20) cos(26)

where P, is the n-th Legendre polynomial. Hence

Assumptions 1 and 2 are satisfied.
The biorthogonality of .7—"(5,9) = {(p,(79)(x), n > 0} and
7:\5,9) = {\IJE,Q)(X), n > 0} produces

/ Hn (e7°x) Hm (") e " dx = 8y m V20 0l ml,
R
We still have to check whether the sets fg)) and fl(ue)

are
(i) complete in £L2(R);
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Their norms are

WO = [N cos (%) P, (%)

where P, is the n-th Legendre polynomial. Hence

Assumptions 1 and 2 are satisfied.
The blorthogonallty of .7—"(9) = {(p(g)(x), n > 0} and
WG) = (v (x), n > 0} produces

/ Hn (€7°x) Hp (e7x) e” e gy = 8 V20 M T pl ml.
R

We still have to check whether the sets fg)) and fl(ue)
are
(i) complete in £L2(R);

(ii) Riesz bases.
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Completeness [Kolmogorov and Fomin]:

Therefore, Assumption 3 is satisfied.

Riesz bases?: we introduce the unbounded, self-adjoint

. 2
and invertible operator Ty = e'2(#=3")  Then

Ay = TgaTe_l, Bo = TgaTTe_l. (10)
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Completeness [Kolmogorov and Fomin]:

Therefore, Assumption 3 is satisfied.

Riesz bases?: we introduce the unbounded, self-adjoint

and invertible operator Ty = e5(#=")  Then
Ag = ToaT, ', Bo = Toa T, *. (10)
Tois an 10: let hg = wy (a’a+ 31) = hg, then
HoTo = Tohs,  ToH) = heTo, (11)
and a € C exists such that

1
o) =aTyp, and WY = o Ty len  (12)
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Organization of the. ..

= nor .7-"(5,9) neither .7-"&,9) are Riesz bases: our pseudo-

bosons are non-regular. Also, we deduce that n((pe) —

Linear pseudo-. ..

Where do pseudo-. ..

Connections with . ..

|a|? T2 and nfue) = |a|72T, 2. This is in agreement
with the following (formal) computations:

Z\m (i)

Non-linear pseudo- . . .

- 1
0 (Z |(Pn><(,0n|) a Tgil — ]l, Relation with . ..
n=0

Pseudo-fermions

=aTs (Z |n ><<Pn|) (aTs)f = [T = 5P, e
n=0

What more?
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Organization of the. ..

More (physically motivated) examples Linear pseuderl.

Where do pseudo-. ..

Connections with . ..

1. Landau levels (dim=2)[FB, ST Ali, JP Gazeau,

JMP 2010]
Non-linear pseudo- . . .
2. pseudo-hermitian networks [Jin and Song, arxiv Relation with ...
2011] (work in progress) Peeudofermions
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More (physically motivated) examples

1. Landau levels (dim=2)[FB, ST Ali, JP Gazeau,
JMP 2010]

2. pseudo-hermitian networks [Jin and Song, arxiv

2011] (work in progress)

3. Dy type quantum Calogero model [FB, JMAA
2012, submitted|]
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We have considered the following question: which
is the relation between (regular) pseudo-bosons and
ordinary bosons? The answer is given by the following
theorems [F. B., J. Phys. A, 44, 015205 (2011)]:

Theorem 1 Let a and b be such that [a, b] = 1, and
for which Assumptions 1-4 are satisfied. Then an un-
bounded, densely defined, operator c on H exists, and
a positive bounded operator T with bounded inverse
T~1, such that [c, c'] = L. Moreover

a=TcT b=TcT1 (1)

Viceversa, given an unbounded, densely defined, op-
erator ¢ on H satisfying [c,c'] = 1 and a posi-
tive bounded operator T with bounded inverse T 1,
two operators a and b can be introduced for which
[a, b] = 1, and for which equations (1) and Assump-

tions 1-4 are satisfied.
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Theorem 2 Let a and b be such that [a, b] = 1, and
Assumptions 1-3 (but not 4) hold true. Then two
unbounded, densely defined, operators ¢ and R on
H exist, such that [c,c'] = 1 and R is positive, self

adjoint and with unbounded inverse R~*. Moreover

a=RcR™, b= Rc'R™, (2)

and, introducing ¢, = %@o, cpo = 0, then ¢, €
D(R) N D(R™Y), for all n > 0, and the sets {R®,}
and {R~'¢,} are biorthogonal bases of H.

Viceversa, let us consider two unbounded, densely de-
fined, operators ¢ and R on H satisfying [c, cl] = 1
with R positive, self-adjoint with unbounded inverse
R~. Suppose that, introduced ¢, as above, ¢, €
D(R) N D(R™1), for all n > 0, and that the sets
{Rp,} and {R71¢,} are biorthogonal bases of H.
Then two operators a and b can be introduced for
which [a, b] = 1, and for which equations (2) and
Assumptions 1-3 (but not 4) are satisfied.
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Limitation of pseudo-bosons: eigenvalues €, linear in
n.

We use an idea imported from non-linear coherent

states:
2>= e 3 2
z>=¢€ —
= V! i
becomes
2\—1/2 — 2z’
=(2) := N(|z|*)~ b,
where €,! = €1---€,, with ¢! = 1 and N(|z|?) a

proper normalization (inside a certain domain of con-

vergence).
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Limitation of pseudo-bosons: eigenvalues €, linear in
n.

We use an idea imported from non-linear coherent

states:
2>= e 3 2
z>=¢€ —
= V! i
becomes
2\—1/2 — 2z’
=(2) := N(|z|*)~ b,
where €,! = €1---€,, with ¢! = 1 and N(|z|?) a

proper normalization (inside a certain domain of con-

vergence).

Let a and b be operators on H and {€,} such that
0 =€ < €1 < € < +--. Then [F. B., J. Math.
Phys., 52, 063521, (2011)]..
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..the triple (a, b, {€n}) is a family of non-linear regular
pseudo-bosons (NLRPB) if:

e pl. a non zero vector ®q exists in ‘H such that
a®o =0 and &g € D>(b).

e p2. a non zero vector 7y exists in H such that
b mo = 0 and 1y € D>(a").

Organization of the. ..

Linear pseudo-. ..
Where do pseudo-. ..
Connections with . . .
Relation with . . .
Pseudo-fermions
Application to decay
What more?
Home Page
Title Page
44 44
< >
Page 26 of 44
Go Back
Full Screen
Close

Quit



..the triple (a, b, {€n}) is a family of non-linear regular
pseudo-bosons (NLRPB) if:

e pl. a non zero vector ®q exists in ‘H such that
a®o =0 and &g € D>(b).

e p2. a non zero vector 7y exists in H such that
b mo = 0 and 1y € D>(a").

e p3. Calling

1
b dy, My = at" no,
€nl €nl

b, =

we have, for all n > 0,

ad, = \/a(bn—l, bT'r’n = \/ann—l-
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..the triple (a, b, {€n}) is a family of non-linear regular
pseudo-bosons (NLRPB) if:

e pl. a non zero vector ®q exists in ‘H such that
a®o =0 and &g € D>(b).

e p2. a non zero vector 7y exists in H such that
b'no = 0 and mp € D>(al).
e p3. Calling
1

b dy, My = a'" no,
€nl €nl

b, =

we have, for all n > 0,

ad, = \/a(bn—l, bT'r’n = \/ann—l-

e p4d. Fo = {P,, n >0} and F, = {ms, n > 0}

are bases of H.
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..the triple (a, b, {€n}) is a family of non-linear regular
pseudo-bosons (NLRPB) if:

pl. a non zero vector ®y exists in H such that
a®o =0 and &g € D>(b).

pP2. a non zero vector 7y exists in ‘H such that
b'no = 0 and mp € D>(al).
p3. Calling

1

b dy, My = a'" no,
€nl €nl

b, =
we have, for all n > 0,

ad, = \/a(bn—l, bT'r’n = \/ann—l-

pd. Fo = {®P,, n > 0} and F, = {nn, n > 0}

are bases of H.

p5. Fo and F,, are Riesz bases of H.
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Let us introduce the following (not self-adjoint) op-

erators:
M = ba, M = M = a'b'. (1)

Then we can check that &, € D(M) N D(b), n, €
D(9%) N D(a'), and that

bd, = vV €n+1 ¢n+1, aT'r]n = vV €n+1 Tn+1, (2)

as well as

Mq)n — €n¢n, mnn — Gn’r)n, (3)
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Let us introduce the following (not self-adjoint) op-

Organization of the. ..

erators:
Linear pseudo-. ..
M = ba, M = M = a'b'. (1)
Where do pseudo-. ..
Then we can check that &, € D(M) N D(b), n, € Connections with. ..

D(9%) N D(a'), and that

b®, = vV €n+1 ¢n+1, aT'r]n = vV €n+1 Tn+1,

as well as
Mo, = €,P,, IMNn = €nNn,
Hence, if (&g, mo) = 1,

<¢n: 77m> — 6n,m,

Non-linear pseudo- . . .

5 Relation with . ..
(2)
Pseudo-fermions
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Moreover

DI ><ml =D Ina>< dol =1, (5)

n

Organization of the. ..

Linear pseudo-. ..
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while pb implies that So = >, |, > < ®,| and
Sp = >, |mn > < ma| are positive, bounded, invert-
ible and that S¢ = 5771.
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Moreover

DI ><ml =D Ina>< dol =1, (5)

while pb implies that So = >, |, > < ®,| and
Sp = >, |mn > < ma| are positive, bounded, invert-
ible and that S¢ = 5771.

The new fact is that the operators a and b do not, in
general, satisfy any simple commutation rule. Indeed,

we can check that, for all n > 0,
[a, b]q)n — (€n+]_ - En) q>n, (6)

which is different from [a, b] = 1, except if €, = n.
We end this overview mentioning also that M and 9t

are connected by an intertwining operator:

MS¢e = SoIN
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With M. Znojil we have analyzed the connections be-
tween NLRPB and CH in JPA, 2011. The starting

point is the following

Definition 3 Let us consider two operators H and ©
acting on the Hilbert space H, with © positive and
invertible. Let us call HT the adjoint of H in H with
respect to its scalar product and H* = ©~'HT©, when
this exists. We will say that H is cryptohermitian with
respect to © (CHwrt®) if H = H*.

We will restrict here to © and ©~! bounded. The
operators ©*1/2 are well defined. Hence we can in-
troduce an operator h := ©Y2 HO /2, |t is easy to
check that h = h'. Hence the following definition

appears natural:
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Definition 4 Assume that H is CHwrt®, for H and
© as above. H is well behaved wrt © if h has only
discrete eigenvalues €,, n € Ny := N U {0}, with
eigenvectors e,: he, = €pep, n € Ng, and € = {e,} is
a basis of H.

Useful technical assumptions:
1. the multiplicity of each eigenvalue €, is one.
2. Weassume 0 =g < €1 <€ < .. ..
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Definition 4 Assume that H is CHwrt®, for H and
© as above. H is well behaved wrt © if h has only
discrete eigenvalues €,, n € Ny := N U {0}, with
eigenvectors e,: he, = €pep, n € Ng, and € = {e,} is
a basis of H.

Useful technical assumptions:
1. the multiplicity of each eigenvalue €, is one.
2. Weassume 0 =g < €1 <€ < .. ..

Theorem 5 Let H be well behaved wrt ©, where
©,0°! € B(H), and © = ©'. Then it is possible
to introduce two operators a and b on H, and a se-
quence of real numbers {€,, n € Ny}, such that the
triple (a, b, {en}) is a family of NLRPB.

Vice versa, if (a, b,{en}) is a family of NLRPB, two
operators can be introduced, H and ©, such that
©,0° ! e B(H) and © = ©F, and H is well behaved
wrt ©.
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Consequences:
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Consequences:

Organization of the. ..

1. Formally we have

Linear pseudo-. ..

oo oo
a:Z\/enM)n_l ><’f)n|. b= Z\/€n+1|¢n+1 ><’T]n|, Where do pseudo-. ..

n=0 n=0
Connections with . ..
as well as
Non-linear pseudo- . . .
oo
h = E enlen > < e
n=0 Pseudo-fermions
! ) Application to decay
H = E Enlq)n > < 77n| What more?
n=0 Home Page
and
(e @) Title Page
HY = E €n|nn > < Dyl “«  »
n=0 p N

In particular h, H and H' are isospectrals.
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2. Even if h is not required to be factorizable, be-
cause of our construction it turns out that it can
be written as h = bgag, where ag = ©1/2501/2
and bg = OY2p©1/2_ Incidentally, in gen-
eral [ae, bo] = ©Y?[a, b ©~ Y2 £ [a, b], but if
[[a, b], ®/2] = 0, which is the case for pseudo-
bosons. Therefore, at least at a formal level, our
construction shows that the hamiltonian h can

be written in a factorized form.

Organization of the. ..

Linear pseudo-. ..
Where do pseudo-. ..
Connections with . . .
Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay
What more?
Home Page
Title Page
44 44
< >
Page 32 of 44
Go Back
Full Screen
Close

Quit



[F.B., J. Phys. A, 2012]
The CAR are replaced here by the following rules:

{a,b} =1, {a,a} =0, {bb}=0, (1)

where the relevant situation is when b # af. Com-
pared with Assumptions 1-4 for PB, the only assump-

tions we might need to require now are the following

e pl. a non zero vector g exists in ‘H such that

a Qo =0.

e p2. a non zero vector Wy exists in H such that
bt Wy = 0.

However, even these two requirements are automati-

cally satisfied, as a consequence of (1):
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In fact, in H, it is easy to check that the only non-

trivial possible choices of a and b satisfying (1) are Organization of the .

the fO”OWing: Linear pseudo- . . .
Where do pseudo-. ..
01 B —B3?
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In fact, in H, it is easy to check that the only non-

trivial possible choices of a and b satisfying (1) are Organization of the

the fOI IOWI ng: Linear pseudo- . . .

01 B —B?
a(l) = ] b 1) = ) onnections with . . .
W={ 5] w=(7 7 s i

Where do pseudo-. ..

Non-linear pseudo- . . .
Relation with . . .

a 1 00

' b ( 2) — ' Application to decay
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In fact, in H, it is easy to check that the only non-
trivial possible choices of a and b satisfying (1) are

the following:

(o1 _ (B P

a(l) = 00 )" b(1) = . g |
a 1 00

a(2) = —a? —a )’ b(2) = 10/

with non zero o and (3,
or, maybe more interestingly,

. a1 a12 . Bi1 B2
a3) = ( —a? /o —ou ) - P = < —B# /B2 —Pu > ’

2 2
with 2a11811 — agi” — 5161212 = 1.

choices, it is easy to show that the two non zero vec-

For all these

tors o and Wy of pl and p2 do exist. This is not
surprising, since det(a) = det(b') = 0.
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Organization of the. ..

For instance, if we take a1 = % B11 = % and a1 =
Linear pseudo- . . .
—0B12 = —1i, we find: i
Where do pseudo-. ..
1 3 _I 2 3 I onnections with . . .
2(3) = / b(3) = / | AR
_I/g _1/3 4’/9 _2/3 Non-linear pseudo- . . .
1 w 5 1 Relation with . . .
o=af .| Vo= R
v —i/3 —3i/2 e

. o (o . Application to decay
It is not difficult to relate o and B in such a way

(po, Vo) = 1.
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It is now possible to recover similar results as those

for PB. In particular, we introduce
@1 := by, W1 = alVy,

as well as the non self-adjoint operators

N = ba, N = NT:aTbT_
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It is now possible to recover similar results as those

for PB. In particular, we introduce

Y1 := by,

as well as the non self-adjoint operators

N = ba,

We further introduce S, and Sy:

1

Sef = Z<‘an ) ©n,

n=0

f € H. Hence we get:

v, = alwy,,

N = Nt = afpT.
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It is now possible to recover similar results as those

for PB. In particular, we introduce
@1 := by, W1 = alVy,
as well as the non self-adjoint operators
N=ba, N =N =ab

We further introduce S, and Sy:

1 1

Sef = (@n, Y @n, Suf =D (W, NV

n=0 n=0

f € H. Hence we get:

ap; = o, bW = Wy,

(2)

(3)

no (%)

(5)
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It is now possible to recover similar results as those

for PB. In particular, we introduce

Y1 := by,

v, = alwy,,

as well as the non self-adjoint operators

N = ba, N = NT:aTbT_

We further introduce S, and Sy:

1

(2)

(3)

Sef = (@n ) @n,  Suf =D (W, 1)V, (4)

n=0

f € H. Hence we get:

ap1 = o,

Newn = np,y,

1
n=0
biw, = W,
N\Un — n\Un,

(5)

(6)
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3. If <(p0, \Uo> =1, then

Organization of the. ..

(0K, Wn) = Ok,n, (7)
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3. If <(p0, \Uo> =1, then
<(pk1 \Un> — 6/(,[71 (7)
for k, n =0, 1.

4. S, and Sy are bounded, strictly positive, self-
adjoint, and invertible. They satisfy

1Sell < lloll+llall®,  1Swll < Wl +[Wll?,

Sgown = ©n, S\U(Pn =V, (8)

for n=0,1, as well as S, = S;,;* and the follow-

ing intertwining relations

SuN=NSy,  SoN =NS, (9
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Then:
(i) N and N behave as fermionic number operators,

having eigenvalues 0 and 1;
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Then:
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Then:

(i) N and N behave as fermionic number operators, Organization of the
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tors in Fy, = {wo, w1} and Fy = {Vo, V1 }; Connections with... .
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Then:

(i) N and N behave as fermionic number operators,
having eigenvalues 0 and 1;

(ii) their related eigenvectors are respectively the vec-
tors in Fy, = {wo, w1} and Fy = {Vo, V1 };

(iii) a and b' are lowering operators for F, and Fy
respectively;

(iv) b and a' are rising operators for F, and Fy re-
spectively;

(v) the two sets F, and Fy are biorthonormal;

(vi) the very well-behaved operators S, and Sy maps
Fo in Fy and viceversa;

(vii) Sy and Sy intertwine between operators which
are not self-adjoint, in the very same way as they do
for PB.

The Assumptions 1-4 are automatically satisfied: we
get Riesz bases for free, and we don’t need to impose

conditions on the domains of operators. Also:
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Theorem 6 Let c and T = T be two operators on
H such that {c,c’} =1, c> =0, and T > 0. Then,
defining

a=TcT?' b=Tc T (10)

these operators satisfy (1).

Viceversa, given two operators a and b acting on H,
satisfying (1), it is possible to define two operators,
c and T, such that {c,c’} =1, c>=0,T =T'is
strictly positive, and (10) holds.
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Organization of the. ..

The starting point is the Schrodinger equation

Linear pseudo-. ..
c . 1 _ /fya vV Where do pseudo- . . .
I\U(t) - HeffW(t)' Wlth Heff ~ 5 V —["Yb ' Connections with . ..

Non-linear pseudo- . . .

where 5,7, > 0 and v € C, [Ben-Aryeh etc., JPA,
2004; Trifonov etc., JPA, 2007].

Relation with . ..

Pseudo-fermions

Application to decay

What more?

Putting ®(t) = e''W(t), I = %('ya + vp), we get
i®(t) = HO(t), where

. =i v B do(t)
H=iTly+Her = ( 5 ) , (D(t) = ( Cbl(t) > .

Here v = (v, — ). Calling Q := |v|?> — 42 we find
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Q = 0: the functions ®o(t) and ®1(t) are linear in t, | 4
SO that Organization t;fthe...
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Q = 0: the functions ®o(t) and ®1(t) are linear in t,

SO th at Organization (;f the. ..

_ (DO(t) e_(’Ya'F’Yb)%(AO + BO t) Linear pseudo-. ..
w(t) — € : < ) - < ) Where do pseudo- . . .

q)l(t) e_(fya'l_’y")%(Al + By t)

Connections with . ..

€2 > 0. In this case the solution can be written as Non-linear pseudo- . ..

w(t) _ e_('ya+'7b)% AO COS(\/ﬁ t) + BO Sin(\/ﬁ t) Relation with . . .
Ajcos(VQt) + Bysin(vQt) )
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Q = 0: the functions ®o(t) and ®1(t) are linear in t,
so that

U(t)=e ®o(t) \ _ [ e (A + Bot)
®1(t) e~ tmz(A + By t) |

€2 > 0. In this case the solution can be written as

V(t) = o~ (Yt )3 Ag cos(VQ t) + Bosin(vQ 1)
A1 cos(VQ t) + Bisin(vVQt)

(2 < 0. In this case the solution can be written as

( Ao exp(/]Q] t) + Bo exp(—+/1Q] t) )

Ajexp(+/|92] t) + Brexp(—+/|22| t).

N[+

V(t) = e (1aFm)

Here Ao, A1, Bo and B; are fixed by the initial condi-
tions.
In all cases, when t — oo, even if in general | ®(t)|| -
0, we find that

lw(t)l - o,
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Organization of the. ..

The eigenvalues of H can be written as A+ := £v/Q,

and the eigenstates are
Where do pseudo-. ..

(—i’y + \/ﬁ) n — = % (I"’Y + \/ﬁ) [ Connectons with...

1 1 Non-linear pseudo- . . .

Linear pseudo-. ..

</~

N+ =
Relation with . ..
Notice that < n.,m—- >= ﬁ% (’y— /\/ﬁ) which is
zero only if y =0 (H = HY) orif v = ivVQ (H =
—HT). Also, going back to Hefr
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Organization of the. ..
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