Deformed (anti) commutation relations

Fabio Bagarello
Dieetcam
Università di Palermo
Italy

Organization of the
Linear pseudo-
Where do pseudo

Connections with

Non-linear pseudo-
Relation with
Pseudo-fermions
Application to decay
What more?

Home Page

Page 1 of 44

Go Back

Full Screen

1. Linear pseudo-bosons: a mathematical introduction

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

44

Page 2 of 44

Go Back

Full Screen

1. Linear pseudo-bosons: a mathematical introduction

2. Where do pseudo-bosons appear?

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

4

Page 2 of 44

Go Back

Full Screen

1. Linear pseudo-bosons: a mathematical introduction
2. Where do pseudo-bosons appear?
3. Connections with bosons

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

44

4

Page 2 of 44

Go Back

Full Screen

1. Linear pseudo-bosons: a mathematical introduction
2. Where do pseudo-bosons appear?
3. Connections with bosons
4. Nonlinear pseudo-bosons: a mathematical introduction

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 2 of 44

Go Back

Full Screen

1. Organization of the talk
2. Linear pseudo-bosons: a mathematical introduction
3. Where do pseudo-bosons appear?
4. Connections with bosons
5. Nonlinear pseudo-bosons: a mathematical introduction
6. Relation with cryptohermiticity

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 2 of 44

Go Back

Full Screen

1. Linear pseudo-bosons: a mathematical introduction
2. Where do pseudo-bosons appear?
3. Connections with bosons
4. Nonlinear pseudo-bosons: a mathematical introduction
5. Relation with cryptohermiticity
6. Pseudo-fermions

Organization of the
Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 2 of 44

Go Back

Full Screen

1. Organization of the talk
2. Linear pseudo-bosons: a mathematical introduction
3. Where do pseudo-bosons appear?
4. Connections with bosons
5. Nonlinear pseudo-bosons: a mathematical introduction
6. Relation with cryptohermiticity
7. Pseudo-fermions
8. Applications to decay in quantum optics

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 2 of 44

Go Back

Full Screen

Organization of the talk

1. Linear pseudo-bosons: a mathematical introduction
2. Where do pseudo-bosons appear?
3. Connections with bosons
4. Nonlinear pseudo-bosons: a mathematical introduction
5. Relation with cryptohermiticity
6. Pseudo-fermions
7. Applications to decay in quantum optics
8. Conclusions

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 2 of 44

Go Back

Full Screen

Let \mathcal{H} be a given Hilbert space with scalar product〈...〉 and norm \|.\|. Let a and b be two operators acting on \mathcal{H} and satisfying (Trifonov, 2009)

$$
\begin{equation*}
[a, b]=\mathbb{1}, \tag{1}
\end{equation*}
$$

If $b=a^{\dagger}$ then we recover CCR. Recall that a and b cannot both be bounded operators: they cannot be defined in all of \mathcal{H}. For this reason we consider the following

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 3 of 44

Go Back

Full Screen

Let \mathcal{H} be a given Hilbert space with scalar product〈...〉 and norm \|.\|. Let a and b be two operators acting on \mathcal{H} and satisfying (Trifonov, 2009)

$$
\begin{equation*}
[a, b]=\mathbb{1}, \tag{1}
\end{equation*}
$$

If $b=a^{\dagger}$ then we recover CCR. Recall that a and b cannot both be bounded operators: they cannot be defined in all of \mathcal{H}. For this reason we consider the following

Assumption 1.- there exists a non-zero $\varphi_{0} \in \mathcal{H}$ such that $a \varphi_{0}=0$ and $\varphi_{0} \in D^{\infty}(b):=\cap_{k \geq 0} D\left(b^{k}\right)$.

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 3 of 44

Go Back

Full Screen

Let \mathcal{H} be a given Hilbert space with scalar product〈...〉 and norm \|.\|. Let a and b be two operators acting on \mathcal{H} and satisfying (Trifonov, 2009)

$$
\begin{equation*}
[a, b]=\mathbb{1}, \tag{1}
\end{equation*}
$$

If $b=a^{\dagger}$ then we recover CCR. Recall that a and b cannot both be bounded operators: they cannot be defined in all of \mathcal{H}. For this reason we consider the following

Assumption 1.- there exists a non-zero $\varphi_{0} \in \mathcal{H}$ such that $a \varphi_{0}=0$ and $\varphi_{0} \in D^{\infty}(b):=\cap_{k \geq 0} D\left(b^{k}\right)$.

Then

$$
\begin{equation*}
\varphi_{n}=\frac{1}{\sqrt{n!}} b^{n} \varphi_{0}, \quad n \geq 0 \tag{2}
\end{equation*}
$$

belongs to \mathcal{H} for all $n \geq 0$.

Let $N:=b a$. Then $\varphi_{n} \in D(N)$, for all $n \geq 0$, and

$$
\begin{equation*}
N \varphi_{n}=n \varphi_{n}, \quad n \geq 0 . \tag{3}
\end{equation*}
$$

Let us now take $\mathcal{N}:=N^{\dagger}=a^{\dagger} b^{\dagger} \neq N$. We require that the following holds:

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 4 of 44

Go Back

Full Screen

Let $N:=b a$. Then $\varphi_{n} \in D(N)$, for all $n \geq 0$, and

$$
\begin{equation*}
N \varphi_{n}=n \varphi_{n}, \quad n \geq 0 . \tag{3}
\end{equation*}
$$

Let us now take $\mathcal{N}:=N^{\dagger}=a^{\dagger} b^{\dagger} \neq N$. We require that the following holds:

Assumption 2.- there exists a non-zero $\Psi_{0} \in \mathcal{H}$ such that $b^{\dagger} \Psi_{0}=0$ and $\Psi_{0} \in D^{\infty}\left(a^{\dagger}\right):=\cap_{k \geq 0} D\left(\left(a^{\dagger}\right)^{k}\right)$.

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 4 of 44

Go Back

Full Screen

Let $N:=b a$. Then $\varphi_{n} \in D(N)$, for all $n \geq 0$, and

$$
\begin{equation*}
N \varphi_{n}=n \varphi_{n}, \quad n \geq 0 \tag{3}
\end{equation*}
$$

Let us now take $\mathcal{N}:=N^{\dagger}=a^{\dagger} b^{\dagger} \neq N$. We require that the following holds:

Assumption 2.- there exists a non-zero $\Psi_{0} \in \mathcal{H}$ such that $b^{\dagger} \Psi_{0}=0$ and $\Psi_{0} \in D^{\infty}\left(a^{\dagger}\right):=\cap_{k \geq 0} D\left(\left(a^{\dagger}\right)^{k}\right)$.

Under this assumption the following vectors

$$
\begin{equation*}
\Psi_{n}=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n} \Psi_{0}, \quad n \geq 0 \tag{4}
\end{equation*}
$$

belong to \mathcal{H} for all $n \geq 0$, and to $D(\mathcal{N})$. Moreover

$$
\begin{equation*}
\mathcal{N} \Psi_{n}=n \Psi_{n}, \quad n \geq 0 \tag{5}
\end{equation*}
$$

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 4 of 44

Go Back

Full Screen

Example 1: the above natural assumptions are not always satisfied: let $\mathcal{H}=\mathcal{L}^{2}(\mathbb{R}, d \nu(x)), d \nu(x)=\frac{d x}{1+x^{2}}$, $a=i p, b=x$. Then $a \varphi_{0}(x)=0$ implies that $\varphi_{0}(x)$ is constant. Of course $\varphi_{0}(x) \in \mathcal{H}$ but $b \varphi_{0}(x)=$ $x \varphi_{0}(x) \notin \mathcal{H}$. Hence $\varphi_{0}(x)$ does not belong to $D^{\infty}(b)$ and Assumption 1 is violated.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 5 of 44

Go Back

Full Screen

Example 1: the above natural assumptions are not always satisfied: let $\mathcal{H}=\mathcal{L}^{2}(\mathbb{R}, d \nu(x)), d \nu(x)=\frac{d x}{1+x^{2}}$, $a=i p, b=x$. Then $a \varphi_{0}(x)=0$ implies that $\varphi_{0}(x)$ is constant. Of course $\varphi_{0}(x) \in \mathcal{H}$ but $b \varphi_{0}(x)=$ $x \varphi_{0}(x) \notin \mathcal{H}$. Hence $\varphi_{0}(x)$ does not belong to $D^{\infty}(b)$ and Assumption 1 is violated.

Example 2: the trivial case: harmonic oscillator. In this case $\mathcal{H}=\mathcal{L}^{2}(\mathbb{R}, d x)$, and taking $a=c:=$ $\frac{1}{\sqrt{2}}\left(\frac{d}{d x}+x\right)$ and $b=c^{\dagger}=\frac{1}{\sqrt{2}}\left(-\frac{d}{d x}+x\right),[a, b]=$ $\left[c, c^{\dagger}\right]=\mathbb{1}$, we find that $\varphi_{0}(x)=\Psi_{0}(x)=\frac{1}{\pi^{1 / 4}} e^{-x^{2} / 2}$, which satisfies both Assumptions 1 and 2.

Organization of the

Linear pseudo-

Where do pseudo-

Connections with.

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 5 of 44

Go Back

Full Screen

Example 3: [Trifonov] $\mathcal{H}=\mathcal{L}^{2}(\mathbb{R}, d x), a_{s}=c+s c^{\dagger}$ and $b_{s}=s c+\left(1+s^{2}\right) c^{\dagger}$. Hence $\left[a_{s}, b_{s}\right]=\mathbb{1}$ for all real s. $a_{s} \varphi_{0}(x)=0 \Rightarrow \varphi_{0}(x)=N_{s} \exp \left\{-\frac{1}{2} \frac{1+s}{1-s} x^{2}\right\}$, while $b_{s}^{\dagger} \Psi_{0}(x)=0 \Rightarrow \Psi_{0}(x)=N_{s}^{\prime} \exp \left\{-\frac{1}{2} \frac{1+s+s^{2}}{1-s+s^{2}} x^{2}\right\}$. Both these functions are square integrable if $-1<$ $s<1$. This same condition ensures also that $\varphi_{0}(x) \in$ $D^{\infty}\left(b_{s}\right)$ and that $\Psi_{0}(x) \in D^{\infty}\left(a_{s}^{\dagger}\right)$: any polynomial multiplied for a gaussian function belongs to $\mathcal{L}^{2}(\mathbb{R}, d x)$.

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 6 of 44

Go Back

Full Screen

Example 4: (two-dimensional deformation of c and c^{\dagger}) Let $a_{\alpha, \mu}:=\alpha c+\frac{\alpha}{\mu} c^{\dagger}, b_{\alpha, \mu}:=\mu \frac{\alpha^{2}-1}{\alpha} c+\alpha c^{\dagger}$, where α and μ are real constants such that $\alpha, \mu \neq$ 0 and $\alpha^{2} \neq \mu^{2}\left(\alpha^{2}-1\right)$. Hence $a_{\alpha, \mu}^{\dagger} \neq b_{\alpha, \mu}$ and $\left[a_{\alpha, \mu}, b_{\alpha, \mu}\right]=\mathbb{1}$.
$a_{\alpha, \mu} \varphi_{0}(x)=0$ and $b_{\alpha, \mu}^{\dagger} \Psi_{0}(x)=0$ produce

$$
\varphi_{0}(x)=N_{\alpha, \mu} \exp \left\{-\frac{1}{2} \frac{\mu+1}{\mu-1} x^{2}\right\}
$$

$$
\Psi_{0}(x)=N_{\alpha, \mu}^{\prime} \exp \left\{-\frac{1}{2} \frac{\alpha^{2}+\mu\left(\alpha^{2}-1\right)}{\alpha^{2}-\mu\left(\alpha^{2}-1\right)} x^{2}\right\} .
$$

These functions satisfy Assumptions 1 and 2 if $\alpha>1$ and $1<\mu<1+\frac{1}{\alpha^{2}-1}$.

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay
What more?
Home Page
Title Page

Page 7 of 44

Go Back

Full Screen

Under Assumptions 1 and 2 we have $\left\langle\Psi_{n}, \varphi_{m}\right\rangle=$ $\delta_{n, m}\left\langle\Psi_{0}, \varphi_{0}\right\rangle$ for all $n, m \geq 0$. Then, if $\left\langle\Psi_{0}, \varphi_{0}\right\rangle=1$,

$$
\begin{equation*}
\left\langle\Psi_{n}, \varphi_{m}\right\rangle=\delta_{n, m}, \quad \forall n, m \geq 0 \tag{6}
\end{equation*}
$$

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 8 of 44

Go Back

Full Screen

Under Assumptions 1 and 2 we have $\left\langle\Psi_{n}, \varphi_{m}\right\rangle=$ $\delta_{n, m}\left\langle\Psi_{0}, \varphi_{0}\right\rangle$ for all $n, m \geq 0$. Then, if $\left\langle\Psi_{0}, \varphi_{0}\right\rangle=1$,

$$
\begin{equation*}
\left\langle\Psi_{n}, \varphi_{m}\right\rangle=\delta_{n, m}, \quad \forall n, m \geq 0 \tag{6}
\end{equation*}
$$

Moreover, $\forall n \geq 0$ we have $\varphi_{n} \in D(a)$ and $\Psi_{n} \in$ $D\left(b^{\dagger}\right)$, and $a \varphi_{n}=\sqrt{n} \varphi_{n-1}$, as well as $b^{\dagger} \psi_{n}=\sqrt{n} \psi_{n-1}$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 8 of 44

Go Back

Full Screen

Under Assumptions 1 and 2 we have $\left\langle\Psi_{n}, \varphi_{m}\right\rangle=$ $\delta_{n, m}\left\langle\Psi_{0}, \varphi_{0}\right\rangle$ for all $n, m \geq 0$. Then, if $\left\langle\Psi_{0}, \varphi_{0}\right\rangle=1$,

$$
\begin{equation*}
\left\langle\Psi_{n}, \varphi_{m}\right\rangle=\delta_{n, m}, \quad \forall n, m \geq 0 \tag{6}
\end{equation*}
$$

Moreover, $\forall n \geq 0$ we have $\varphi_{n} \in D(a)$ and $\Psi_{n} \in$ $D\left(b^{\dagger}\right)$, and $a \varphi_{n}=\sqrt{n} \varphi_{n-1}$, as well as $b^{\dagger} \psi_{n}=\sqrt{n} \psi_{n-1}$.

Let $\mathcal{F}_{\varphi}:=\left\{\varphi_{n}, n \geq 0\right\}$ and $\mathcal{F}_{\Psi}:=\left\{\Psi_{n}, n \geq 0\right\}$. Since $\left\langle\varphi_{n}, \varphi_{k}\right\rangle \neq \delta_{n, k}, a^{\dagger} \varphi_{n}=\sqrt{n+1} \varphi_{n+1}$ is false, in general. For the same reason $b \psi_{n} \neq \sqrt{n+1} \psi_{n+1}$.

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 8 of 44

Go Back

Full Screen

Under Assumptions 1 and 2 we have $\left\langle\Psi_{n}, \varphi_{m}\right\rangle=$ $\delta_{n, m}\left\langle\Psi_{0}, \varphi_{0}\right\rangle$ for all $n, m \geq 0$. Then, if $\left\langle\Psi_{0}, \varphi_{0}\right\rangle=1$,

$$
\begin{equation*}
\left\langle\Psi_{n}, \varphi_{m}\right\rangle=\delta_{n, m}, \quad \forall n, m \geq 0 \tag{6}
\end{equation*}
$$

Moreover, $\forall n \geq 0$ we have $\varphi_{n} \in D(a)$ and $\Psi_{n} \in$ $D\left(b^{\dagger}\right)$, and $a \varphi_{n}=\sqrt{n} \varphi_{n-1}$, as well as $b^{\dagger} \psi_{n}=\sqrt{n} \psi_{n-1}$.

Let $\mathcal{F}_{\varphi}:=\left\{\varphi_{n}, n \geq 0\right\}$ and $\mathcal{F}_{\Psi}:=\left\{\Psi_{n}, n \geq 0\right\}$. Since $\left\langle\varphi_{n}, \varphi_{k}\right\rangle \neq \delta_{n, k}, a^{\dagger} \varphi_{n}=\sqrt{n+1} \varphi_{n+1}$ is false, in general. For the same reason $b \psi_{n} \neq \sqrt{n+1} \psi_{n+1}$.

However, the sets \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are biorthogonal and, because of this, the vectors of each set are linearly independent.

Assumption 3.- \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are are complete in \mathcal{H}.

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 8 of 44

Go Back

Full Screen

Then, \mathcal{F}_{φ} and \mathcal{F}_{ψ} are bases in \mathcal{H}. The resolution of the identity looks now

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\varphi_{n}><\Psi_{n}\right|=\sum_{n=0}^{\infty}\left|\Psi_{n}><\varphi_{n}\right|=\mathbb{1} \tag{7}
\end{equation*}
$$

where \mathbb{I} is the identity operator on \mathcal{H}.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 9 of 44

Go Back

Full Screen

Then, \mathcal{F}_{φ} and \mathcal{F}_{ψ} are bases in \mathcal{H}. The resolution of the identity looks now

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\varphi_{n}><\Psi_{n}\right|=\sum_{n=0}^{\infty}\left|\Psi_{n}><\varphi_{n}\right|=\mathbb{1}, \tag{7}
\end{equation*}
$$

where $\mathbb{I l}$ is the identity operator on \mathcal{H}.

Let further

$$
\begin{equation*}
S_{\varphi}=\sum_{n=0}^{\infty}\left|\varphi_{n}><\varphi_{n}\right|, \quad S_{\psi}=\sum_{n=0}^{\infty}\left|\Psi_{n}><\Psi_{n}\right| . \tag{8}
\end{equation*}
$$

These operators need not to be well defined: for instance the series could be not convergent, or even if they do, they could converge to some unbounded operator, so we have to be careful about domains.

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 9 of 44

Go Back

Full Screen

More rigorously, we introduce an operator S_{φ} acting on a vector $f \in D\left(S_{\varphi}\right)$ as $S_{\varphi} f=\sum_{n=0}^{\infty}\left\langle\varphi_{n}, f\right\rangle \varphi_{n}$, and S_{ψ}, acting on a vector $h \in D\left(S_{\Psi}\right)$ as $S_{\Psi} h=$ $\sum_{n=0}^{\infty}\left\langle\Psi_{n}, h\right\rangle \Psi_{n}$. Under Assumption 3, both these operators are densely defined in \mathcal{H}. In particular:

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 10 of 44

Go Back

Full Screen

More rigorously, we introduce an operator S_{φ} acting on a vector $f \in D\left(S_{\varphi}\right)$ as $S_{\varphi} f=\sum_{n=0}^{\infty}\left\langle\varphi_{n}, f\right\rangle \varphi_{n}$, and S_{Ψ}, acting on a vector $h \in D\left(S_{\Psi}\right)$ as $S_{\Psi} h=$ $\sum_{n=0}^{\infty}\left\langle\Psi_{n}, h\right\rangle \Psi_{n}$. Under Assumption 3, both these operators are densely defined in \mathcal{H}. In particular:

$$
S_{\varphi} \Psi_{n}=\varphi_{n}, \quad S_{\psi} \varphi_{n}=\Psi_{n}
$$

for all $n \geq 0$. Then $\Psi_{n}=\left(S_{\psi} S_{\varphi}\right) \Psi_{n}$ and $\varphi_{n}=$ $\left(S_{\varphi} S_{\psi}\right) \varphi_{n}$, for all $n \geq 0$. Hence (for bounded S_{φ} and $\left.S_{\psi}\right)$:

$$
\begin{equation*}
S_{\psi} S_{\varphi}=S_{\varphi} S_{\psi}=\mathbb{1} \quad \Rightarrow \quad S_{\psi}=S_{\varphi}^{-1} \tag{9}
\end{equation*}
$$

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 10 of 44

Go Back

Full Screen

More rigorously, we introduce an operator S_{φ} acting on a vector $f \in D\left(S_{\varphi}\right)$ as $S_{\varphi} f=\sum_{n=0}^{\infty}\left\langle\varphi_{n}, f\right\rangle \varphi_{n}$, and S_{ψ}, acting on a vector $h \in D\left(S_{\psi}\right)$ as $S_{\psi} h=$ $\sum_{n=0}^{\infty}\left\langle\Psi_{n}, h\right\rangle \Psi_{n}$. Under Assumption 3, both these operators are densely defined in \mathcal{H}. In particular:

$$
S_{\varphi} \Psi_{n}=\varphi_{n}, \quad S_{\psi} \varphi_{n}=\Psi_{n}
$$

for all $n \geq 0$. Then $\Psi_{n}=\left(S_{\Psi} S_{\varphi}\right) \Psi_{n}$ and $\varphi_{n}=$ $\left(S_{\varphi} S_{\psi}\right) \varphi_{n}$, for all $n \geq 0$. Hence (for bounded S_{φ} and $\left.S_{\psi}\right)$:

$$
\begin{equation*}
S_{\psi} S_{\varphi}=S_{\varphi} S_{\psi}=\mathbb{1} \quad \Rightarrow \quad S_{\psi}=S_{\varphi}^{-1} \tag{9}
\end{equation*}
$$

Furthermore, we can also check that they are both positive defined and symmetric. In general, however, they are unbounded.

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 10 of 44

Go Back

Full Screen

This is not a big surprise: two biorthogonal bases are related by a bounded operator, with bounded inverse, if and only if they are Riesz bases. Then:

Organization of the .

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 11 of 44

Go Back

Full Screen

This is not a big surprise: two biorthogonal bases are related by a bounded operator, with bounded inverse, if and only if they are Riesz bases. Then:

Assumption 4.- \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are Riesz bases: there exist an o.n. basis $\mathcal{G}=\left\{g_{n}, n \geq 0\right\}$ and two bounded operators X and Y, with bounded inverses, such that

$$
\varphi_{n}=X g_{n}, \quad \text { and } \quad \Psi_{n}=Y g_{n},
$$

for all $n \geq 0$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 11 of 44

Go Back

Full Screen

This is not a big surprise: two biorthogonal bases are related by a bounded operator, with bounded inverse, if and only if they are Riesz bases. Then:

Assumption 4.- \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are Riesz bases: there exist an o.n. basis $\mathcal{G}=\left\{g_{n}, n \geq 0\right\}$ and two bounded operators X and Y, with bounded inverses, such that

$$
\varphi_{n}=X g_{n}, \quad \text { and } \quad \Psi_{n}=Y g_{n},
$$

for all $n \geq 0$.
In thus case we call our pseudo-bosons regular, and both S_{φ} and S_{ψ} are bounded operators.

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 11 of 44

Go Back

Full Screen

This is not a big surprise: two biorthogonal bases are related by a bounded operator, with bounded inverse, if and only if they are Riesz bases. Then:

Assumption 4.- \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are Riesz bases: there exist an o.n. basis $\mathcal{G}=\left\{g_{n}, n \geq 0\right\}$ and two bounded operators X and Y, with bounded inverses, such that

$$
\varphi_{n}=X g_{n}, \quad \text { and } \quad \Psi_{n}=Y g_{n},
$$

for all $n \geq 0$.
In thus case we call our pseudo-bosons regular, and both S_{φ} and S_{ψ} are bounded operators.
Remark:- Regular pseudo-bosons give rise to Riesz bases. Viceversa: each Riesz basis produce two operators a and b satisfying all the properties of regular pseudo-bosons.

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 11 of 44

Go Back

Full Screen

An interesting feature of S_{ψ} and S_{φ}

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

44

Page 12 of 44

Go Back

Full Screen

An interesting feature of S_{ψ} and S_{φ}

S_{ψ} and S_{φ} are intertwining operators between non self-adjoint operators:

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

44

4

Page 12 of 44

Go Back

Full Screen

An interesting feature of S_{ψ} and S_{φ}

S_{ψ} and S_{φ} are intertwining operators between non self-adjoint operators:

$$
\begin{equation*}
S_{\Psi} N=\mathcal{N} S_{\psi} \quad \text { and } \quad N S_{\varphi}=S_{\varphi} \mathcal{N} . \tag{10}
\end{equation*}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 12 of 44

Go Back

Full Screen

An interesting feature of S_{ψ} and S_{φ}
S_{ψ} and S_{φ} are intertwining operators between non self-adjoint operators:

$$
\begin{equation*}
S_{\psi} N=\mathcal{N} S_{\psi} \quad \text { and } \quad N S_{\varphi}=S_{\varphi} \mathcal{N} . \tag{10}
\end{equation*}
$$

Some references:
F. B., Pseudo-bosons, Riesz bases and coherent states,
J. Math. Phys., (2010)
F. B., Construction of pseudo-bosons systems, J. Math.

Phys., (2010)
F. B., Mathematical aspects of intertwining operators: the role of Riesz bases, J. Phys. A, 175203 (2010)

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 12 of 44

Go Back

Full Screen
[J. da Providência et al., Non hermitian operators with real spectrum in quantum mechanics, arXiv: quantph 0909.3054, [F.B, PLA, 2010]

$$
H_{\beta}=\frac{\beta}{2}\left(p^{2}+x^{2}\right)+i \sqrt{2} p,
$$

$\beta>0$ and $[x, p]=i$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 13 of 44
Go Back

Full Screen

III.1. The extended quantum harmonic oscillator

[J. da Providência et al., Non hermitian operators with real spectrum in quantum mechanics, arXiv: quantph 0909.3054, [F.B, PLA, 2010]

$$
H_{\beta}=\frac{\beta}{2}\left(p^{2}+x^{2}\right)+i \sqrt{2} p
$$

$\beta>0$ and $[x, p]=i$.
Using $a=\frac{1}{\sqrt{2}}\left(x+\frac{d}{d x}\right), a^{\dagger}=\frac{1}{\sqrt{2}}\left(x-\frac{d}{d x}\right),\left[a, a^{\dagger}\right]=$ $\mathbb{1}$, and $N=a^{\dagger} a$, we can write $H_{\beta}=\beta N+\left(a-a^{\dagger}\right)+\frac{\beta}{2} \mathbb{I}$ which, putting

$$
\begin{gathered}
A_{\beta}=a-\frac{1}{\beta}, \quad B_{\beta}=a^{\dagger}+\frac{1}{\beta}, \quad \Rightarrow \\
H_{\beta}=\beta\left(B_{\beta} A_{\beta}+\gamma_{\beta} \mathbb{1}\right),
\end{gathered}
$$

where $\gamma_{\beta}=\frac{2+\beta^{2}}{2 \beta^{2}}, \forall \beta>0, A_{\beta}^{\dagger} \neq B_{\beta}$ and $\left[A_{\beta}, B_{\beta}\right]=$ 11.

Assumption 1: find a non zero vector $\varphi_{0}^{(\beta)} \in \mathcal{H}$ such that $A_{\beta} \varphi_{0}^{(\beta)}=0$ and $\varphi_{0}^{(\beta)} \in D^{\infty}\left(B_{\beta}\right)$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

44

Page 14 of 44

Go Back

Full Screen

Assumption 1: find a non zero vector $\varphi_{0}^{(\beta)} \in \mathcal{H}$ such that $A_{\beta} \varphi_{0}^{(\beta)}=0$ and $\varphi_{0}^{(\beta)} \in D^{\infty}\left(B_{\beta}\right)$.
$A_{\beta} \varphi_{0}^{(\beta)}=0 \Rightarrow a \varphi_{0}^{(\beta)}=\frac{1}{\beta} \varphi_{0}^{(\beta)} \Rightarrow \varphi_{0}^{(\beta)}$ is a standard coherent state with parameter $\frac{1}{\beta}$:

$$
\begin{equation*}
\varphi_{0}^{(\beta)}=U\left(\beta^{-1}\right) \varphi_{0}=e^{-1 / 2 \beta^{2}} \sum_{k=0}^{\infty} \frac{\beta^{-k}}{\sqrt{k!}} \varphi_{k} \tag{1}
\end{equation*}
$$

where $a \varphi_{0}=0$, and $U\left(\beta^{-1}\right)=e^{\frac{1}{\beta}\left(a^{\dagger}-a\right)}$ is the unitary (displacement) operator: $\left\|\varphi_{0}^{(\beta)}\right\|=\left\|\varphi_{0}\right\|=1$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 14 of 44

Go Back

Full Screen

Assumption 1: find a non zero vector $\varphi_{0}^{(\beta)} \in \mathcal{H}$ such that $A_{\beta} \varphi_{0}^{(\beta)}=0$ and $\varphi_{0}^{(\beta)} \in D^{\infty}\left(B_{\beta}\right)$.
$A_{\beta} \varphi_{0}^{(\beta)}=0 \Rightarrow a \varphi_{0}^{(\beta)}=\frac{1}{\beta} \varphi_{0}^{(\beta)} \Rightarrow \varphi_{0}^{(\beta)}$ is a standard coherent state with parameter $\frac{1}{\beta}$:

$$
\begin{equation*}
\varphi_{0}^{(\beta)}=U\left(\beta^{-1}\right) \varphi_{0}=e^{-1 / 2 \beta^{2}} \sum_{k=0}^{\infty} \frac{\beta^{-k}}{\sqrt{k!}} \varphi_{k} \tag{1}
\end{equation*}
$$

where $a \varphi_{0}=0$, and $U\left(\beta^{-1}\right)=e^{\frac{1}{\beta}\left(a^{\dagger}-a\right)}$ is the unitary (displacement) operator: $\left\|\varphi_{0}^{(\beta)}\right\|=\left\|\varphi_{0}\right\|=1$.

Since $\left\|B_{\beta}^{k} \varphi_{0}^{(\beta)}\right\| \leq k!e^{2 / \beta}, k \geq 0, \varphi_{0}^{(\beta)}$ belongs to the domain of all the powers of B_{β}. As a consequence

$$
\begin{equation*}
\varphi_{n}^{(\beta)}=\frac{1}{\sqrt{n!}} B_{\beta}^{n} \varphi_{0}^{(\beta)}, \tag{2}
\end{equation*}
$$

is well defined for all $n \geq 0$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Go Back

Full Screen

Assumption 2: $B_{\beta}^{\dagger} \Psi_{0}^{(\beta)}=0 \Rightarrow \Psi_{0}^{(\beta)}=\varphi_{0}^{(-\beta)}=$ $U\left(-\beta^{-1}\right) \varphi_{0}=U^{-1}\left(\beta^{-1}\right) \varphi_{0}$ and $\left\|\left(A_{\beta}^{\dagger}\right)^{k} \Psi_{0}^{(\beta)}\right\| \leq k!e^{2 / \beta}$,

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 15 of 44

Go Back

Full Screen

Assumption 2: $B_{\beta}^{\dagger} \Psi_{0}^{(\beta)}=0 \Rightarrow \Psi_{0}^{(\beta)}=\varphi_{0}^{(-\beta)}=$ $U\left(-\beta^{-1}\right) \varphi_{0}=U^{-1}\left(\beta^{-1}\right) \varphi_{0}$ and $\left\|\left(A_{\beta}^{\dagger}\right)^{k} \Psi_{0}^{(\beta)}\right\| \leq k!e^{2 / \beta}$,

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with.

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 15 of 44

Go Back

Full Screen

Both $\mathcal{F}_{\varphi}^{(\beta)}=\left\{\varphi_{n}^{(\beta)}, n \geq 0\right\}$ and $\mathcal{F}_{\psi}^{(\beta)}=\left\{\Psi_{n}^{(\beta)}, n \geq 0\right\}$ are complete in $\mathcal{H}:\left\langle f, \varphi_{n}^{(\beta)}\right\rangle=0$ for all n iff $f=0$. Hence Assumption 3 is satisfied.

Organization of the .

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 16 of 44

Go Back

Full Screen

Both $\mathcal{F}_{\varphi}^{(\beta)}=\left\{\varphi_{n}^{(\beta)}, n \geq 0\right\}$ and $\mathcal{F}_{\psi}^{(\beta)}=\left\{\Psi_{n}^{(\beta)}, n \geq 0\right\}$ are complete in $\mathcal{H}:\left\langle f, \varphi_{n}^{(\beta)}\right\rangle=0$ for all n iff $f=0$. Hence Assumption 3 is satisfied.

Are $\mathcal{F}_{\varphi}^{(\beta)}$ and $\mathcal{F}_{\Psi}^{(\beta)}$ Riesz bases?

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 16 of 44

Go Back

Full Screen

Both $\mathcal{F}_{\varphi}^{(\beta)}=\left\{\varphi_{n}^{(\beta)}, n \geq 0\right\}$ and $\mathcal{F}_{\psi}^{(\beta)}=\left\{\Psi_{n}^{(\beta)}, n \geq 0\right\}$ are complete in $\mathcal{H}:\left\langle f, \varphi_{n}^{(\beta)}\right\rangle=0$ for all n iff $f=0$. Hence Assumption 3 is satisfied.

Are $\mathcal{F}_{\varphi}^{(\beta)}$ and $\mathcal{F}_{\Psi}^{(\beta)}$ Riesz bases?
No: they are related to an orthonormal basis via the following self-adjoint, unbounded and invertible operator: $V_{\beta}=e^{\left(a+a^{\dagger}\right) / \beta}$, where $\left[a, a^{\dagger}\right]=\mathbb{1}$. More explicitly, we have $\varphi_{k}^{(\beta)}=e^{-1 / \beta^{2}} V_{\beta} \varphi_{k}$. and $\Psi_{k}^{(\beta)}=$ $e^{-1 / \beta^{2}} V_{\beta}^{-1} \varphi_{k}$, where $\varphi_{k}=\frac{\left(a^{i}\right)^{k}}{\sqrt{k!}} \varphi_{0}$, and $a \varphi_{0}=0$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 16 of 44

Go Back

Full Screen

Both $\mathcal{F}_{\varphi}^{(\beta)}=\left\{\varphi_{n}^{(\beta)}, n \geq 0\right\}$ and $\mathcal{F}_{\psi}^{(\beta)}=\left\{\Psi_{n}^{(\beta)}, n \geq 0\right\}$ are complete in $\mathcal{H}:\left\langle f, \varphi_{n}^{(\beta)}\right\rangle=0$ for all n iff $f=0$. Hence Assumption 3 is satisfied.

Are $\mathcal{F}_{\varphi}^{(\beta)}$ and $\mathcal{F}_{\Psi}^{(\beta)}$ Riesz bases?
No: they are related to an orthonormal basis via the following self-adjoint, unbounded and invertible operator: $V_{\beta}=e^{\left(a+a^{\dagger}\right) / \beta}$, where $\left[a, a^{\dagger}\right]=\mathbb{1}$. More explicitly, we have $\varphi_{k}^{(\beta)}=e^{-1 / \beta^{2}} V_{\beta} \varphi_{k}$. and $\Psi_{k}^{(\beta)}=$ $e^{-1 / \beta^{2}} V_{\beta}^{-1} \varphi_{k}$, where $\varphi_{k}=\frac{\left(a^{\dagger}\right)^{k}}{\sqrt{k!}} \varphi_{0}$, and $a \varphi_{0}=0$.
Moreover, calling $h_{\beta}=\beta\left(a^{\dagger} a+\gamma_{\beta} \mathbb{I}\right)=h_{\beta}^{\dagger}$, we have

$$
\begin{equation*}
H_{\beta} V_{\beta}=V_{\beta} h_{\beta}: \tag{6}
\end{equation*}
$$

Organization of the

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 16 of 44

Go Back

Full Screen

Both $\mathcal{F}_{\varphi}^{(\beta)}=\left\{\varphi_{n}^{(\beta)}, n \geq 0\right\}$ and $\mathcal{F}_{\psi}^{(\beta)}=\left\{\Psi_{n}^{(\beta)}, n \geq 0\right\}$ are complete in $\mathcal{H}:\left\langle f, \varphi_{n}^{(\beta)}\right\rangle=0$ for all n iff $f=0$. Hence Assumption 3 is satisfied.

Are $\mathcal{F}_{\varphi}^{(\beta)}$ and $\mathcal{F}_{\Psi}^{(\beta)}$ Riesz bases?
No: they are related to an orthonormal basis via the following self-adjoint, unbounded and invertible operator: $V_{\beta}=e^{\left(a+a^{\dagger}\right) / \beta}$, where $\left[a, a^{\dagger}\right]=\mathbb{1}$. More explicitly, we have $\varphi_{k}^{(\beta)}=e^{-1 / \beta^{2}} V_{\beta} \varphi_{k}$. and $\Psi_{k}^{(\beta)}=$ $e^{-1 / \beta^{2}} V_{\beta}^{-1} \varphi_{k}$, where $\varphi_{k}=\frac{\left(a^{i}\right)^{k}}{\sqrt{k!}} \varphi_{0}$, and $a \varphi_{0}=0$.
Moreover, calling $h_{\beta}=\beta\left(a^{\dagger} a+\gamma_{\beta} \mathbb{I}\right)=h_{\beta}^{\dagger}$, we have

$$
\begin{equation*}
H_{\beta} V_{\beta}=V_{\beta} h_{\beta}: \tag{6}
\end{equation*}
$$

V_{β} is an intertwining operator between h_{β} and H_{β}.
$D M^{3}$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 16 of 44

Go Back

Full Screen

The non self-adjoint hamiltonian is

$$
H_{\theta}=\frac{1}{2}\left(p^{2}+x^{2}\right)-\frac{i}{2} \tan (2 \theta)\left(p^{2}-x^{2}\right),
$$

$\theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \backslash\{0\}=:$. Introducing a and a^{\dagger} we write

$$
H_{\theta}=N+\frac{i}{2} \tan (2 \theta)\left(a^{2}+\left(a^{\dagger}\right)^{2}\right)+\frac{1}{2} \mathbb{1},
$$

where $N=a^{\dagger} a$. If

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 17 of 44

Go Back

Full Screen

The non self-adjoint hamiltonian is

$$
H_{\theta}=\frac{1}{2}\left(p^{2}+x^{2}\right)-\frac{i}{2} \tan (2 \theta)\left(p^{2}-x^{2}\right),
$$

$\theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \backslash\{0\}=$: l. Introducing a and a^{\dagger} we write

$$
H_{\theta}=N+\frac{i}{2} \tan (2 \theta)\left(a^{2}+\left(a^{\dagger}\right)^{2}\right)+\frac{1}{2} \mathbb{1},
$$

where $N=a^{\dagger} a$. If

$$
\begin{gathered}
A_{\theta}=\cos (\theta) a+i \sin (\theta) a^{\dagger}=\frac{1}{\sqrt{2}}\left(e^{i \theta} x+e^{-i \theta} \frac{d}{d x}\right) \\
B_{\theta}=\cos (\theta) a^{\dagger}+i \sin (\theta) a \frac{1}{\sqrt{2}}\left(e^{i \theta} x-e^{-i \theta} \frac{d}{d x}\right)
\end{gathered}
$$

then

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 17 of 44

Go Back

Full Screen

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 17 of 44

Go Back

Full Screen

$$
\begin{align*}
A_{\theta} \varphi_{0}^{(\theta)}= & 0 \Rightarrow \\
& \varphi_{0}^{(\theta)}(x)=N_{1} \exp \left\{-\frac{1}{2} e^{2 i \theta} x^{2}\right\} \tag{8}
\end{align*}
$$

$$
B_{\theta}^{\dagger} \Psi_{0}^{(\theta)}=0 \Rightarrow
$$

$$
\begin{equation*}
\Psi_{0}^{(\theta)}(x)=N_{2} \exp \left\{-\frac{1}{2} e^{-2 i \theta} x^{2}\right\} \tag{9}
\end{equation*}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 18 of 44

Go Back

Full Screen
$A_{\theta} \varphi_{0}^{(\theta)}=0 \Rightarrow$

$$
\begin{equation*}
\varphi_{0}^{(\theta)}(x)=N_{1} \exp \left\{-\frac{1}{2} e^{2 i \theta} x^{2}\right\} \tag{8}
\end{equation*}
$$

$B_{\theta}^{\dagger} \Psi_{0}^{(\theta)}=0 \Rightarrow$

$$
\begin{equation*}
\Psi_{0}^{(\theta)}(x)=N_{2} \exp \left\{-\frac{1}{2} e^{-2 i \theta} x^{2}\right\} . \tag{9}
\end{equation*}
$$

Since $\Re\left(e^{ \pm 2 i \theta}\right)>0 \forall \theta \in I, \Rightarrow \varphi_{0}^{(\theta)}(x), \Psi_{0}^{(\theta)}(x) \in$ $\mathcal{L}^{2}(\mathbb{R})$. If $\theta \notin \mid$ Assumptions 1 and 2 are violated!

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 18 of 44

Go Back

Full Screen
$A_{\theta} \varphi_{0}^{(\theta)}=0 \Rightarrow$

$$
\begin{equation*}
\varphi_{0}^{(\theta)}(x)=N_{1} \exp \left\{-\frac{1}{2} e^{2 i \theta} x^{2}\right\} \tag{8}
\end{equation*}
$$

$B_{\theta}^{\dagger} \Psi_{0}^{(\theta)}=0 \Rightarrow$

$$
\begin{equation*}
\Psi_{0}^{(\theta)}(x)=N_{2} \exp \left\{-\frac{1}{2} e^{-2 i \theta} x^{2}\right\} . \tag{9}
\end{equation*}
$$

Since $\Re\left(e^{ \pm 2 i \theta}\right)>0 \forall \theta \in I, \Rightarrow \varphi_{0}^{(\theta)}(x), \Psi_{0}^{(\theta)}(x) \in$ $\mathcal{L}^{2}(\mathbb{R})$. If $\theta \notin \mid$ Assumptions 1 and 2 are violated!
We find:
$\varphi_{n}^{(\theta)}(x)=\frac{1}{\sqrt{n!}} B_{\theta}^{n} \varphi_{0}^{(\theta)}(x)=\frac{N_{1}}{\sqrt{2^{n} n!}} H_{n}\left(e^{i \theta} x\right) \exp \left\{-\frac{1}{2} e^{2 i \theta} x^{2}\right\}$,
$\Psi_{n}^{(\theta)}(x)=\frac{1}{\sqrt{n!}}\left(A_{\theta}^{\dagger}\right)^{n} \Psi_{0}^{(\theta)}(x)=\frac{N_{2}}{\sqrt{2^{n} n!}} H_{n}\left(e^{-i \theta} x\right) \exp \left\{-\frac{1}{2} e^{-2 i \theta} x^{2}\right\}$,
where $H_{n}(x)$ is the n-th Hermite polynomial.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with .

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 18 of 44

Go Back

Full Screen

Their norms are

$$
\begin{aligned}
& \left\|\varphi_{n}^{(\theta)}\right\|^{2}=\left|N_{1}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right), \\
& \left\|\Psi_{n}^{(\theta)}\right\|^{2}=\left|N_{2}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right),
\end{aligned}
$$

where P_{n} is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 19 of 44

Go Back

Full Screen

Their norms are

$$
\begin{aligned}
& \left\|\varphi_{n}^{(\theta)}\right\|^{2}=\left|N_{1}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right), \\
& \left\|\Psi_{n}^{(\theta)}\right\|^{2}=\left|N_{2}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right),
\end{aligned}
$$

where P_{n} is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied. The biorthogonality of $\mathcal{F}_{\varphi}^{(\theta)}=\left\{\varphi_{n}^{(\theta)}(x), n \geq 0\right\}$ and $\mathcal{F}_{\psi}^{(\theta)}=\left\{\Psi_{n}^{(\theta)}(x), n \geq 0\right\}$ produces

$$
\int_{\mathbb{R}} H_{n}\left(e^{-i \theta} x\right) H_{m}\left(e^{-i \theta} x\right) e^{-e^{-2 i \theta} x^{2}} d x=\delta_{n, m} \sqrt{2^{n+m} \pi n!m!}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 19 of 44

Go Back

Full Screen

Their norms are

$$
\begin{aligned}
& \left\|\varphi_{n}^{(\theta)}\right\|^{2}=\left|N_{1}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right), \\
& \left\|\Psi_{n}^{(\theta)}\right\|^{2}=\left|N_{2}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right),
\end{aligned}
$$

where P_{n} is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied. The biorthogonality of $\mathcal{F}_{\varphi}^{(\theta)}=\left\{\varphi_{n}^{(\theta)}(x), n \geq 0\right\}$ and $\mathcal{F}_{\Psi}^{(\theta)}=\left\{\Psi_{n}^{(\theta)}(x), n \geq 0\right\}$ produces

$$
\int_{\mathbb{R}} H_{n}\left(e^{-i \theta} x\right) H_{m}\left(e^{-i \theta} x\right) e^{-e^{-2 i \theta} x^{2}} d x=\delta_{n, m} \sqrt{2^{n+m} \pi n!m!} .
$$

We still have to check whether the sets $\mathcal{F}_{\varphi}^{(\theta)}$ and $\mathcal{F}_{\psi}^{(\theta)}$ are

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-
Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 19 of 44

Go Back

Full Screen

Their norms are

$$
\begin{aligned}
& \left\|\varphi_{n}^{(\theta)}\right\|^{2}=\left|N_{1}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right), \\
& \left\|\Psi_{n}^{(\theta)}\right\|^{2}=\left|N_{2}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right),
\end{aligned}
$$

where P_{n} is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied.
The biorthogonality of $\mathcal{F}_{\varphi}^{(\theta)}=\left\{\varphi_{n}^{(\theta)}(x), n \geq 0\right\}$ and $\mathcal{F}_{\Psi}^{(\theta)}=\left\{\Psi_{n}^{(\theta)}(x), n \geq 0\right\}$ produces

$$
\int_{\mathbb{R}} H_{n}\left(e^{-i \theta} x\right) H_{m}\left(e^{-i \theta} x\right) e^{-e^{-2 i \theta} x^{2}} d x=\delta_{n, m} \sqrt{2^{n+m} \pi n!m!} .
$$

We still have to check whether the sets $\mathcal{F}_{\varphi}^{(\theta)}$ and $\mathcal{F}_{\Psi}^{(\theta)}$ are
(i) complete in $\mathcal{L}^{2}(\mathbb{R})$;

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-
Relation with.

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 19 of 44

Go Back

Full Screen

Their norms are

$$
\begin{aligned}
& \left\|\varphi_{n}^{(\theta)}\right\|^{2}=\left|N_{1}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right), \\
& \left\|\Psi_{n}^{(\theta)}\right\|^{2}=\left|N_{2}\right|^{2} \cos \left(\frac{\pi}{\cos (2 \theta)}\right) P_{n}\left(\frac{1}{\cos (2 \theta)}\right),
\end{aligned}
$$

where P_{n} is the n-th Legendre polynomial. Hence Assumptions 1 and 2 are satisfied.
The biorthogonality of $\mathcal{F}_{\varphi}^{(\theta)}=\left\{\varphi_{n}^{(\theta)}(x), n \geq 0\right\}$ and $\mathcal{F}_{\Psi}^{(\theta)}=\left\{\Psi_{n}^{(\theta)}(x), n \geq 0\right\}$ produces

$$
\int_{\mathbb{R}} H_{n}\left(e^{-i \theta} x\right) H_{m}\left(e^{-i \theta} x\right) e^{-e^{-2 i \theta} x^{2}} d x=\delta_{n, m} \sqrt{2^{n+m} \pi n!m!} .
$$

We still have to check whether the sets $\mathcal{F}_{\varphi}^{(\theta)}$ and $\mathcal{F}_{\Psi}^{(\theta)}$ are
(i) complete in $\mathcal{L}^{2}(\mathbb{R})$;
(ii) Riesz bases.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 19 of 44

Go Back

Full Screen

Completeness [Kolmogorov and Fomin]: if $\rho(x)$ is a Lebesgue-measurable function which is different from zero almost everywhere (a.e.) in \mathbb{R} and if there exist two positive constants δ, C such that $|\rho(x)| \leq C e^{-\delta|x|}$ a.e. in \mathbb{R}, then the set $\left\{x^{n} \rho(x)\right\}$ is complete in $\mathcal{L}^{2}(\mathbb{R})$.

Therefore, Assumption 3 is satisfied.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 20 of 44

Go Back

Full Screen

Completeness [Kolmogorov and Fomin]: if $\rho(x)$ is a Lebesgue-measurable function which is different from zero almost everywhere (a.e.) in \mathbb{R} and if there exist two positive constants δ, C such that $|\rho(x)| \leq C e^{-\delta|x|}$ a.e. in \mathbb{R}, then the set $\left\{x^{n} \rho(x)\right\}$ is complete in $\mathcal{L}^{2}(\mathbb{R})$.

Therefore, Assumption 3 is satisfied.
Riesz bases?: we introduce the unbounded, self-adjoint and invertible operator $T_{\theta}=e^{i \frac{\theta}{2}\left(a^{2}-a a^{+2}\right)}$. Then

$$
\begin{equation*}
A_{\theta}=T_{\theta} a T_{\theta}^{-1}, \quad B_{\theta}=T_{\theta} a^{\dagger} T_{\theta}^{-1} \tag{10}
\end{equation*}
$$

Organization of the
Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 20 of 44

Go Back

Full Screen

Completeness [Kolmogorov and Fomin]: if $\rho(x)$ is a Lebesgue-measurable function which is different from zero almost everywhere (a.e.) in \mathbb{R} and if there exist two positive constants δ, C such that $|\rho(x)| \leq C e^{-\delta|x|}$ a.e. in \mathbb{R}, then the set $\left\{x^{n} \rho(x)\right\}$ is complete in $\mathcal{L}^{2}(\mathbb{R})$.

Therefore, Assumption 3 is satisfied.
Riesz bases?: we introduce the unbounded, self-adjoint and invertible operator $T_{\theta}=e^{i \frac{\theta}{2}\left(a^{2}-a^{\dagger^{2}}\right)}$. Then

$$
\begin{equation*}
A_{\theta}=T_{\theta} a T_{\theta}^{-1}, \quad B_{\theta}=T_{\theta} a^{\dagger} T_{\theta}^{-1} \tag{10}
\end{equation*}
$$

T_{θ} is an IO: let $h_{\theta}=\omega_{\theta}\left(a^{\dagger} a+\frac{1}{2} \mathbb{1}\right)=h_{\theta}^{\dagger}$, then

$$
\begin{equation*}
H_{\theta} T_{\theta}=T_{\theta} h_{\theta}, \quad T_{\theta} H_{\theta}^{\dagger}=h_{\theta} T_{\theta}, \tag{11}
\end{equation*}
$$

and $\alpha \in \mathbb{C}$ exists such that

$$
\begin{equation*}
\varphi_{n}^{(\theta)}=\alpha T_{\theta} \varphi_{n}, \quad \text { and } \quad \Psi_{n}^{(\theta)}=\frac{1}{\bar{\alpha}} T_{\theta}^{-1} \varphi_{n} \tag{12}
\end{equation*}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 20 of 44

Go Back

Full Screen
$\Rightarrow \operatorname{nor} \mathcal{F}_{\varphi}^{(\theta)}$ neither $\mathcal{F}_{\psi}^{(\theta)}$ are Riesz bases: our pseudobosons are non-regular. Also, we deduce that $\eta_{\varphi}^{(\theta)}=$ $|\alpha|^{2} T_{\theta}^{2}$ and $\eta_{\psi}^{(\theta)}=|\alpha|^{-2} T_{\theta}^{-2}$. This is in agreement with the following (formal) computations:

$$
\begin{gathered}
\sum_{n=0}^{\infty}\left|\varphi_{n}^{(\theta)}\right\rangle\left\langle\psi_{n}^{(\theta)}\right|=\alpha T_{\theta}\left(\sum_{n=0}^{\infty}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right) \frac{1}{\alpha} T_{\theta}^{-1}=\mathbb{1}, \\
\sum_{n=0}^{\infty}\left|\varphi_{n}^{(\theta)}\right\rangle\left\langle\varphi_{n}^{(\theta)}\right|=\alpha T_{\theta}\left(\sum_{n=0}^{\infty}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\left(\alpha T_{\theta}\right)^{\dagger}=|\alpha|^{2} T_{\theta}^{2}=S_{\varphi}^{(\beta)},
\end{gathered}
$$

as well as

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|\psi_{n}^{(\theta)}\right\rangle\left\langle\psi_{n}^{(\theta)}\right|= & \frac{1}{\bar{\alpha}} T_{\theta}^{-1}\left(\sum_{n=0}^{\infty}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\left(\frac{1}{\bar{\alpha}} T_{\theta}^{-1}\right)^{\dagger}= \\
& =|\alpha|^{-2} T_{\theta}^{-2}=S_{\psi}^{(\beta)}
\end{aligned}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 21 of 44

Go Back

Full Screen

More (physically motivated) examples

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

44

Page 22 of 44

Go Back

Full Screen

More (physically motivated) examples

1. Landau levels $(\operatorname{dim}=2)[F B$, ST Ali, JP Gazeau, JMP 2010]

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

44

Page 22 of 44

Go Back

Full Screen

More (physically motivated) examples

1. Landau levels $(\operatorname{dim}=2)$ [FB, ST Ali, JP Gazeau, JMP 2010]
2. pseudo-hermitian networks [Jin and Song, arxiv 2011] (work in progress)

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 22 of 44

Go Back

Full Screen

More (physically motivated) examples

1. Landau levels $(\operatorname{dim}=2)[$ FB, ST Ali, JP Gazeau, JMP 2010]
2. pseudo-hermitian networks [Jin and Song, arxiv 2011] (work in progress)
3. D_{N} type quantum Calogero model [FB, JMAA 2012, submitted]

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 22 of 44

Go Back

Full Screen

We have considered the following question: which is the relation between (regular) pseudo-bosons and ordinary bosons? The answer is given by the following theorems [F. B., J. Phys. A, 44, 015205 (2011)]:

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 23 of 44

Go Back

Full Screen

We have considered the following question: which is the relation between (regular) pseudo-bosons and ordinary bosons? The answer is given by the following theorems [F. B., J. Phys. A, 44, 015205 (2011)]:

Theorem 1 Let a and b be such that $[a, b]=\mathbb{1}$, and for which Assumptions 1-4 are satisfied. Then an unbounded, densely defined, operator c on \mathcal{H} exists, and a positive bounded operator T with bounded inverse T^{-1}, such that $\left[c, c^{\dagger}\right]=\mathbb{1}$. Moreover

$$
\begin{equation*}
a=T c T^{-1}, \quad b=T c^{\dagger} T^{-1} . \tag{1}
\end{equation*}
$$

Viceversa, given an unbounded, densely defined, operator c on \mathcal{H} satisfying $\left[c, c^{\dagger}\right]=\mathbb{1}$ and a positive bounded operator T with bounded inverse T^{-1}, two operators a and b can be introduced for which $[a, b]=\mathbb{1}$, and for which equations (1) and Assumptions 1-4 are satisfied.
$D M^{3}$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 23 of 44

Go Back

Full Screen

Theorem 2 Let a and b be such that $[a, b]=\mathbb{1}$, and
with R positive, self-adjoint with unbounded inverse R^{-1}. Suppose that, introduced $\hat{\varphi}_{n}$ as above, $\hat{\varphi}_{n} \in$ $D(R) \cap D\left(R^{-1}\right)$, for all $n \geq 0$, and that the sets $\left\{R \hat{\varphi}_{n}\right\}$ and $\left\{R^{-1} \hat{\varphi}_{n}\right\}$ are biorthogonal bases of \mathcal{H}. Then two operators a and b can be introduced for which $[a, b]=\mathbb{1}$, and for which equations (2) and Assumptions 1-3 (but not 4) are satisfied.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with .

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page
Organization of the

What more?

Page 24 of 44

Go Back

Full Screen

Close
V. Non-linear pseudo-bosons

Limitation of pseudo-bosons: eigenvalues ϵ_{n} linear in n.

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

44

Page 25 of 44

Go Back

Full Screen

Limitation of pseudo-bosons: eigenvalues ϵ_{n} linear in n.

We use an idea imported from non-linear coherent states:

$$
\left\lvert\, z>=e^{-|z|^{2} / 2} \sum_{k=0}^{\infty} \frac{z^{n}}{\sqrt{n!}} \Phi_{n}\right.
$$

becomes

$$
\equiv(z):=N\left(|z|^{2}\right)^{-1 / 2} \sum_{k=0}^{\infty} \frac{z^{n}}{\sqrt{\epsilon_{n}!}} \Phi_{n},
$$

where $\epsilon_{n}!=\epsilon_{1} \cdots \epsilon_{n}$, with $\epsilon_{0}!=1$ and $N\left(|z|^{2}\right)$ a proper normalization (inside a certain domain of convergence).

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 25 of 44

Go Back

Full Screen

Limitation of pseudo-bosons: eigenvalues ϵ_{n} linear in n.

We use an idea imported from non-linear coherent states:

$$
\left\lvert\, z>=e^{-|z|^{2} / 2} \sum_{k=0}^{\infty} \frac{z^{n}}{\sqrt{n!}} \Phi_{n}\right.
$$

becomes

$$
\equiv(z):=N\left(|z|^{2}\right)^{-1 / 2} \sum_{k=0}^{\infty} \frac{z^{n}}{\sqrt{\epsilon_{n}!}} \Phi_{n}
$$

where $\epsilon_{n}!=\epsilon_{1} \cdots \epsilon_{n}$, with $\epsilon_{0}!=1$ and $N\left(|z|^{2}\right)$ a proper normalization (inside a certain domain of convergence).

Let a and b be operators on \mathcal{H} and $\left\{\epsilon_{n}\right\}$ such that $0=\epsilon_{0}<\epsilon_{1}<\epsilon_{2}<\cdots$. Then [F. B., J. Math. Phys., 52, 063521, (2011)]..

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 25 of 44

Go Back

Full Screen
..the triple $\left(a, b,\left\{\epsilon_{n}\right\}\right)$ is a family of non-linear regular pseudo-bosons (NLRPB) if:

- p1. a non zero vector Φ_{0} exists in \mathcal{H} such that $a \Phi_{0}=0$ and $\Phi_{0} \in D^{\infty}(b)$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 26 of 44

Go Back

Full Screen
..the triple $\left(a, b,\left\{\epsilon_{n}\right\}\right)$ is a family of non-linear regular pseudo-bosons (NLRPB) if:

- p1. a non zero vector Φ_{0} exists in \mathcal{H} such that a $\Phi_{0}=0$ and $\Phi_{0} \in D^{\infty}(b)$.
- p2. a non zero vector η_{0} exists in \mathcal{H} such that $b^{\dagger} \eta_{0}=0$ and $\eta_{0} \in D^{\infty}\left(a^{\dagger}\right)$.

Organization of the .

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 26 of 44

Go Back

Full Screen
..the triple $\left(a, b,\left\{\epsilon_{n}\right\}\right)$ is a family of non-linear regular pseudo-bosons (NLRPB) if:

- p1. a non zero vector Φ_{0} exists in \mathcal{H} such that $a \Phi_{0}=0$ and $\Phi_{0} \in D^{\infty}(b)$.
- p2. a non zero vector η_{0} exists in \mathcal{H} such that $b^{\dagger} \eta_{0}=0$ and $\eta_{0} \in D^{\infty}\left(a^{\dagger}\right)$.
- p3. Calling

$$
\Phi_{n}:=\frac{1}{\sqrt{\epsilon_{n}!}} b^{n} \Phi_{0}, \quad \eta_{n}:=\frac{1}{\sqrt{\epsilon_{n}!}} a^{\dagger^{n}} \eta_{0}
$$

we have, for all $n \geq 0$,

$$
a \Phi_{n}=\sqrt{\epsilon_{n}} \Phi_{n-1}, \quad b^{\dagger} \eta_{n}=\sqrt{\epsilon_{n}} \eta_{n-1}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 26 of 44

Go Back

Full Screen
..the triple $\left(a, b,\left\{\epsilon_{n}\right\}\right)$ is a family of non-linear regular pseudo-bosons (NLRPB) if:

- p1. a non zero vector Φ_{0} exists in \mathcal{H} such that $a \Phi_{0}=0$ and $\Phi_{0} \in D^{\infty}(b)$.
- p2. a non zero vector η_{0} exists in \mathcal{H} such that $b^{\dagger} \eta_{0}=0$ and $\eta_{0} \in D^{\infty}\left(a^{\dagger}\right)$.
- p3. Calling

$$
\Phi_{n}:=\frac{1}{\sqrt{\epsilon_{n}!}} b^{n} \Phi_{0}, \quad \eta_{n}:=\frac{1}{\sqrt{\epsilon_{n}!}} a^{\dagger^{n}} \eta_{0}
$$

we have, for all $n \geq 0$,

$$
a \Phi_{n}=\sqrt{\epsilon_{n}} \Phi_{n-1}, \quad b^{\dagger} \eta_{n}=\sqrt{\epsilon_{n}} \eta_{n-1}
$$

- p4. $\mathcal{F}_{\Phi}=\left\{\Phi_{n}, n \geq 0\right\}$ and $\mathcal{F}_{\eta}=\left\{\eta_{n}, n \geq 0\right\}$ are bases of \mathcal{H}.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 26 of 44

Go Back

Full Screen
..the triple $\left(a, b,\left\{\epsilon_{n}\right\}\right)$ is a family of non-linear regular pseudo-bosons (NLRPB) if:

- p1. a non zero vector Φ_{0} exists in \mathcal{H} such that $a \Phi_{0}=0$ and $\Phi_{0} \in D^{\infty}(b)$.
- p2. a non zero vector η_{0} exists in \mathcal{H} such that $b^{\dagger} \eta_{0}=0$ and $\eta_{0} \in D^{\infty}\left(a^{\dagger}\right)$.
- p3. Calling

$$
\Phi_{n}:=\frac{1}{\sqrt{\epsilon_{n}!}} b^{n} \Phi_{0}, \quad \eta_{n}:=\frac{1}{\sqrt{\epsilon_{n}!}} a^{\dagger^{n}} \eta_{0}
$$

we have, for all $n \geq 0$,

$$
a \Phi_{n}=\sqrt{\epsilon_{n}} \Phi_{n-1}, \quad b^{\dagger} \eta_{n}=\sqrt{\epsilon_{n}} \eta_{n-1} .
$$

- p4. $\mathcal{F}_{\Phi}=\left\{\Phi_{n}, n \geq 0\right\}$ and $\mathcal{F}_{\eta}=\left\{\eta_{n}, n \geq 0\right\}$ are bases of \mathcal{H}.
- p5. \mathcal{F}_{Φ} and \mathcal{F}_{η} are Riesz bases of \mathcal{H}.

Let us introduce the following (not self-adjoint) operators:

$$
\begin{equation*}
M=b a, \quad \mathfrak{M}=M^{\dagger}=a^{\dagger} b^{\dagger} \tag{1}
\end{equation*}
$$

Then we can check that $\Phi_{n} \in D(M) \cap D(b), \eta_{n} \in$ $D(\mathfrak{M}) \cap D\left(a^{\dagger}\right)$, and that

$$
\begin{equation*}
b \Phi_{n}=\sqrt{\epsilon_{n+1}} \Phi_{n+1}, \quad a^{\dagger} \eta_{n}=\sqrt{\epsilon_{n+1}} \eta_{n+1} \tag{2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
M \Phi_{n}=\epsilon_{n} \Phi_{n}, \quad \mathfrak{M} \eta_{n}=\epsilon_{n} \eta_{n} \tag{3}
\end{equation*}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 27 of 44

Go Back

Full Screen

Let us introduce the following (not self-adjoint) operators:

$$
\begin{equation*}
M=b a, \quad \mathfrak{M}=M^{\dagger}=a^{\dagger} b^{\dagger} \tag{1}
\end{equation*}
$$

Then we can check that $\Phi_{n} \in D(M) \cap D(b), \eta_{n} \in$ $D(\mathfrak{M}) \cap D\left(a^{\dagger}\right)$, and that

$$
\begin{equation*}
b \Phi_{n}=\sqrt{\epsilon_{n+1}} \Phi_{n+1}, \quad a^{\dagger} \eta_{n}=\sqrt{\epsilon_{n+1}} \eta_{n+1} \tag{2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
M \Phi_{n}=\epsilon_{n} \Phi_{n}, \quad \mathfrak{M} \eta_{n}=\epsilon_{n} \eta_{n} \tag{3}
\end{equation*}
$$

Hence, if $\left\langle\Phi_{0}, \eta_{0}\right\rangle=1$,

$$
\begin{equation*}
\left\langle\Phi_{n}, \eta_{m}\right\rangle=\delta_{n, m}, \tag{4}
\end{equation*}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 27 of 44

Go Back

Full Screen

$$
\begin{equation*}
\sum_{n}\left|\Phi_{n}><\eta_{n}\right|=\sum_{n}\left|\eta_{n}><\Phi_{n}\right|=\mathbb{1} \tag{5}
\end{equation*}
$$

while p5 implies that $S_{\Phi}:=\sum_{n}\left|\Phi_{n}><\Phi_{n}\right|$ and $S_{\eta}:=\sum_{n}\left|\eta_{n}><\eta_{n}\right|$ are positive, bounded, invertible and that $S_{\Phi}=S_{\eta}^{-1}$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 28 of 44

Go Back

Full Screen

$$
\begin{equation*}
\sum_{n}\left|\Phi_{n}><\eta_{n}\right|=\sum_{n}\left|\eta_{n}><\Phi_{n}\right|=\mathbb{1} \tag{5}
\end{equation*}
$$

while p5 implies that $S_{\Phi}:=\sum_{n}\left|\Phi_{n}><\Phi_{n}\right|$ and $S_{\eta}:=\sum_{n}\left|\eta_{n}><\eta_{n}\right|$ are positive, bounded, invertible and that $S_{\Phi}=S_{\eta}^{-1}$.
The new fact is that the operators a and b do not, in general, satisfy any simple commutation rule. Indeed, we can check that, for all $n \geq 0$,

$$
\begin{equation*}
[a, b] \Phi_{n}=\left(\epsilon_{n+1}-\epsilon_{n}\right) \Phi_{n} \tag{6}
\end{equation*}
$$

which is different from $[a, b]=\mathbb{1}$, except if $\epsilon_{n}=n$. We end this overview mentioning also that M and \mathfrak{M} are connected by an intertwining operator:

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with.

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 28 of 44

Go Back

Full Screen

With M. Znojil we have analyzed the connections between NLRPB and CH in JPA, 2011. The starting point is the following

Definition 3 Let us consider two operators H and Θ acting on the Hilbert space \mathcal{H}, with Θ positive and invertible. Let us call H^{\dagger} the adjoint of H in \mathcal{H} with respect to its scalar product and $H^{\ddagger}=\Theta^{-1} H^{\dagger} \Theta$, when this exists. We will say that H is cryptohermitian with respect to $\Theta(C H w r t \Theta)$ if $H=H^{\ddagger}$.

We will restrict here to Θ and Θ^{-1} bounded. The operators $\Theta^{ \pm 1 / 2}$ are well defined. Hence we can introduce an operator $h:=\Theta^{1 / 2} H \Theta^{-1 / 2}$. It is easy to check that $h=h^{\dagger}$. Hence the following definition appears natural:

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 29 of 44

Go Back

Full Screen

Definition 4 Assume that H is $\mathrm{CHwrt} \Theta$, for H and Θ as above. H is well behaved wrt Θ if h has only discrete eigenvalues $\epsilon_{n}, n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$, with eigenvectors $e_{n}: h e_{n}=\epsilon_{n} e_{n}, n \in \mathbb{N}_{0}$, and $\mathcal{E}=\left\{e_{n}\right\}$ is a basis of \mathcal{H}.

Useful technical assumptions:

1. the multiplicity of each eigenvalue ϵ_{n} is one.
2. We assume $0=\epsilon_{0}<\epsilon_{1}<\epsilon_{2}<\ldots$..

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 30 of 44

Go Back

Full Screen

Definition 4 Assume that H is $\mathrm{CHwrt} \Theta$, for H and

Linear pseudo-

Where do pseudo

Connections with

Non-linear pseudo-
Useful technical assumptions:

1. the multiplicity of each eigenvalue ϵ_{n} is one.
2. We assume $0=\epsilon_{0}<\epsilon_{1}<\epsilon_{2}<\ldots$..

Theorem 5 Let H be well behaved wrt Θ, where $\Theta, \Theta^{-1} \in B(\mathcal{H})$, and $\Theta=\Theta^{\dagger}$. Then it is possible to introduce two operators a and b on \mathcal{H}, and a sequence of real numbers $\left\{\epsilon_{n}, n \in \mathbb{N}_{0}\right\}$, such that the triple $\left(a, b,\left\{\epsilon_{n}\right\}\right)$ is a family of NLRPB.
Vice versa, if $\left(a, b,\left\{\epsilon_{n}\right\}\right)$ is a family of NLRPB, two operators can be introduced, H and Θ, such that $\Theta, \Theta^{-1} \in B(\mathcal{H})$ and $\Theta=\Theta^{\dagger}$, and H is well behaved wrt Θ.

Consequences:

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

44

Page 31 of 44

Go Back

Full Screen

Consequences:

1. Formally we have

$$
a=\sum_{n=0}^{\infty} \sqrt{\epsilon_{n}}\left|\Phi_{n-1}><\eta_{n}\right|, \quad b=\sum_{n=0}^{\infty} \sqrt{\epsilon_{n+1}}\left|\Phi_{n+1}><\eta_{n}\right|
$$

as well as

$$
\begin{aligned}
h & =\sum_{n=0}^{\infty} \epsilon_{n}\left|e_{n}><e_{n}\right| \\
H & =\sum_{n=0}^{\infty} \epsilon_{n}\left|\Phi_{n}><\eta_{n}\right|
\end{aligned}
$$

,
and

$$
H^{\dagger}=\sum_{n=0}^{\infty} \epsilon_{n}\left|\eta_{n}><\Phi_{n}\right| .
$$

In particular h, H and H^{\dagger} are isospectrals.

Linear pseudo-

Where do pseudo

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 31 of 44

Go Back

Full Screen
2. Even if h is not required to be factorizable, because of our construction it turns out that it can be written as $h=b_{\Theta} a_{\Theta}$, where $a_{\Theta}=\Theta^{1 / 2} a \Theta^{-1 / 2}$ and $b_{\Theta}=\Theta^{1 / 2} b \Theta^{-1 / 2}$. Incidentally, in general $\left[a_{\Theta}, b_{\Theta}\right]=\Theta^{1 / 2}[a, b] \Theta^{-1 / 2} \neq[a, b]$, but if $\left[[a, b], \Theta^{1 / 2}\right]=0$, which is the case for pseudobosons. Therefore, at least at a formal level, our construction shows that the hamiltonian h can be written in a factorized form.

Organization of the

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 32 of 44

Go Back

Full Screen
[F.B., J. Phys. A, 2012]
The CAR are replaced here by the following rules:

$$
\begin{equation*}
\{a, b\}=\mathbb{1}, \quad\{a, a\}=0, \quad\{b, b\}=0, \tag{1}
\end{equation*}
$$

where the relevant situation is when $b \neq a^{\dagger}$. Compared with Assumptions 1-4 for PB, the only assumptions we might need to require now are the following

- p1. a non zero vector φ_{0} exists in \mathcal{H} such that $a \varphi_{0}=0$.
- p2. a non zero vector Ψ_{0} exists in \mathcal{H} such that $b^{\dagger} \Psi_{0}=0$.

However, even these two requirements are automatically satisfied, as a consequence of (1):

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 33 of 44

Go Back

Full Screen

In fact, in \mathcal{H}, it is easy to check that the only nontrivial possible choices of a and b satisfying (1) are the following:

$$
a(1)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad b(1)=\left(\begin{array}{cc}
\beta & -\beta^{2} \\
1 & -\beta
\end{array}\right)
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 34 of 44

Go Back

Full Screen

In fact, in \mathcal{H}, it is easy to check that the only nontrivial possible choices of a and b satisfying (1) are the following:

$$
\begin{aligned}
& a(1)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad b(1)=\left(\begin{array}{cc}
\beta & -\beta^{2} \\
1 & -\beta
\end{array}\right), \\
& a(2)=\left(\begin{array}{cc}
\alpha & 1 \\
-\alpha^{2} & -\alpha
\end{array}\right), \quad b(2)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),
\end{aligned}
$$

with non zero α and β,

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 34 of 44

Go Back

Full Screen

In fact, in \mathcal{H}, it is easy to check that the only non-

Linear pseudo-

Where do pseudo-

Connections with.

Non-linear pseudo-

Relation with .

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page
$a(3)=\left(\begin{array}{cc}\alpha_{11} & \alpha_{12} \\ -\alpha_{11}^{2} / \alpha_{12} & -\alpha_{11}\end{array}\right), \quad b(3)=\left(\begin{array}{cc}\beta_{11} & \beta_{12} \\ -\beta_{11}^{2} / \beta_{12} & -\beta_{11}\end{array}\right)$,
with $2 \alpha_{11} \beta_{11}-\frac{\alpha_{11}^{2} \beta_{12}}{\alpha_{12}}-\frac{\beta_{11}^{2} \alpha_{12}}{\beta_{12}}=1$. For all these choices, it is easy to show that the two non zero vectors φ_{0} and Ψ_{0} of $\mathbf{p} 1$ and $\mathbf{p} 2$ do exist. This is not surprising, since $\operatorname{det}(a)=\operatorname{det}\left(b^{\dagger}\right)=0$.

$$
a(2)=\left(\begin{array}{cc}
\alpha & 1 \\
-\alpha^{2} & -\alpha
\end{array}\right), \quad b(2)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

with non zero α and β,
or, maybe more interestingly,

For instance, if we take $\alpha_{11}=\frac{1}{3}, \beta_{11}=\frac{2}{3}$, and $\alpha_{12}=$ $-\beta_{12}=-i$, we find:

$$
\begin{gathered}
a(3)=\left(\begin{array}{cc}
1 / 3 & -i \\
-i / 9 & -1 / 3
\end{array}\right), b(3)=\left(\begin{array}{cc}
2 / 3 & i \\
4 i / 9 & -2 / 3
\end{array}\right), \\
\varphi_{0}=\alpha\binom{1}{-i / 3}, \Psi_{0}=\beta\binom{1}{-3 i / 2} .
\end{gathered}
$$

It is not difficult to relate α and β in such a way $\left\langle\varphi_{0}, \Psi_{0}\right\rangle=1$.

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 35 of 44

Go Back

Full Screen

It is now possible to recover similar results as those for PB. In particular, we introduce

$$
\begin{equation*}
\varphi_{1}:=b \varphi_{0}, \quad \Psi_{1}=a^{\dagger} \Psi_{0} \tag{2}
\end{equation*}
$$

as well as the non self-adjoint operators

$$
\begin{equation*}
N=b a, \quad \mathcal{N}=N^{\dagger}=a^{\dagger} b^{\dagger} \tag{3}
\end{equation*}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 36 of 44

Go Back

Full Screen

It is now possible to recover similar results as those for PB. In particular, we introduce

$$
\begin{equation*}
\varphi_{1}:=b \varphi_{0}, \quad \Psi_{1}=a^{\dagger} \Psi_{0} \tag{2}
\end{equation*}
$$

as well as the non self-adjoint operators

$$
\begin{equation*}
N=b a, \quad \mathcal{N}=N^{\dagger}=a^{\dagger} b^{\dagger} . \tag{3}
\end{equation*}
$$

We further introduce S_{φ} and S_{ψ} :

$$
\begin{equation*}
S_{\varphi} f=\sum_{n=0}^{1}\left\langle\varphi_{n}, f\right\rangle \varphi_{n}, \quad S_{\Psi} f=\sum_{n=0}^{1}\left\langle\Psi_{n}, f\right\rangle \Psi_{n} \tag{4}
\end{equation*}
$$

$f \in \mathcal{H}$. Hence we get:
Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 36 of 44

Go Back

Full Screen

It is now possible to recover similar results as those for PB. In particular, we introduce

$$
\begin{equation*}
\varphi_{1}:=b \varphi_{0}, \quad \Psi_{1}=a^{\dagger} \Psi_{0} \tag{2}
\end{equation*}
$$

as well as the non self-adjoint operators

$$
\begin{equation*}
N=b a, \quad \mathcal{N}=N^{\dagger}=a^{\dagger} b^{\dagger} \tag{3}
\end{equation*}
$$

We further introduce S_{φ} and S_{ψ} :

$$
\begin{equation*}
S_{\varphi} f=\sum_{n=0}^{1}\left\langle\varphi_{n}, f\right\rangle \varphi_{n}, \quad S_{\psi} f=\sum_{n=0}^{1}\left\langle\Psi_{n}, f\right\rangle \Psi_{n} \tag{4}
\end{equation*}
$$

$f \in \mathcal{H}$. Hence we get:
1.

$$
\begin{equation*}
a \varphi_{1}=\varphi_{0}, \quad b^{\dagger} \Psi_{1}=\Psi_{0} \tag{5}
\end{equation*}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 36 of 44

Go Back

Full Screen

It is now possible to recover similar results as those for PB. In particular, we introduce

$$
\begin{equation*}
\varphi_{1}:=b \varphi_{0}, \quad \Psi_{1}=a^{\dagger} \Psi_{0} \tag{2}
\end{equation*}
$$

as well as the non self-adjoint operators

$$
\begin{equation*}
N=b a, \quad \mathcal{N}=N^{\dagger}=a^{\dagger} b^{\dagger} \tag{3}
\end{equation*}
$$

We further introduce S_{φ} and S_{ψ} :

$$
\begin{equation*}
S_{\varphi} f=\sum_{n=0}^{1}\left\langle\varphi_{n}, f\right\rangle \varphi_{n}, \quad S_{\psi} f=\sum_{n=0}^{1}\left\langle\Psi_{n}, f\right\rangle \Psi_{n} \tag{4}
\end{equation*}
$$

$f \in \mathcal{H}$. Hence we get:
1.

$$
\begin{equation*}
a \varphi_{1}=\varphi_{0}, \quad b^{\dagger} \Psi_{1}=\Psi_{0} \tag{5}
\end{equation*}
$$

Linear pseudo- .

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Go Back

Full Screen

$$
\begin{equation*}
N \varphi_{n}=n \varphi_{n}, \quad \mathcal{N} \Psi_{n}=n \Psi_{n} \tag{6}
\end{equation*}
$$

3. If $\left\langle\varphi_{0}, \Psi_{0}\right\rangle=1$, then

$$
\begin{equation*}
\left\langle\varphi_{k}, \Psi_{n}\right\rangle=\delta_{k, n}, \tag{7}
\end{equation*}
$$

for $k, n=0,1$.
Where do pseudo-

Connections with

Non-linear pseudo-

Relation with.

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 37 of 44

Go Back

Full Screen
3. If $\left\langle\varphi_{0}, \Psi_{0}\right\rangle=1$, then

$$
\begin{equation*}
\left\langle\varphi_{k}, \Psi_{n}\right\rangle=\delta_{k, n}, \tag{7}
\end{equation*}
$$

for $k, n=0,1$.
4. S_{φ} and S_{ψ} are bounded, strictly positive, selfadjoint, and invertible. They satisfy

$$
\begin{gather*}
\left\|S_{\varphi}\right\| \leq\left\|\varphi_{0}\right\|^{2}+\left\|\varphi_{1}\right\|^{2}, \quad\left\|S_{\Psi}\right\| \leq\left\|\Psi_{0}\right\|^{2}+\left\|\Psi_{1}\right\|^{2} \\
S_{\varphi} \Psi_{n}=\varphi_{n}, \quad S_{\psi} \varphi_{n}=\Psi_{n} \tag{8}
\end{gather*}
$$

for $n=0,1$, as well as $S_{\varphi}=S_{\psi}^{-1}$ and the following intertwining relations

$$
\begin{equation*}
S_{\psi} N=\mathcal{N} S_{\psi}, \quad S_{\varphi} \mathcal{N}=N S_{\varphi} \tag{9}
\end{equation*}
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 37 of 44

Go Back

Full Screen

Then:
(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1 ;

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

44

Page 38 of 44

Go Back

Full Screen

Then:

(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1 ;
(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi}=\left\{\varphi_{0}, \varphi_{1}\right\}$ and $\mathcal{F}_{\Psi}=\left\{\Psi_{0}, \Psi_{1}\right\} ;$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 38 of 44

Go Back

Full Screen

Then:

(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1 ;
(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi}=\left\{\varphi_{0}, \varphi_{1}\right\}$ and $\mathcal{F}_{\Psi}=\left\{\Psi_{0}, \Psi_{1}\right\} ;$ (iii) a and b^{\dagger} are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 38 of 44

Go Back

Full Screen
(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1 ;
(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi}=\left\{\varphi_{0}, \varphi_{1}\right\}$ and $\mathcal{F}_{\Psi}=\left\{\Psi_{0}, \Psi_{1}\right\} ;$
(iii) a and b^{\dagger} are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;
(iv) b and a^{\dagger} are rising operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;

Organization of the

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 38 of 44

Go Back

Full Screen
(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1 ;
(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi}=\left\{\varphi_{0}, \varphi_{1}\right\}$ and $\mathcal{F}_{\Psi}=\left\{\Psi_{0}, \Psi_{1}\right\} ;$
(iii) a and b^{\dagger} are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;
(iv) b and a^{\dagger} are rising operators for \mathcal{F}_{φ} and \mathcal{F}_{ψ} respectively;
(v) the two sets \mathcal{F}_{φ} and \mathcal{F}_{ψ} are biorthonormal;

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 38 of 44

Go Back

Full Screen

Then:

(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1 ;
(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi}=\left\{\varphi_{0}, \varphi_{1}\right\}$ and $\mathcal{F}_{\Psi}=\left\{\Psi_{0}, \Psi_{1}\right\} ;$
(iii) a and b^{\dagger} are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;
(iv) b and a^{\dagger} are rising operators for \mathcal{F}_{φ} and \mathcal{F}_{ψ} respectively;
(v) the two sets \mathcal{F}_{φ} and \mathcal{F}_{ψ} are biorthonormal; (vi) the very well-behaved operators S_{φ} and S_{ψ} maps \mathcal{F}_{φ} in \mathcal{F}_{ψ} and viceversa;

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 38 of 44

Go Back

Full Screen

Then:

(i) N and \mathcal{N} behave as fermionic number operators, having eigenvalues 0 and 1 ;
(ii) their related eigenvectors are respectively the vectors in $\mathcal{F}_{\varphi}=\left\{\varphi_{0}, \varphi_{1}\right\}$ and $\mathcal{F}_{\Psi}=\left\{\Psi_{0}, \Psi_{1}\right\} ;$
(iii) a and b^{\dagger} are lowering operators for \mathcal{F}_{φ} and \mathcal{F}_{ψ} respectively;
(iv) b and a^{\dagger} are rising operators for \mathcal{F}_{φ} and \mathcal{F}_{Ψ} respectively;
(v) the two sets \mathcal{F}_{φ} and \mathcal{F}_{Ψ} are biorthonormal;
(vi) the very well-behaved operators S_{φ} and S_{ψ} maps \mathcal{F}_{φ} in \mathcal{F}_{ψ} and viceversa;
(vii) S_{φ} and S_{Ψ} intertwine between operators which are not self-adjoint, in the very same way as they do for PB.

The Assumptions 1-4 are automatically satisfied: we get Riesz bases for free, and we don't need to impose conditions on the domains of operators. Also:

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 38 of 44

Go Back

Full Screen

Theorem 6 Let c and $T=T^{\dagger}$ be two operators on \mathcal{H} such that $\left\{c, c^{\dagger}\right\}=\mathbb{1}, c^{2}=0$, and $T>0$. Then, defining

$$
\begin{equation*}
a=T c T^{-1}, \quad b=T c^{\dagger} T^{-1} \tag{10}
\end{equation*}
$$

these operators satisfy (1).
Viceversa, given two operators a and b acting on \mathcal{H}, satisfying (1), it is possible to define two operators, c and T, such that $\left\{c, c^{\dagger}\right\}=\mathbb{1}, c^{2}=0, T=T^{\dagger}$ is strictly positive, and (10) holds.

Organization of the

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 39 of 44
Go Back

Full Screen

The starting point is the Schrödinger equation
$i \dot{\Psi}(t)=H_{e f f} \Psi(t)$, with $H_{e f f}=\frac{1}{2}\left(\begin{array}{cc}-i \gamma_{a} & v \\ \bar{v} & -i \gamma_{b}\end{array}\right)$,
where $\gamma_{a}, \gamma_{b}>0$ and $v \in \mathbb{C}$, [Ben-Aryeh etc., JPA, 2004; Trifonov etc., JPA, 2007].

VIII.0.1. Schrödinger representation

Putting $\Phi(t)=e^{\Gamma t} \Psi(t), \Gamma=\frac{1}{2}\left(\gamma_{a}+\gamma_{b}\right)$, we get $i \dot{\Phi}(t)=H \Phi(t)$, where
$H=i \Gamma \mathbb{1}_{2}+H_{e f f}=\left(\begin{array}{cc}-i \gamma & v \\ \bar{v} & i \gamma\end{array}\right), \quad \Phi(t)=\binom{\Phi_{0}(t)}{\Phi_{1}(t)}$.
Here $\gamma=\frac{1}{2}\left(\gamma_{a}-\gamma_{b}\right)$. Calling $\Omega:=|v|^{2}-\gamma^{2}$ we find

$$
\left\{\begin{array}{l}
\ddot{\Phi}_{0}(t)=-\Omega \Phi_{0}(t) \\
\ddot{\Phi}_{1}(t)=-\Omega \Phi_{1}(t)
\end{array}\right.
$$

Home Page

Title Page

Page 40 of 44

Go Back

Full Screen
$\Omega=0$: the functions $\Phi_{0}(t)$ and $\Phi_{1}(t)$ are linear in t, so that

$$
\Psi(t)=e^{-\Gamma t}\binom{\Phi_{0}(t)}{\Phi_{1}(t)}=\binom{e^{-\left(\gamma_{a}+\gamma_{b}\right) \frac{t}{2}}\left(A_{0}+B_{0} t\right)}{e^{-\left(\gamma_{\mathrm{a}}+\gamma_{b}\right) \frac{t}{2}}\left(A_{1}+B_{1} t\right)} .
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 41 of 44

Go Back

Full Screen
$\Omega=0$: the functions $\Phi_{0}(t)$ and $\Phi_{1}(t)$ are linear in t, so that
$\Psi(t)=e^{-\Gamma t}\binom{\Phi_{0}(t)}{\Phi_{1}(t)}=\binom{e^{-\left(\gamma_{a}+\gamma_{b}\right) \frac{t}{2}}\left(A_{0}+B_{0} t\right)}{e^{-\left(\gamma_{a}+\gamma_{b}\right) \frac{t}{2}}\left(A_{1}+B_{1} t\right)}$.

Linear pseudo-

Where do pseudo-

Connections with
$\Omega>0$. In this case the solution can be written as
$\Psi(t)=e^{-\left(\gamma_{0}+\gamma_{0}\right) \frac{t}{2}}\binom{A_{0} \cos (\sqrt{\Omega} t)+B_{0} \sin (\sqrt{\Omega} t)}{A_{1} \cos (\sqrt{\Omega} t)+B_{1} \sin (\sqrt{\Omega} t)}$,

Non-linear pseudo

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 41 of 44

Go Back

Full Screen
$\Omega=0$: the functions $\Phi_{0}(t)$ and $\Phi_{1}(t)$ are linear in t,

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 41 of 44

Go Back

Full Screen

$$
\|\Psi(t)\| \rightarrow 0 .
$$

VIII.0.2. Heisenberg representation

The eigenvalues of H can be written as $\lambda_{ \pm}:= \pm \sqrt{\Omega}$, and the eigenstates are
$\eta_{+}=\binom{\frac{1}{\bar{v}}(-i \gamma+\sqrt{\Omega})}{1}, \eta_{-}=\binom{-\frac{1}{v}(i \gamma+\sqrt{\Omega})}{1}$.
Notice that $\left\langle\eta_{+}, \eta_{-}\right\rangle=\frac{2 \gamma}{|V|^{2}}(\gamma-i \sqrt{\Omega})$, which is zero only if $\gamma=0\left(H=H^{\dagger}\right)$ or if $\gamma=i \sqrt{\Omega}(H=$ $-H^{\dagger}$). Also, going back to $H_{\text {eff }}$

$$
H_{\text {eff }} \eta_{ \pm}=E_{ \pm} \eta_{ \pm}, \quad E_{ \pm}=-\frac{i}{2}\left(\gamma_{a}+\gamma_{b}\right) \pm \sqrt{\Omega} .
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 42 of 44

Go Back

Full Screen

VIII.0.2. Heisenberg representation

The eigenvalues of H can be written as $\lambda_{ \pm}:= \pm \sqrt{\Omega}$, and the eigenstates are
$\eta_{+}=\binom{\frac{1}{v}(-i \gamma+\sqrt{\Omega})}{1}, \eta_{-}=\binom{-\frac{1}{v}(i \gamma+\sqrt{\Omega})}{1}$.
Notice that $\left\langle\eta_{+}, \eta_{-}\right\rangle=\frac{2 \gamma}{|V|^{2}}(\gamma-i \sqrt{\Omega})$, which is zero only if $\gamma=0\left(H=H^{\dagger}\right)$ or if $\gamma=i \sqrt{\Omega}(H=$ $-H^{\dagger}$). Also, going back to $H_{\text {eff }}$

$$
H_{e f f} \eta_{ \pm}=E_{ \pm} \eta_{ \pm}, \quad E_{ \pm}=-\frac{i}{2}\left(\gamma_{a}+\gamma_{b}\right) \pm \sqrt{\Omega} .
$$

It is possible now to introduce two operators a and b, such that $\{a, b\}=\mathbb{1}, a^{2}=b^{2}=0$, and

$$
H=\Omega\left(b a-\frac{1}{2} \mathbb{I}\right)=\Omega\left(N-\frac{1}{2} \mathbb{1}\right),
$$

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Home Page

Title Page

Page 42 of 44

Go Back

Full Screen

To recover the same damping we have found in Schrödinger representation, it is natural to consider the time evolution of the number operator N :

$$
N_{e f f}(t)=e^{i H_{e f f}^{\dagger} t} N e^{-i H_{e f f} t},
$$

which turns out to be

$$
N_{e f f}(t)=e^{-2 \Gamma t}\left(N e^{-i \Omega t}+\mathcal{N} N\left(1-e^{-i \Omega t}\right)\right)
$$

Then, if we estimate the norm of $N_{\text {eff }}(t)$, it is trivial to deduce that

$$
\left\|N_{e f f}(t)\right\| \leq 3 e^{-2 \Gamma t}
$$

which goes to zero when t diverges. Hence, as expected, we recover damping also in Heisenberg picture.

Home Page

Title Page

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Page 43 of 44

Go Back

Full Screen

To recover the same damping we have found in Schrödinger representation, it is natural to consider the time evolution of the number operator N :

$$
N_{e f f}(t)=e^{i H_{e f f}^{\dagger} t} N e^{-i H_{e f f} t},
$$

which turns out to be

$$
N_{e f f}(t)=e^{-2 \Gamma t}\left(N e^{-i \Omega t}+\mathcal{N} N\left(1-e^{-i \Omega t}\right)\right)
$$

Then, if we estimate the norm of $N_{\text {eff }}(t)$, it is trivial to deduce that

$$
\left\|N_{e f f}(t)\right\| \leq 3 e^{-2 \Gamma t}
$$

which goes to zero when t diverges. Hence, as expected, we recover damping also in Heisenberg picture.

Remark:- Larger dimensional examples can also be constructed, see FB, J. Phys. A, submitted.

Home Page

Title Page
Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?

Go Back

Full Screen

1. unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

44

4

Page 44 of 44

Go Back

Full Screen

1. unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])
2. pseudo-bosonic quantum field theory: any spinstatistic theorem?

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 44 of 44

Go Back

Full Screen

1. unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])
2. pseudo-bosonic quantum field theory: any spinstatistic theorem?
3. more connections with non-hermitian quantum mechanics

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 44 of 44

Go Back

Full Screen

1. unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])
2. pseudo-bosonic quantum field theory: any spinstatistic theorem?
3. more connections with non-hermitian quantum mechanics
4. bicoherent states and quantization...

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page
Title Page

Page 44 of 44

Go Back

Full Screen

1. unbounded operators (with M. Znojil [JPhysA 2012] and with C.Trapani and A. Inoue [JMP 2011] and [JMP submitted])
2. pseudo-bosonic quantum field theory: any spinstatistic theorem?
3. more connections with non-hermitian quantum mechanics
4. bicoherent states and quantization...
5. ...etc

Linear pseudo-

Where do pseudo-

Connections with

Non-linear pseudo-

Relation with

Pseudo-fermions

Application to decay

What more?
Home Page

Title Page

Page 44 of 44

Go Back

Full Screen

