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ORGANIZATION OF THE TALK

» The sense in which we understand the decoherence.
» Brief explanation of decoherence as proposed bglZur
» The conceptual problems in decoherence theory.

» The introduction of a particular non-Hermitian etfee
Hamiltonian to solve one of this problems.

» Definition of decoherence in closed systems.



MEAN VALUE

A classical set of events is associated with priblbab.

D : Q ={1,2,34,5,6}
|31:P2:PS:P4:P5:P6:%

We can compute the mean value.
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< > 6+ 6+36+ 6+56+ 6
In general:
Q={w,w,w,.}
(Q >:Z P =P +wP, +wP,+...




QUANTUM MEAN VALUE

The quantum mean value of the oper&os computed as:

<6>p =Tr (é,b) = izoijloji

That Is:

P
0),=XantXop, >

=
/ \/
It is not possible to interpret
 — the state as a statistical

ensemble.




DECOHERENCE PROGRAM

Approach called environment-induced decoherence (EID)

As usual we will consider a closed systeim
and we will define two subsystem§, the
“proper or open system”, ande, the
environment. The open systesis considered
In interaction with the environmel, and we
study the reduced state.

d _
E/Os (t) =F (ps (t))

!lm ps(t) = ps. diagonal - -




PROBLEMS OF EID

1. It can not be applied to closed systems (NO EROMIMENT)

In particular, it can not be applied to the unieeas a whole.




DECOHERENCI

In classical systems we have to eliminate the dersss.

(0), =2 0p + 20,04

=

|
DECOHERENCE

<O>p = IZ 0. O

INTERPRETATION

0),=Zor




MEAN VALUES APPROACF

States: when the state is diagonal, the interferencestdisappear
from the mean values @l the observables.

decoherence

0 diagonal . D(A),<(5>ﬁ = ZO” 0.

Mean Values: If the interference terms disappear frima mean
values ofall the observables, themis diagonal

decoherence

D(A),<(5>ﬁ = ZO” Jo - 0 diagonal




MEAN VALUES APPROACF

If our attention is restricted only sbme observables instead of all of
them, there is no need for the state to be diagonal

Nno — decoherence

p no—diagonal d <6R>ﬁ =>0p

decoherence

<CA)R>[A) = izoiiloii >< > P %

A difference appears between these two perspectivespproach
which emphasizes the states is more restrictive. o



IRREVERSIBILITY AND DECOHERENCE

A physical systenmas an associated state operai{oy.

A —i%t . i%t |The state evolves in a unitary way and this
pt)=e " pe prevents it to reach the equilibrium

This means that the use of some kind of non-unitary evotusmeeded
to explain the arrival to equilibrium 1



NON-UNITARY EVOLUTION

_ _ operation . .
Unitary evolution * Non-unitary evolution

Froma general point of viewthis operation consists in the partitioning
of the maximal information of the systeim a relevant part and an
Irrelevant part.

Maximal information

Relevant inf.
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NON-UNITARY EVOLUTION

Maximal information

o o
o (¢} o o

OOOOOOOOO

In this kind of framework, the evolution would reach aiation of final

operation
-
O
S 5
s 3
= .
Q |operacion| 2
) k=
P h—
-
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C 1
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Z

equilibrium

relevant information
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COARSEGRAINING OPERATION

In QM the maximal information of a systelahis given by the spad® of
all the observables that can be built for the system

Maximal information > O
Relevant information » O, 00
Definition:
Coarse-grained stagg.(t): <6R>,b(t) = <CA)R>[,)G o

with O. 00,




COARSEGRAINING OPERATION

A coarse-graining operation is equivalent to a projectio
It is known that:

If Oy O Oanc[éR 00; = DéDO/iﬁ:CA)R,witﬁﬂprojector.

It can be shown thap; can be interpreted as the projectionpabver
Of.

If<CA)R>A = <CA)R>[)G = Ot/ prr= p,

0
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COARSEGRAINING OPERATION

Election of observables

Information loss

Unitary evolution

Non-unitary evolution
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THE HAMILTONIAN OF THE CLOSED SYSTEM

Given the total Hamiltoniakl = H, + V, whereH, is the free Hamiltonian and is a
perturbationyV will be responsible for the introduction of polés, satisfies:

How =ww ‘wHy=ww OSa<w

and | :Ida)|a)><a)|, (W) = Xew-a)

Then, H, = Tw| W) (@) and
0

H=H,+V =Ta)|a)><a)|da)+o_fdw]gda)\/m|a)><a)’| =Ta)
0 0 0

0

dw

a)+><a)+
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THE EFFECTIVEHAMILTONIAN

Vectors w+> are the eigenvectors of, which are given bylLippmann-Schwinger
equations .

Poles_
Zn - a‘n _Iyn

We assume tha? @ andy) are analytic functions in the whaigptex plane. The
second term in both equations introduces poles.
It is possible to build an effective Hamiltonian

Heff = Z Zn‘ Zn><zn‘

It can be shown that the poles appear in the mehmes.

<OR> = <OR>deiag* u Z b,(t)e”™" + Khalfin

pr®) 17




TWO POLES WITHOUT KHALFIN

When we consider two poles and neglect the Kh&dfim, we get:

_ — ot — )4t
<OR>PR(t) _<OR>PRdiag* ¥ aO(t)e v al(t)e & where Yo<<h

So, we define the times of decoherence associated/atid relaxation withy,.

tD :1ana’tR=1

n Yo

So aften,

t>t,

— ~Jot — 5'[ | t | t
(Oc) g = (Oc) e+l =+ 2AONONIO
The preferred basis is defined: is the one that baniskeastérference.

Easy: With the poles, we determipethen build the base is easy.
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A GENERAL FRAMEWORK

o o . o 1. Relevant observables are chosen
° 6. 00,
2. Mean values are computed
N (6.)  =Tr(6p)

3. It can be demonstrated (when relaxation occurs)niean values
reach a final equilibriurwalue in a timdg

<6R>[)(t) D - <6R> 5

Yo,

4.1, and the preferred basis are computed by analizeng th
characteristic decay times of the mean values.

<C3R>ﬁ(t) =)+ =" (t) O 0 - >°(t) O 0 - 2°(%) |,




THE FRAMEWORK INCLUDES EID

1. Relevant observables are chosen

N N

° \°e ° E O, =0, 01,00,

TN (6, =T 6em)=Tr(6.0,0)= (64)

Ps (1)

3. It can be demonstrated (when there is relaxation)

<6R>p(t) D - <6R>ﬁ* = :bs (t) U B :bs*

4. It can be demonstrated (when there is decoherence)
<oR>m =)+ () 0@ - =°(t) O @) - =°(*)

05 (t) O 0 - P (t) diagonal [ - Ps
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NOTATION

It is convenient to use the following notation:

Operators :|O)
States : (P |
Mean values : <O>p = (,0 | O)

- The operators belong to spaDe

- The states belong to spa€e (dual of O).

- The mean value is a real number.
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APPLICATION TO CASES WITH NO ENVIRONMENT

Given a quantum system with Hamiltonian H with comdus spectrum

H|w) = djw)

1. We choose thean Hove observablego, )00,

. > regular function
= j O(w)| w)dw+ j ‘ o )dada
0 O

The statep are represented by linear functionals @r),

(0n] = ojo p(w)(chm]o]o p(w, ) (w, wldada

Cobasis

This restriction on the observables does not diminish the generality,
because the observables not belonging to the van Hove space are not
experimentally accessible 22



APPLICATION TO CASES WITH NO ENVIRONMENT

2. The expected value of an observable is:

= j 0 (W)O(w)dw+ j j 0 (w,0)O(w, ) dadw
0 00
The time evolution of this expected value is gitgn

(Og) O j,o (a))O(a))da)+”p (w,)O(w,w))e w;lwltdada)'
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APPLICATION TO CASES WITH NO ENVIRONMENT

3. Since the functions are regular we can appl\Rileenann-
Lebesgue theorem, then:

im(Og) , = j 0 (W)O(w)dw

The mean value can be computed as if the system iwer
stable final state:

im(Ox) ., =(Ox),

> o0

with W =lim p(t) = p. = | p(e)(wldwdiagonal
-7 0

This means that the system decoheres on the basis of elgenvectors of th
Hamiltonian.



APPLICATION TO CASES WITH NO ENVIRONMENT

1) The framework can be applied to SID (self-inducedtiecence).

4.1, and the preferred basis are computed by analizeng th
characteristic decay times of the mean values.

<C5R>b(t) =2°(O+ZP O 0O - 27 0 @) - =7 (%)
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CONCLUSIONS

In this talk we showed that:

=>» The ortodox approach of decoherence can not beeaiiali
closed systems.

=» The introduction of a coarse-graining operation tfamss the
unitary evolution into a non unitary one.

=» The characteristic times of the system are givethby
Imaginary part of the poles of the Hamiltonian.

=» The introduction of the polar technique to (Beneral
Theoretical Framework for Decoherence allows us to describe
decoherence and relaxation in closed systems.
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