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II. Linear pseudo-bosons: Some mathe-
matics

Let H be a given Hilbert space with scalar product
〈., .〉 and norm ‖.‖. Let a and b be two operators
acting on H and satisfying (Trifonov, 2009)

[a, b] = 11, (1)

If b = a† then we recover CCR. Recall that a and b
cannot both be bounded operators: they cannot be
defined in all of H. For this reason we consider the
following
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II. Linear pseudo-bosons: Some mathe-
matics

Let H be a given Hilbert space with scalar product
〈., .〉 and norm ‖.‖. Let a and b be two operators
acting on H and satisfying (Trifonov, 2009)

[a, b] = 11, (1)

If b = a† then we recover CCR. Recall that a and b
cannot both be bounded operators: they cannot be
defined in all of H. For this reason we consider the
following

Assumption 1.– there exists a non-zero ϕ0 ∈ H such
that aϕ0 = 0 and ϕ0 ∈ D∞(b) := ∩k≥0D(bk).
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II. Linear pseudo-bosons: Some mathe-
matics

Let H be a given Hilbert space with scalar product
〈., .〉 and norm ‖.‖. Let a and b be two operators
acting on H and satisfying (Trifonov, 2009)

[a, b] = 11, (1)

If b = a† then we recover CCR. Recall that a and b
cannot both be bounded operators: they cannot be
defined in all of H. For this reason we consider the
following

Assumption 1.– there exists a non-zero ϕ0 ∈ H such
that aϕ0 = 0 and ϕ0 ∈ D∞(b) := ∩k≥0D(bk).

Then
ϕn =

1
√
n!
bn ϕ0, n ≥ 0, (2)

belongs to H for all n ≥ 0.
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Let N := ba. Then ϕn ∈ D(N), for all n ≥ 0, and

Nϕn = nϕn, n ≥ 0. (3)

Let us now take N := N† = a†b† 6= N. We require
that the following holds:
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Let N := ba. Then ϕn ∈ D(N), for all n ≥ 0, and

Nϕn = nϕn, n ≥ 0. (3)

Let us now take N := N† = a†b† 6= N. We require
that the following holds:

Assumption 2.– there exists a non-zero Ψ0 ∈ H such
that b†Ψ0 = 0 and Ψ0 ∈ D∞(a†) := ∩k≥0D((a†)k).
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Let N := ba. Then ϕn ∈ D(N), for all n ≥ 0, and

Nϕn = nϕn, n ≥ 0. (3)

Let us now take N := N† = a†b† 6= N. We require
that the following holds:

Assumption 2.– there exists a non-zero Ψ0 ∈ H such
that b†Ψ0 = 0 and Ψ0 ∈ D∞(a†) := ∩k≥0D((a†)k).

Under this assumption the following vectors

Ψn =
1
√
n!

(a†)nΨ0, n ≥ 0, (4)

belong to H for all n ≥ 0, and to D(N ). Moreover

NΨn = nΨn, n ≥ 0. (5)
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Example 1: the above natural assumptions are not al-
ways satisfied: let H = L2(R, dν(x)), dν(x) = dx

1+x2 ,
a = ip, b = x . Then aϕ0(x) = 0 implies that ϕ0(x)

is constant. Of course ϕ0(x) ∈ H but bϕ0(x) =

xϕ0(x) /∈ H. Hence ϕ0(x) does not belong to D∞(b)

and Assumption 1 is violated.



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 5 of 44

Go Back

Full Screen

Close

Quit

Example 1: the above natural assumptions are not al-
ways satisfied: let H = L2(R, dν(x)), dν(x) = dx

1+x2 ,
a = ip, b = x . Then aϕ0(x) = 0 implies that ϕ0(x)

is constant. Of course ϕ0(x) ∈ H but bϕ0(x) =

xϕ0(x) /∈ H. Hence ϕ0(x) does not belong to D∞(b)

and Assumption 1 is violated.

Example 2: the trivial case: harmonic oscillator. In
this case H = L2(R, dx), and taking a = c :=

1√
2

(
d
dx

+ x
)
and b = c† = 1√

2

(
− d
dx

+ x
)
, [a, b] =

[c, c†] = 11, we find that ϕ0(x) = Ψ0(x) = 1
π1/4e

−x2/2,
which satisfies both Assumptions 1 and 2.
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Example 3: [Trifonov] H = L2(R, dx), as = c + sc†

and bs = sc + (1 + s2)c†. Hence [as, bs] = 11 for all
real s. asϕ0(x) = 0 ⇒ ϕ0(x) = Ns exp

{
−1

2
1+s
1−s x

2
}
,

while b†sΨ0(x) = 0⇒Ψ0(x) = N ′s exp
{
−1

2
1+s+s2

1−s+s2 x
2
}
.

Both these functions are square integrable if −1 <

s < 1. This same condition ensures also that ϕ0(x) ∈
D∞(bs) and that Ψ0(x) ∈ D∞(a†s): any polynomial
multiplied for a gaussian function belongs to L2(R, dx).
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Example 4: (two-dimensional deformation of c and
c†) Let aα,µ := αc + α

µ
c†, bα,µ := µα

2−1
α
c + αc†,

where α and µ are real constants such that α,µ 6=
0 and α2 6= µ2(α2 − 1). Hence a†α,µ 6= bα,µ and
[aα,µ, bα,µ] = 11.
aα,µϕ0(x) = 0 and b†α,µΨ0(x) = 0 produce

ϕ0(x) = Nα,µ exp

{
−

1

2

µ+ 1

µ− 1
x2

}
,

and

Ψ0(x) = N ′α,µ exp

{
−

1

2

α2 + µ(α2 − 1)

α2 − µ(α2 − 1)
x2

}
.

These functions satisfy Assumptions 1 and 2 if α > 1

and 1 < µ < 1 + 1
α2−1

.
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Under Assumptions 1 and 2 we have 〈Ψn, ϕm〉 =

δn,m 〈Ψ0, ϕ0〉 for all n,m ≥ 0. Then, if 〈Ψ0, ϕ0〉 = 1,

〈Ψn, ϕm〉 = δn,m, ∀n,m ≥ 0 (6)
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Under Assumptions 1 and 2 we have 〈Ψn, ϕm〉 =

δn,m 〈Ψ0, ϕ0〉 for all n,m ≥ 0. Then, if 〈Ψ0, ϕ0〉 = 1,

〈Ψn, ϕm〉 = δn,m, ∀n,m ≥ 0 (6)

Moreover, ∀n ≥ 0 we have ϕn ∈ D(a) and Ψn ∈
D(b†), and aϕn =

√
n ϕn−1, as well as b†Ψn =

√
nΨn−1.
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Under Assumptions 1 and 2 we have 〈Ψn, ϕm〉 =

δn,m 〈Ψ0, ϕ0〉 for all n,m ≥ 0. Then, if 〈Ψ0, ϕ0〉 = 1,

〈Ψn, ϕm〉 = δn,m, ∀n,m ≥ 0 (6)

Moreover, ∀n ≥ 0 we have ϕn ∈ D(a) and Ψn ∈
D(b†), and aϕn =

√
n ϕn−1, as well as b†Ψn =

√
nΨn−1.

Let Fϕ := {ϕn, n ≥ 0} and FΨ := {Ψn, n ≥ 0}.
Since 〈ϕn, ϕk〉 6= δn,k , a†ϕn =

√
n + 1ϕn+1 is false,

in general. For the same reason bΨn 6=
√
n + 1 Ψn+1.
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Under Assumptions 1 and 2 we have 〈Ψn, ϕm〉 =

δn,m 〈Ψ0, ϕ0〉 for all n,m ≥ 0. Then, if 〈Ψ0, ϕ0〉 = 1,

〈Ψn, ϕm〉 = δn,m, ∀n,m ≥ 0 (6)

Moreover, ∀n ≥ 0 we have ϕn ∈ D(a) and Ψn ∈
D(b†), and aϕn =

√
n ϕn−1, as well as b†Ψn =

√
nΨn−1.

Let Fϕ := {ϕn, n ≥ 0} and FΨ := {Ψn, n ≥ 0}.
Since 〈ϕn, ϕk〉 6= δn,k , a†ϕn =

√
n + 1ϕn+1 is false,

in general. For the same reason bΨn 6=
√
n + 1 Ψn+1.

However, the sets Fϕ and FΨ are biorthogonal and,
because of this, the vectors of each set are linearly
independent.

Assumption 3.– Fϕ and FΨ are are complete in H.
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Then, Fϕ and FΨ are bases in H. The resolution of
the identity looks now

∞∑
n=0

|ϕn >< Ψn| =

∞∑
n=0

|Ψn >< ϕn| = 11, (7)

where 11 is the identity operator on H.
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Then, Fϕ and FΨ are bases in H. The resolution of
the identity looks now

∞∑
n=0

|ϕn >< Ψn| =

∞∑
n=0

|Ψn >< ϕn| = 11, (7)

where 11 is the identity operator on H.

Let further

Sϕ =

∞∑
n=0

|ϕn >< ϕn|, SΨ =

∞∑
n=0

|Ψn >< Ψn|.

(8)
These operators need not to be well defined: for in-
stance the series could be not convergent, or even
if they do, they could converge to some unbounded
operator, so we have to be careful about domains.
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More rigorously, we introduce an operator Sϕ acting
on a vector f ∈ D(Sϕ) as Sϕf =

∑∞
n=0 〈ϕn, f 〉ϕn,

and SΨ, acting on a vector h ∈ D(SΨ) as SΨh =∑∞
n=0 〈Ψn, h〉Ψn. Under Assumption 3, both these

operators are densely defined in H. In particular:
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More rigorously, we introduce an operator Sϕ acting
on a vector f ∈ D(Sϕ) as Sϕf =

∑∞
n=0 〈ϕn, f 〉ϕn,

and SΨ, acting on a vector h ∈ D(SΨ) as SΨh =∑∞
n=0 〈Ψn, h〉Ψn. Under Assumption 3, both these

operators are densely defined in H. In particular:

SϕΨn = ϕn, SΨϕn = Ψn,

for all n ≥ 0. Then Ψn = (SΨ Sϕ)Ψn and ϕn =

(Sϕ SΨ)ϕn, for all n ≥ 0. Hence (for bounded Sϕ and
SΨ):

SΨ Sϕ = Sϕ SΨ = 11 ⇒ SΨ = S−1
ϕ . (9)
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More rigorously, we introduce an operator Sϕ acting
on a vector f ∈ D(Sϕ) as Sϕf =

∑∞
n=0 〈ϕn, f 〉ϕn,

and SΨ, acting on a vector h ∈ D(SΨ) as SΨh =∑∞
n=0 〈Ψn, h〉Ψn. Under Assumption 3, both these

operators are densely defined in H. In particular:

SϕΨn = ϕn, SΨϕn = Ψn,

for all n ≥ 0. Then Ψn = (SΨ Sϕ)Ψn and ϕn =

(Sϕ SΨ)ϕn, for all n ≥ 0. Hence (for bounded Sϕ and
SΨ):

SΨ Sϕ = Sϕ SΨ = 11 ⇒ SΨ = S−1
ϕ . (9)

Furthermore, we can also check that they are both
positive defined and symmetric. In general, however,
they are unbounded.
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This is not a big surprise: two biorthogonal bases are
related by a bounded operator, with bounded inverse,
if and only if they are Riesz bases. Then:
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This is not a big surprise: two biorthogonal bases are
related by a bounded operator, with bounded inverse,
if and only if they are Riesz bases. Then:

Assumption 4.– Fϕ and FΨ are Riesz bases: there
exist an o.n. basis G = {gn, n ≥ 0} and two bounded
operators X and Y , with bounded inverses, such that

ϕn = X gn, and Ψn = Y gn,

for all n ≥ 0.
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This is not a big surprise: two biorthogonal bases are
related by a bounded operator, with bounded inverse,
if and only if they are Riesz bases. Then:

Assumption 4.– Fϕ and FΨ are Riesz bases: there
exist an o.n. basis G = {gn, n ≥ 0} and two bounded
operators X and Y , with bounded inverses, such that

ϕn = X gn, and Ψn = Y gn,

for all n ≥ 0.

In thus case we call our pseudo-bosons regular, and
both Sϕ and SΨ are bounded operators.
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This is not a big surprise: two biorthogonal bases are
related by a bounded operator, with bounded inverse,
if and only if they are Riesz bases. Then:

Assumption 4.– Fϕ and FΨ are Riesz bases: there
exist an o.n. basis G = {gn, n ≥ 0} and two bounded
operators X and Y , with bounded inverses, such that

ϕn = X gn, and Ψn = Y gn,

for all n ≥ 0.

In thus case we call our pseudo-bosons regular, and
both Sϕ and SΨ are bounded operators.
Remark:– Regular pseudo-bosons give rise to Riesz
bases. Viceversa: each Riesz basis produce two oper-
ators a and b satisfying all the properties of regular
pseudo-bosons.
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An interesting feature of SΨ and Sϕ

SΨ and Sϕ are intertwining operators between non
self-adjoint operators:
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An interesting feature of SΨ and Sϕ

SΨ and Sϕ are intertwining operators between non
self-adjoint operators:

SΨN = N SΨ and N Sϕ = SϕN . (10)
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An interesting feature of SΨ and Sϕ

SΨ and Sϕ are intertwining operators between non
self-adjoint operators:

SΨN = N SΨ and N Sϕ = SϕN . (10)

Some references:
F. B., Pseudo-bosons, Riesz bases and coherent states,
J. Math. Phys., (2010)
F. B., Construction of pseudo-bosons systems, J. Math.
Phys., (2010)
F. B., Mathematical aspects of intertwining opera-
tors: the role of Riesz bases, J. Phys. A, 175203
(2010)
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III. Where do pseudo-bosons appear?

III.1. The extended quantum harmonic oscillator

[J. da Providência et al., Non hermitian operators
with real spectrum in quantum mechanics, arXiv: quant-
ph 0909.3054, [F.B, PLA, 2010]

Hβ =
β

2

(
p2 + x2

)
+ i
√

2 p,

β > 0 and [x, p] = i .
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III. Where do pseudo-bosons appear?

III.1. The extended quantum harmonic oscillator

[J. da Providência et al., Non hermitian operators
with real spectrum in quantum mechanics, arXiv: quant-
ph 0909.3054, [F.B, PLA, 2010]

Hβ =
β

2

(
p2 + x2

)
+ i
√

2 p,

β > 0 and [x, p] = i .

Using a = 1√
2

(
x + d

dx

)
, a† = 1√

2

(
x − d

dx

)
, [a, a†] =

11, and N = a†a, we can writeHβ = βN+(a−a†)+β
2

11
which, putting

Aβ = a −
1

β
, Bβ = a† +

1

β
, ⇒

Hβ = β (BβAβ + γβ 11) ,

where γβ = 2+β2

2β2 , ∀β > 0, A†β 6= Bβ and [Aβ, Bβ] =

11.
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Assumption 1: find a non zero vector ϕ(β)
0 ∈ H such

that Aβϕ
(β)
0 = 0 and ϕ(β)

0 ∈ D∞(Bβ).
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Assumption 1: find a non zero vector ϕ(β)
0 ∈ H such

that Aβϕ
(β)
0 = 0 and ϕ(β)

0 ∈ D∞(Bβ).
Aβϕ

(β)
0 = 0 ⇒ a ϕ

(β)
0 = 1

β
ϕ

(β)
0 ⇒ ϕ

(β)
0 is a standard

coherent state with parameter 1
β
:

ϕ
(β)
0 = U(β−1)ϕ0 = e−1/2β2

∞∑
k=0

β−k
√
k!
ϕk , (1)

where aϕ0 = 0, and U(β−1) = e
1
β

(a†−a) is the unitary
(displacement) operator: ‖ϕ(β)

0 ‖ = ‖ϕ0‖ = 1.
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Assumption 1: find a non zero vector ϕ(β)
0 ∈ H such

that Aβϕ
(β)
0 = 0 and ϕ(β)

0 ∈ D∞(Bβ).
Aβϕ

(β)
0 = 0 ⇒ a ϕ

(β)
0 = 1

β
ϕ

(β)
0 ⇒ ϕ

(β)
0 is a standard

coherent state with parameter 1
β
:

ϕ
(β)
0 = U(β−1)ϕ0 = e−1/2β2

∞∑
k=0

β−k
√
k!
ϕk , (1)

where aϕ0 = 0, and U(β−1) = e
1
β

(a†−a) is the unitary
(displacement) operator: ‖ϕ(β)

0 ‖ = ‖ϕ0‖ = 1.

Since ‖Bkβ ϕ
(β)
0 ‖ ≤ k! e2/β, k ≥ 0, ϕ(β)

0 belongs to the
domain of all the powers of Bβ. As a consequence

ϕ
(β)
n =

1
√
n!
Bnβϕ

(β)
0 , (2)

is well defined for all n ≥ 0.
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Assumption 2: B†βΨ
(β)
0 = 0 ⇒ Ψ

(β)
0 = ϕ

(−β)
0 =

U(−β−1)ϕ0 = U−1(β−1)ϕ0 and ‖(A†β)k Ψ
(β)
0 ‖ ≤ k! e2/β,

k ≥ 0. Hence

Ψ
(β)
n =

1
√
n!

(A†β)nΨ
(β)
0 , (3)

is also well defined for all n ≥ 0.
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Assumption 2: B†βΨ
(β)
0 = 0 ⇒ Ψ

(β)
0 = ϕ

(−β)
0 =

U(−β−1)ϕ0 = U−1(β−1)ϕ0 and ‖(A†β)k Ψ
(β)
0 ‖ ≤ k! e2/β,

k ≥ 0. Hence

Ψ
(β)
n =

1
√
n!

(A†β)nΨ
(β)
0 , (3)

is also well defined for all n ≥ 0.

Calling Nβ = BβAβ and Nβ = N†β = A†βB
†
β, since

Nβ ϕ
(β)
n = n ϕ

(β)
n , NβΨ

(β)
n = nΨ

(β)
n , (4)

these vectors above are biorthogonal and the following
holds: 〈

ϕ
(β)
n ,Ψ

(β)
m

〉
= δn,m e

−2/β2

. (5)
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Both F (β)
ϕ = {ϕ(β)

n , n ≥ 0} and F (β)
Ψ = {Ψ(β)

n , n ≥ 0}
are complete in H: < f , ϕ

(β)
n >= 0 for all n iff f = 0.

Hence Assumption 3 is satisfied.



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 16 of 44

Go Back

Full Screen

Close

Quit

Both F (β)
ϕ = {ϕ(β)

n , n ≥ 0} and F (β)
Ψ = {Ψ(β)

n , n ≥ 0}
are complete in H: < f , ϕ

(β)
n >= 0 for all n iff f = 0.

Hence Assumption 3 is satisfied.

Are F (β)
ϕ and F (β)

Ψ Riesz bases?
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Both F (β)
ϕ = {ϕ(β)

n , n ≥ 0} and F (β)
Ψ = {Ψ(β)

n , n ≥ 0}
are complete in H: < f , ϕ

(β)
n >= 0 for all n iff f = 0.

Hence Assumption 3 is satisfied.

Are F (β)
ϕ and F (β)

Ψ Riesz bases?

No: they are related to an orthonormal basis via the
following self-adjoint, unbounded and invertible op-
erator: Vβ = e(a+a†)/β, where [a, a†] = 11. More
explicitly, we have ϕ(β)

k = e−1/β2
Vβ ϕk . and Ψ

(β)
k =

e−1/β2
V −1
β ϕk , where ϕk =

(a†)k√
k!
ϕ0, and aϕ0 = 0.
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Both F (β)
ϕ = {ϕ(β)

n , n ≥ 0} and F (β)
Ψ = {Ψ(β)

n , n ≥ 0}
are complete in H: < f , ϕ

(β)
n >= 0 for all n iff f = 0.

Hence Assumption 3 is satisfied.

Are F (β)
ϕ and F (β)

Ψ Riesz bases?

No: they are related to an orthonormal basis via the
following self-adjoint, unbounded and invertible op-
erator: Vβ = e(a+a†)/β, where [a, a†] = 11. More
explicitly, we have ϕ(β)

k = e−1/β2
Vβ ϕk . and Ψ

(β)
k =

e−1/β2
V −1
β ϕk , where ϕk =

(a†)k√
k!
ϕ0, and aϕ0 = 0.

Moreover, calling hβ = β(a†a + γβ11) = h†β, we have

HβVβ = Vβhβ : (6)
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Both F (β)
ϕ = {ϕ(β)

n , n ≥ 0} and F (β)
Ψ = {Ψ(β)

n , n ≥ 0}
are complete in H: < f , ϕ

(β)
n >= 0 for all n iff f = 0.

Hence Assumption 3 is satisfied.

Are F (β)
ϕ and F (β)

Ψ Riesz bases?

No: they are related to an orthonormal basis via the
following self-adjoint, unbounded and invertible op-
erator: Vβ = e(a+a†)/β, where [a, a†] = 11. More
explicitly, we have ϕ(β)

k = e−1/β2
Vβ ϕk . and Ψ

(β)
k =

e−1/β2
V −1
β ϕk , where ϕk =

(a†)k√
k!
ϕ0, and aϕ0 = 0.

Moreover, calling hβ = β(a†a + γβ11) = h†β, we have

HβVβ = Vβhβ : (6)

Vβ is an intertwining operator between hβ and Hβ.



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 17 of 44

Go Back

Full Screen

Close

Quit

III.2. The Swanson hamiltonian

The non self-adjoint hamiltonian is

Hθ =
1

2

(
p2 + x2

)
−
i

2
tan(2θ)

(
p2 − x2

)
,

θ ∈
(
−π

4
, π

4

)
\ {0} =: I. Introducing a and a† we

write

Hθ = N +
i

2
tan(2θ)

(
a2 + (a†)2

)
+

1

2
11,

where N = a†a. If
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III.2. The Swanson hamiltonian

The non self-adjoint hamiltonian is

Hθ =
1

2

(
p2 + x2

)
−
i

2
tan(2θ)

(
p2 − x2

)
,

θ ∈
(
−π

4
, π

4

)
\ {0} =: I. Introducing a and a† we

write

Hθ = N +
i

2
tan(2θ)

(
a2 + (a†)2

)
+

1

2
11,

where N = a†a. If

Aθ = cos(θ) a + i sin(θ) a† =
1
√

2

(
e iθx + e−iθ

d

dx

)
,

Bθ = cos(θ) a† + i sin(θ) a
1
√

2

(
e iθx − e−iθ

d

dx

)
,

then



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 17 of 44

Go Back

Full Screen

Close

Quit

III.2. The Swanson hamiltonian

The non self-adjoint hamiltonian is

Hθ =
1

2

(
p2 + x2

)
−
i

2
tan(2θ)

(
p2 − x2

)
,

θ ∈
(
−π

4
, π

4

)
\ {0} =: I. Introducing a and a† we

write

Hθ = N +
i

2
tan(2θ)

(
a2 + (a†)2

)
+

1

2
11,

where N = a†a. If

Aθ = cos(θ) a + i sin(θ) a† =
1
√

2

(
e iθx + e−iθ

d

dx

)
,

Bθ = cos(θ) a† + i sin(θ) a
1
√

2

(
e iθx − e−iθ

d

dx

)
,

then

Hθ = ωθ

(
Bθ Aθ +

1

2
11

)
, (7)

where ωθ = 1
cos(2θ)

. We have A†θ 6= Bθ and [Aθ, Bθ] =

11.
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Aθϕ
(θ)
0 = 0 ⇒

ϕ
(θ)
0 (x) = N1 exp

{
−

1

2
e2iθ x2

}
, (8)

B†θΨ
(θ)
0 = 0 ⇒

Ψ
(θ)
0 (x) = N2 exp

{
−

1

2
e−2iθ x2

}
. (9)
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Aθϕ
(θ)
0 = 0 ⇒

ϕ
(θ)
0 (x) = N1 exp

{
−

1

2
e2iθ x2

}
, (8)

B†θΨ
(θ)
0 = 0 ⇒

Ψ
(θ)
0 (x) = N2 exp

{
−

1

2
e−2iθ x2

}
. (9)

Since <(e±2iθ) > 0 ∀θ ∈ I, ⇒ ϕ
(θ)
0 (x),Ψ

(θ)
0 (x) ∈

L2(R). If θ /∈ I Assumptions 1 and 2 are violated!
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Aθϕ
(θ)
0 = 0 ⇒

ϕ
(θ)
0 (x) = N1 exp

{
−

1

2
e2iθ x2

}
, (8)

B†θΨ
(θ)
0 = 0 ⇒

Ψ
(θ)
0 (x) = N2 exp

{
−

1

2
e−2iθ x2

}
. (9)

Since <(e±2iθ) > 0 ∀θ ∈ I, ⇒ ϕ
(θ)
0 (x),Ψ

(θ)
0 (x) ∈

L2(R). If θ /∈ I Assumptions 1 and 2 are violated!
We find:

ϕ
(θ)
n (x) =

1
√
n!
Bn
θ ϕ

(θ)
0 (x) =

N1√
2n n!

Hn
(
e iθx
)

exp

{
−

1

2
e2iθ x2

}
,

Ψ
(θ)
n (x) =

1
√
n!

(A†θ)
n Ψ

(θ)
0 (x) =

N2√
2n n!

Hn
(
e−iθx

)
exp

{
−

1

2
e−2iθ x2

}
,

where Hn(x) is the n-th Hermite polynomial.
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Their norms are

‖ϕ(θ)
n ‖2 = |N1|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

‖Ψ(θ)
n ‖2 = |N2|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

where Pn is the n-th Legendre polynomial. Hence
Assumptions 1 and 2 are satisfied.
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Their norms are

‖ϕ(θ)
n ‖2 = |N1|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

‖Ψ(θ)
n ‖2 = |N2|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

where Pn is the n-th Legendre polynomial. Hence
Assumptions 1 and 2 are satisfied.
The biorthogonality of F (θ)

ϕ = {ϕ(θ)
n (x), n ≥ 0} and

F (θ)
Ψ = {Ψ(θ)

n (x), n ≥ 0} produces∫
R
Hn
(
e−iθx

)
Hm
(
e−iθx

)
e−e

−2iθx2

dx = δn,m
√

2n+m π n!m!.
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Their norms are

‖ϕ(θ)
n ‖2 = |N1|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

‖Ψ(θ)
n ‖2 = |N2|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

where Pn is the n-th Legendre polynomial. Hence
Assumptions 1 and 2 are satisfied.
The biorthogonality of F (θ)

ϕ = {ϕ(θ)
n (x), n ≥ 0} and

F (θ)
Ψ = {Ψ(θ)

n (x), n ≥ 0} produces∫
R
Hn
(
e−iθx

)
Hm
(
e−iθx

)
e−e

−2iθx2

dx = δn,m
√

2n+m π n!m!.

We still have to check whether the sets F (θ)
ϕ and F (θ)

Ψ

are
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Their norms are

‖ϕ(θ)
n ‖2 = |N1|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

‖Ψ(θ)
n ‖2 = |N2|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

where Pn is the n-th Legendre polynomial. Hence
Assumptions 1 and 2 are satisfied.
The biorthogonality of F (θ)

ϕ = {ϕ(θ)
n (x), n ≥ 0} and

F (θ)
Ψ = {Ψ(θ)

n (x), n ≥ 0} produces∫
R
Hn
(
e−iθx

)
Hm
(
e−iθx

)
e−e

−2iθx2

dx = δn,m
√

2n+m π n!m!.

We still have to check whether the sets F (θ)
ϕ and F (θ)

Ψ

are
(i) complete in L2(R);
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Their norms are

‖ϕ(θ)
n ‖2 = |N1|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

‖Ψ(θ)
n ‖2 = |N2|2 cos

(
π

cos(2θ)

)
Pn

(
1

cos(2θ)

)
,

where Pn is the n-th Legendre polynomial. Hence
Assumptions 1 and 2 are satisfied.
The biorthogonality of F (θ)

ϕ = {ϕ(θ)
n (x), n ≥ 0} and

F (θ)
Ψ = {Ψ(θ)

n (x), n ≥ 0} produces∫
R
Hn
(
e−iθx

)
Hm
(
e−iθx

)
e−e

−2iθx2

dx = δn,m
√

2n+m π n!m!.

We still have to check whether the sets F (θ)
ϕ and F (θ)

Ψ

are
(i) complete in L2(R);
(ii) Riesz bases.
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Completeness [Kolmogorov and Fomin]: if ρ(x) is a
Lebesgue-measurable function which is different from
zero almost everywhere (a.e.) in R and if there exist
two positive constants δ, C such that |ρ(x)| ≤ C e−δ|x |

a.e. in R, then the set {xn ρ(x)} is complete in L2(R).
Therefore, Assumption 3 is satisfied.
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Completeness [Kolmogorov and Fomin]: if ρ(x) is a
Lebesgue-measurable function which is different from
zero almost everywhere (a.e.) in R and if there exist
two positive constants δ, C such that |ρ(x)| ≤ C e−δ|x |

a.e. in R, then the set {xn ρ(x)} is complete in L2(R).
Therefore, Assumption 3 is satisfied.

Riesz bases?: we introduce the unbounded, self-adjoint
and invertible operator Tθ = e i

θ
2
(a2−a†2). Then

Aθ = TθaT
−1
θ , Bθ = Tθa

†T−1
θ . (10)
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Completeness [Kolmogorov and Fomin]: if ρ(x) is a
Lebesgue-measurable function which is different from
zero almost everywhere (a.e.) in R and if there exist
two positive constants δ, C such that |ρ(x)| ≤ C e−δ|x |

a.e. in R, then the set {xn ρ(x)} is complete in L2(R).
Therefore, Assumption 3 is satisfied.

Riesz bases?: we introduce the unbounded, self-adjoint
and invertible operator Tθ = e i

θ
2
(a2−a†2). Then

Aθ = TθaT
−1
θ , Bθ = Tθa

†T−1
θ . (10)

Tθ is an IO: let hθ = ωθ
(
a†a + 1

2
11
)

= h†θ, then

HθTθ = Tθhθ, TθH
†
θ = hθTθ, (11)

and α ∈ C exists such that

ϕ
(θ)
n = αTθ ϕn, and Ψ

(θ)
n =

1

α
T−1
θ ϕn (12)
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⇒ nor F (θ)
ϕ neither F (θ)

Ψ are Riesz bases: our pseudo-
bosons are non-regular. Also, we deduce that η(θ)

ϕ =

|α|2 T 2
θ and η(θ)

Ψ = |α|−2 T−2
θ . This is in agreement

with the following (formal) computations:

∞∑
n=0

∣∣∣ϕ(θ)
n 〉〈Ψ

(θ)
n

∣∣∣ = αTθ

( ∞∑
n=0

|ϕn 〉〈ϕn|

)
1

α
T−1
θ = 11,

∞∑
n=0

∣∣∣ϕ(θ)
n 〉〈ϕ(θ)

n

∣∣∣ = αTθ

( ∞∑
n=0

|ϕn 〉〈ϕn|

)
(αTθ)

† = |α|2T 2
θ = S

(β)
ϕ ,

as well as

∞∑
n=0

∣∣∣Ψ(θ)
n 〉〈Ψ

(θ)
n

∣∣∣ =
1

α
T−1
θ

( ∞∑
n=0

|ϕn 〉〈ϕn|

)(
1

α
T−1
θ

)†
=

= |α|−2T−2
θ = S

(β)
Ψ .
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More (physically motivated) examples
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More (physically motivated) examples

1. Landau levels (dim=2)[FB, ST Ali, JP Gazeau,
JMP 2010]



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 22 of 44

Go Back

Full Screen

Close

Quit

More (physically motivated) examples

1. Landau levels (dim=2)[FB, ST Ali, JP Gazeau,
JMP 2010]

2. pseudo-hermitian networks [Jin and Song, arxiv
2011] (work in progress)
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More (physically motivated) examples

1. Landau levels (dim=2)[FB, ST Ali, JP Gazeau,
JMP 2010]

2. pseudo-hermitian networks [Jin and Song, arxiv
2011] (work in progress)

3. DN type quantum Calogero model [FB, JMAA
2012, submitted]
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IV. Connections with bosons

We have considered the following question: which
is the relation between (regular) pseudo-bosons and
ordinary bosons? The answer is given by the following
theorems [F. B., J. Phys. A, 44, 015205 (2011)]:
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IV. Connections with bosons

We have considered the following question: which
is the relation between (regular) pseudo-bosons and
ordinary bosons? The answer is given by the following
theorems [F. B., J. Phys. A, 44, 015205 (2011)]:

Theorem 1 Let a and b be such that [a, b] = 11, and
for which Assumptions 1-4 are satisfied. Then an un-
bounded, densely defined, operator c onH exists, and
a positive bounded operator T with bounded inverse
T−1, such that [c, c†] = 11. Moreover

a = T c T−1, b = T c†T−1. (1)

Viceversa, given an unbounded, densely defined, op-
erator c on H satisfying [c, c†] = 11 and a posi-
tive bounded operator T with bounded inverse T−1,
two operators a and b can be introduced for which
[a, b] = 11, and for which equations (1) and Assump-
tions 1-4 are satisfied.
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Theorem 2 Let a and b be such that [a, b] = 11, and
Assumptions 1-3 (but not 4) hold true. Then two
unbounded, densely defined, operators c and R on
H exist, such that [c, c†] = 11 and R is positive, self
adjoint and with unbounded inverse R−1. Moreover

a = RcR−1, b = Rc†R−1, (2)

and, introducing ϕ̂n = c†
n

√
n!
ϕ̂0, cϕ0 = 0, then ϕ̂n ∈

D(R) ∩ D(R−1), for all n ≥ 0, and the sets {Rϕ̂n}
and {R−1ϕ̂n} are biorthogonal bases of H.
Viceversa, let us consider two unbounded, densely de-
fined, operators c and R on H satisfying [c, c†] = 11

with R positive, self-adjoint with unbounded inverse
R−1. Suppose that, introduced ϕ̂n as above, ϕ̂n ∈
D(R) ∩ D(R−1), for all n ≥ 0, and that the sets
{Rϕ̂n} and {R−1ϕ̂n} are biorthogonal bases of H.
Then two operators a and b can be introduced for
which [a, b] = 11, and for which equations (2) and
Assumptions 1-3 (but not 4) are satisfied.
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V. Non-linear pseudo-bosons

Limitation of pseudo-bosons: eigenvalues εn linear in
n.
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V. Non-linear pseudo-bosons

Limitation of pseudo-bosons: eigenvalues εn linear in
n.
We use an idea imported from non-linear coherent
states:

|z >= e−|z |
2/2

∞∑
k=0

zn
√
n!

Φn

becomes

Ξ(z) := N(|z |2)−1/2
∞∑
k=0

zn
√
εn!

Φn,

where εn! = ε1 · · · εn, with ε0! = 1 and N(|z |2) a
proper normalization (inside a certain domain of con-
vergence).
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V. Non-linear pseudo-bosons

Limitation of pseudo-bosons: eigenvalues εn linear in
n.
We use an idea imported from non-linear coherent
states:

|z >= e−|z |
2/2

∞∑
k=0

zn
√
n!

Φn

becomes

Ξ(z) := N(|z |2)−1/2
∞∑
k=0

zn
√
εn!

Φn,

where εn! = ε1 · · · εn, with ε0! = 1 and N(|z |2) a
proper normalization (inside a certain domain of con-
vergence).

Let a and b be operators on H and {εn} such that
0 = ε0 < ε1 < ε2 < · · · . Then [F. B., J. Math.
Phys., 52, 063521, (2011)]..
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..the triple (a, b, {εn}) is a family of non-linear regular
pseudo-bosons (NLRPB) if:

• p1. a non zero vector Φ0 exists in H such that
aΦ0 = 0 and Φ0 ∈ D∞(b).
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..the triple (a, b, {εn}) is a family of non-linear regular
pseudo-bosons (NLRPB) if:

• p1. a non zero vector Φ0 exists in H such that
aΦ0 = 0 and Φ0 ∈ D∞(b).

• p2. a non zero vector η0 exists in H such that
b† η0 = 0 and η0 ∈ D∞(a†).
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..the triple (a, b, {εn}) is a family of non-linear regular
pseudo-bosons (NLRPB) if:

• p1. a non zero vector Φ0 exists in H such that
aΦ0 = 0 and Φ0 ∈ D∞(b).

• p2. a non zero vector η0 exists in H such that
b† η0 = 0 and η0 ∈ D∞(a†).

• p3. Calling

Φn :=
1
√
εn!
bn Φ0, ηn :=

1
√
εn!
a†
n
η0,

we have, for all n ≥ 0,

aΦn =
√
εn Φn−1, b†ηn =

√
εn ηn−1.
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..the triple (a, b, {εn}) is a family of non-linear regular
pseudo-bosons (NLRPB) if:

• p1. a non zero vector Φ0 exists in H such that
aΦ0 = 0 and Φ0 ∈ D∞(b).

• p2. a non zero vector η0 exists in H such that
b† η0 = 0 and η0 ∈ D∞(a†).

• p3. Calling

Φn :=
1
√
εn!
bn Φ0, ηn :=

1
√
εn!
a†
n
η0,

we have, for all n ≥ 0,

aΦn =
√
εn Φn−1, b†ηn =

√
εn ηn−1.

• p4. FΦ = {Φn, n ≥ 0} and Fη = {ηn, n ≥ 0}
are bases of H.
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..the triple (a, b, {εn}) is a family of non-linear regular
pseudo-bosons (NLRPB) if:

• p1. a non zero vector Φ0 exists in H such that
aΦ0 = 0 and Φ0 ∈ D∞(b).

• p2. a non zero vector η0 exists in H such that
b† η0 = 0 and η0 ∈ D∞(a†).

• p3. Calling

Φn :=
1
√
εn!
bn Φ0, ηn :=

1
√
εn!
a†
n
η0,

we have, for all n ≥ 0,

aΦn =
√
εn Φn−1, b†ηn =

√
εn ηn−1.

• p4. FΦ = {Φn, n ≥ 0} and Fη = {ηn, n ≥ 0}
are bases of H.

• p5. FΦ and Fη are Riesz bases of H.
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Let us introduce the following (not self-adjoint) op-
erators:

M = ba, M = M† = a†b†. (1)

Then we can check that Φn ∈ D(M) ∩ D(b), ηn ∈
D(M) ∩D(a†), and that

bΦn =
√
εn+1 Φn+1, a†ηn =

√
εn+1 ηn+1, (2)

as well as

MΦn = εnΦn, Mηn = εnηn, (3)
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Let us introduce the following (not self-adjoint) op-
erators:

M = ba, M = M† = a†b†. (1)

Then we can check that Φn ∈ D(M) ∩ D(b), ηn ∈
D(M) ∩D(a†), and that

bΦn =
√
εn+1 Φn+1, a†ηn =

√
εn+1 ηn+1, (2)

as well as

MΦn = εnΦn, Mηn = εnηn, (3)

Hence, if 〈Φ0, η0〉 = 1,

〈Φn, ηm〉 = δn,m, (4)
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Moreover∑
n

|Φn >< ηn| =
∑
n

|ηn >< Φn| = 11, (5)

while p5 implies that SΦ :=
∑

n |Φn >< Φn| and
Sη :=

∑
n |ηn >< ηn| are positive, bounded, invert-

ible and that SΦ = S−1
η .
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Moreover∑
n

|Φn >< ηn| =
∑
n

|ηn >< Φn| = 11, (5)

while p5 implies that SΦ :=
∑

n |Φn >< Φn| and
Sη :=

∑
n |ηn >< ηn| are positive, bounded, invert-

ible and that SΦ = S−1
η .

The new fact is that the operators a and b do not, in
general, satisfy any simple commutation rule. Indeed,
we can check that, for all n ≥ 0,

[a, b]Φn = (εn+1 − εn) Φn, (6)

which is different from [a, b] = 11, except if εn = n.
We end this overview mentioning also that M and M

are connected by an intertwining operator:

MSΦ = SΦM
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VI. Relation with cryptohermiticity

With M. Znojil we have analyzed the connections be-
tween NLRPB and CH in JPA, 2011. The starting
point is the following

Definition 3 Let us consider two operators H and Θ

acting on the Hilbert space H, with Θ positive and
invertible. Let us call H† the adjoint of H in H with
respect to its scalar product and H‡ = Θ−1H†Θ, when
this exists. We will say that H is cryptohermitian with
respect to Θ (CHwrtΘ) if H = H‡.

We will restrict here to Θ and Θ−1 bounded. The
operators Θ±1/2 are well defined. Hence we can in-
troduce an operator h := Θ1/2HΘ−1/2. It is easy to
check that h = h†. Hence the following definition
appears natural:



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 30 of 44

Go Back

Full Screen

Close

Quit

Definition 4 Assume that H is CHwrtΘ, for H and
Θ as above. H is well behaved wrt Θ if h has only
discrete eigenvalues εn, n ∈ N0 := N ∪ {0}, with
eigenvectors en: hen = εnen, n ∈ N0, and E = {en} is
a basis of H.

Useful technical assumptions:
1. the multiplicity of each eigenvalue εn is one.
2. We assume 0 = ε0 < ε1 < ε2 < . . ..
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Definition 4 Assume that H is CHwrtΘ, for H and
Θ as above. H is well behaved wrt Θ if h has only
discrete eigenvalues εn, n ∈ N0 := N ∪ {0}, with
eigenvectors en: hen = εnen, n ∈ N0, and E = {en} is
a basis of H.

Useful technical assumptions:
1. the multiplicity of each eigenvalue εn is one.
2. We assume 0 = ε0 < ε1 < ε2 < . . ..

Theorem 5 Let H be well behaved wrt Θ, where
Θ,Θ−1 ∈ B(H), and Θ = Θ†. Then it is possible
to introduce two operators a and b on H, and a se-
quence of real numbers {εn, n ∈ N0}, such that the
triple (a, b, {εn}) is a family of NLRPB.
Vice versa, if (a, b, {εn}) is a family of NLRPB, two
operators can be introduced, H and Θ, such that
Θ,Θ−1 ∈ B(H) and Θ = Θ†, and H is well behaved
wrt Θ.
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Consequences:
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Consequences:

1. Formally we have

a =

∞∑
n=0

√
εn|Φn−1 >< ηn|, b =

∞∑
n=0

√
εn+1|Φn+1 >< ηn|,

as well as

h =

∞∑
n=0

εn|en >< en|

,

H =

∞∑
n=0

εn|Φn >< ηn|

and

H† =

∞∑
n=0

εn|ηn >< Φn|.

In particular h, H and H† are isospectrals.
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2. Even if h is not required to be factorizable, be-
cause of our construction it turns out that it can
be written as h = bΘaΘ, where aΘ = Θ1/2aΘ−1/2

and bΘ = Θ1/2bΘ−1/2. Incidentally, in gen-
eral [aΘ, bΘ] = Θ1/2[a, b] Θ−1/2 6= [a, b], but if[
[a, b],Θ1/2

]
= 0, which is the case for pseudo-

bosons. Therefore, at least at a formal level, our
construction shows that the hamiltonian h can
be written in a factorized form.
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VII. Pseudo-fermions

[F.B., J. Phys. A, 2012]
The CAR are replaced here by the following rules:

{a, b} = 11, {a, a} = 0, {b, b} = 0, (1)

where the relevant situation is when b 6= a†. Com-
pared with Assumptions 1-4 for PB, the only assump-
tions we might need to require now are the following

• p1. a non zero vector ϕ0 exists in H such that
a ϕ0 = 0.

• p2. a non zero vector Ψ0 exists in H such that
b†Ψ0 = 0.

However, even these two requirements are automati-
cally satisfied, as a consequence of (1):
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In fact, in H, it is easy to check that the only non-
trivial possible choices of a and b satisfying (1) are
the following:

a(1) =

(
0 1

0 0

)
, b(1) =

(
β −β2

1 −β

)
,
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In fact, in H, it is easy to check that the only non-
trivial possible choices of a and b satisfying (1) are
the following:

a(1) =

(
0 1

0 0

)
, b(1) =

(
β −β2

1 −β

)
,

a(2) =

(
α 1

−α2 −α

)
, b(2) =

(
0 0

1 0

)
,

with non zero α and β,
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In fact, in H, it is easy to check that the only non-
trivial possible choices of a and b satisfying (1) are
the following:

a(1) =

(
0 1

0 0

)
, b(1) =

(
β −β2

1 −β

)
,

a(2) =

(
α 1

−α2 −α

)
, b(2) =

(
0 0

1 0

)
,

with non zero α and β,
or, maybe more interestingly,

a(3) =

(
α11 α12

−α2
11/α12 −α11

)
, b(3) =

(
β11 β12

−β2
11/β12 −β11

)
,

with 2α11β11 − α2
11β12

α12
− β2

11α12

β12
= 1. For all these

choices, it is easy to show that the two non zero vec-
tors ϕ0 and Ψ0 of p1 and p2 do exist. This is not
surprising, since det(a) = det(b†) = 0.
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For instance, if we take α11 = 1
3
, β11 = 2

3
, and α12 =

−β12 = −i , we find:

a(3) =

(
1/3 −i
−i/9 −1/3

)
, b(3) =

(
2/3 i

4i/9 −2/3

)
,

ϕ0 = α

(
1

−i/3

)
, Ψ0 = β

(
1

−3i/2

)
.

It is not difficult to relate α and β in such a way
〈ϕ0,Ψ0〉 = 1.
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It is now possible to recover similar results as those
for PB. In particular, we introduce

ϕ1 := bϕ0, Ψ1 = a†Ψ0, (2)

as well as the non self-adjoint operators

N = ba, N = N† = a†b†. (3)
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It is now possible to recover similar results as those
for PB. In particular, we introduce

ϕ1 := bϕ0, Ψ1 = a†Ψ0, (2)

as well as the non self-adjoint operators

N = ba, N = N† = a†b†. (3)

We further introduce Sϕ and SΨ:

Sϕf =

1∑
n=0

〈ϕn, f 〉ϕn, SΨf =

1∑
n=0

〈Ψn, f 〉Ψn, (4)

f ∈ H. Hence we get:
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It is now possible to recover similar results as those
for PB. In particular, we introduce

ϕ1 := bϕ0, Ψ1 = a†Ψ0, (2)

as well as the non self-adjoint operators

N = ba, N = N† = a†b†. (3)

We further introduce Sϕ and SΨ:

Sϕf =

1∑
n=0

〈ϕn, f 〉ϕn, SΨf =

1∑
n=0

〈Ψn, f 〉Ψn, (4)

f ∈ H. Hence we get:

1.
aϕ1 = ϕ0, b†Ψ1 = Ψ0. (5)
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It is now possible to recover similar results as those
for PB. In particular, we introduce

ϕ1 := bϕ0, Ψ1 = a†Ψ0, (2)

as well as the non self-adjoint operators

N = ba, N = N† = a†b†. (3)

We further introduce Sϕ and SΨ:

Sϕf =

1∑
n=0

〈ϕn, f 〉ϕn, SΨf =

1∑
n=0

〈Ψn, f 〉Ψn, (4)

f ∈ H. Hence we get:

1.
aϕ1 = ϕ0, b†Ψ1 = Ψ0. (5)

2.
Nϕn = nϕn, NΨn = nΨn, (6)
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3. If 〈ϕ0,Ψ0〉 = 1, then

〈ϕk ,Ψn〉 = δk,n, (7)

for k, n = 0, 1.
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3. If 〈ϕ0,Ψ0〉 = 1, then

〈ϕk ,Ψn〉 = δk,n, (7)

for k, n = 0, 1.

4. Sϕ and SΨ are bounded, strictly positive, self-
adjoint, and invertible. They satisfy

‖Sϕ‖ ≤ ‖ϕ0‖2+‖ϕ1‖2, ‖SΨ‖ ≤ ‖Ψ0‖2+‖Ψ1‖2,

SϕΨn = ϕn, SΨϕn = Ψn, (8)

for n = 0, 1, as well as Sϕ = S−1
Ψ and the follow-

ing intertwining relations

SΨN = NSΨ, SϕN = NSϕ. (9)
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Then:
(i) N and N behave as fermionic number operators,
having eigenvalues 0 and 1;
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Then:
(i) N and N behave as fermionic number operators,
having eigenvalues 0 and 1;
(ii) their related eigenvectors are respectively the vec-
tors in Fϕ = {ϕ0, ϕ1} and FΨ = {Ψ0,Ψ1};
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Then:
(i) N and N behave as fermionic number operators,
having eigenvalues 0 and 1;
(ii) their related eigenvectors are respectively the vec-
tors in Fϕ = {ϕ0, ϕ1} and FΨ = {Ψ0,Ψ1};
(iii) a and b† are lowering operators for Fϕ and FΨ

respectively;
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Then:
(i) N and N behave as fermionic number operators,
having eigenvalues 0 and 1;
(ii) their related eigenvectors are respectively the vec-
tors in Fϕ = {ϕ0, ϕ1} and FΨ = {Ψ0,Ψ1};
(iii) a and b† are lowering operators for Fϕ and FΨ

respectively;
(iv) b and a† are rising operators for Fϕ and FΨ re-
spectively;
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Then:
(i) N and N behave as fermionic number operators,
having eigenvalues 0 and 1;
(ii) their related eigenvectors are respectively the vec-
tors in Fϕ = {ϕ0, ϕ1} and FΨ = {Ψ0,Ψ1};
(iii) a and b† are lowering operators for Fϕ and FΨ

respectively;
(iv) b and a† are rising operators for Fϕ and FΨ re-
spectively;
(v) the two sets Fϕ and FΨ are biorthonormal;



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 38 of 44

Go Back

Full Screen

Close

Quit

Then:
(i) N and N behave as fermionic number operators,
having eigenvalues 0 and 1;
(ii) their related eigenvectors are respectively the vec-
tors in Fϕ = {ϕ0, ϕ1} and FΨ = {Ψ0,Ψ1};
(iii) a and b† are lowering operators for Fϕ and FΨ

respectively;
(iv) b and a† are rising operators for Fϕ and FΨ re-
spectively;
(v) the two sets Fϕ and FΨ are biorthonormal;
(vi) the very well-behaved operators Sϕ and SΨ maps
Fϕ in FΨ and viceversa;
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Then:
(i) N and N behave as fermionic number operators,
having eigenvalues 0 and 1;
(ii) their related eigenvectors are respectively the vec-
tors in Fϕ = {ϕ0, ϕ1} and FΨ = {Ψ0,Ψ1};
(iii) a and b† are lowering operators for Fϕ and FΨ

respectively;
(iv) b and a† are rising operators for Fϕ and FΨ re-
spectively;
(v) the two sets Fϕ and FΨ are biorthonormal;
(vi) the very well-behaved operators Sϕ and SΨ maps
Fϕ in FΨ and viceversa;
(vii) Sϕ and SΨ intertwine between operators which
are not self-adjoint, in the very same way as they do
for PB.
The Assumptions 1-4 are automatically satisfied: we
get Riesz bases for free, and we don’t need to impose
conditions on the domains of operators. Also:
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Theorem 6 Let c and T = T † be two operators on
H such that {c, c†} = 11, c2 = 0, and T > 0. Then,
defining

a = T c T−1, b = T c† T−1, (10)

these operators satisfy (1).
Viceversa, given two operators a and b acting on H,
satisfying (1), it is possible to define two operators,
c and T , such that {c, c†} = 11, c2 = 0, T = T † is
strictly positive, and (10) holds.
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VIII. Application to decay

The starting point is the Schrödinger equation

iΨ̇(t) = Hef fΨ(t), withHef f =
1

2

(
−iγa v

v −iγb

)
,

where γa, γb > 0 and v ∈ C, [Ben-Aryeh etc., JPA,
2004; Trifonov etc., JPA, 2007].

VIII.0.1. Schrödinger representation

Putting Φ(t) = eΓtΨ(t), Γ = 1
2
(γa + γb), we get

iΦ̇(t) = HΦ(t), where

H = iΓ112+Hef f =

(
−iγ v

v iγ

)
, Φ(t) =

(
Φ0(t)

Φ1(t)

)
.

Here γ = 1
2
(γa − γb). Calling Ω := |v |2 − γ2 we find{

Φ̈0(t) = −Ω Φ0(t),

Φ̈1(t) = −Ω Φ1(t).
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Ω = 0: the functions Φ0(t) and Φ1(t) are linear in t,
so that

Ψ(t) = e−Γt

(
Φ0(t)

Φ1(t)

)
=

(
e−(γa+γb) t

2 (A0 + B0 t)

e−(γa+γb) t
2 (A1 + B1 t)

)
.
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Ω = 0: the functions Φ0(t) and Φ1(t) are linear in t,
so that

Ψ(t) = e−Γt

(
Φ0(t)

Φ1(t)

)
=

(
e−(γa+γb) t

2 (A0 + B0 t)

e−(γa+γb) t
2 (A1 + B1 t)

)
.

Ω > 0. In this case the solution can be written as

Ψ(t) = e−(γa+γb) t
2

(
A0 cos(

√
Ω t) + B0 sin(

√
Ω t)

A1 cos(
√

Ω t) + B1 sin(
√

Ω t)

)
,
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Ω = 0: the functions Φ0(t) and Φ1(t) are linear in t,
so that

Ψ(t) = e−Γt

(
Φ0(t)

Φ1(t)

)
=

(
e−(γa+γb) t

2 (A0 + B0 t)

e−(γa+γb) t
2 (A1 + B1 t)

)
.

Ω > 0. In this case the solution can be written as

Ψ(t) = e−(γa+γb) t
2

(
A0 cos(

√
Ω t) + B0 sin(

√
Ω t)

A1 cos(
√

Ω t) + B1 sin(
√

Ω t)

)
,

Ω < 0. In this case the solution can be written as

Ψ(t) = e−(γa+γb) t2

(
A0 exp(

√
|Ω| t) + B0 exp(−

√
|Ω| t)

A1 exp(
√
|Ω| t) + B1 exp(−

√
|Ω| t).

)
.

Here A0, A1, B0 and B1 are fixed by the initial condi-
tions.
In all cases, when t →∞, even if in general ‖Φ(t)‖9
0, we find that

‖Ψ(t)‖ → 0.
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VIII.0.2. Heisenberg representation

The eigenvalues of H can be written as λ± := ±
√

Ω,
and the eigenstates are

η+ =

(
1
v

(
−iγ +

√
Ω
)

1

)
, η− =

(
− 1

v

(
iγ +

√
Ω
)

1

)
.

Notice that < η+, η− >= 2γ
|v |2

(
γ − i

√
Ω
)
, which is

zero only if γ = 0 (H = H†) or if γ = i
√

Ω (H =

−H†). Also, going back to Hef f

Hef f η± = E± η±, E± = −
i

2
(γa + γb)±

√
Ω.
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VIII.0.2. Heisenberg representation

The eigenvalues of H can be written as λ± := ±
√

Ω,
and the eigenstates are

η+ =

(
1
v

(
−iγ +

√
Ω
)

1

)
, η− =

(
− 1

v

(
iγ +

√
Ω
)

1

)
.

Notice that < η+, η− >= 2γ
|v |2

(
γ − i

√
Ω
)
, which is

zero only if γ = 0 (H = H†) or if γ = i
√

Ω (H =

−H†). Also, going back to Hef f

Hef f η± = E± η±, E± = −
i

2
(γa + γb)±

√
Ω.

It is possible now to introduce two operators a and b,
such that {a, b} = 11, a2 = b2 = 0, and

H = Ω

(
b a −

1

2
11

)
= Ω

(
N −

1

2
11

)
,

where N = b a.
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To recover the same damping we have found in Schrödinger
representation, it is natural to consider the time evo-
lution of the number operator N:

Nef f (t) = e iH
†
ef f tN e−iHef f t,

which turns out to be

Nef f (t) = e−2Γ t
(
Ne−iΩt +N N(1− e−iΩt)

)
.

Then, if we estimate the norm of Nef f (t), it is trivial
to deduce that

‖Nef f (t)‖ ≤ 3e−2Γt,

which goes to zero when t diverges. Hence, as ex-
pected, we recover damping also in Heisenberg pic-
ture.
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To recover the same damping we have found in Schrödinger
representation, it is natural to consider the time evo-
lution of the number operator N:

Nef f (t) = e iH
†
ef f tN e−iHef f t,

which turns out to be

Nef f (t) = e−2Γ t
(
Ne−iΩt +N N(1− e−iΩt)

)
.

Then, if we estimate the norm of Nef f (t), it is trivial
to deduce that

‖Nef f (t)‖ ≤ 3e−2Γt,

which goes to zero when t diverges. Hence, as ex-
pected, we recover damping also in Heisenberg pic-
ture.
Remark:– Larger dimensional examples can also be
constructed, see FB, J. Phys. A, submitted.
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1. unbounded operators (with M. Znojil [JPhysA
2012] and with C.Trapani and A. Inoue [JMP
2011] and [JMP submitted])



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 44 of 44

Go Back

Full Screen

Close

Quit

IX. What more?

1. unbounded operators (with M. Znojil [JPhysA
2012] and with C.Trapani and A. Inoue [JMP
2011] and [JMP submitted])

2. pseudo-bosonic quantum field theory: any spin-
statistic theorem?



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 44 of 44

Go Back

Full Screen

Close

Quit

IX. What more?

1. unbounded operators (with M. Znojil [JPhysA
2012] and with C.Trapani and A. Inoue [JMP
2011] and [JMP submitted])

2. pseudo-bosonic quantum field theory: any spin-
statistic theorem?

3. more connections with non-hermitian quantum
mechanics



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 44 of 44

Go Back

Full Screen

Close

Quit

IX. What more?

1. unbounded operators (with M. Znojil [JPhysA
2012] and with C.Trapani and A. Inoue [JMP
2011] and [JMP submitted])

2. pseudo-bosonic quantum field theory: any spin-
statistic theorem?

3. more connections with non-hermitian quantum
mechanics

4. bicoherent states and quantization...



Organization of the . . .

Linear pseudo- . . .

Where do pseudo- . . .

Connections with . . .

Non-linear pseudo- . . .

Relation with . . .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

JJ II

J I

Page 44 of 44

Go Back

Full Screen

Close

Quit

IX. What more?

1. unbounded operators (with M. Znojil [JPhysA
2012] and with C.Trapani and A. Inoue [JMP
2011] and [JMP submitted])

2. pseudo-bosonic quantum field theory: any spin-
statistic theorem?

3. more connections with non-hermitian quantum
mechanics

4. bicoherent states and quantization...

5. ...etc


	Organization of the talk
	Linear pseudo-bosons: Some mathematics
	Where do pseudo-bosons appear?
	The extended quantum harmonic oscillator
	The Swanson hamiltonian

	Connections with bosons
	Non-linear pseudo-bosons
	Relation with cryptohermiticity
	Pseudo-fermions
	Application to decay
	Schrödinger representation
	Heisenberg representation


	What more?

