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ORGANIZATION OF THE TALK

� The sense in which we understand the decoherence.

� Brief explanation of decoherence as proposed by Zurek.

� The conceptual problems in decoherence theory.

� The introduction of a particular non-Hermitian effective 
Hamiltonian to solve one of this problems.

� Definition of decoherence in closed systems.
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MEAN VALUE
A classical set of events is associated with probabilities.
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We can compute the mean value.
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QUANTUM MEAN VALUE

The quantum mean value of the operator O is computed as:
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It is not possible to interpret 
the state as a statistical 

ensemble.

- Superposition
- Interference
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DECOHERENCE PROGRAM

Approach called environment-induced decoherence (EID).

As usual we will consider a closed system U
and we will define two subsystems: S, the 
“proper or open system”, and E, the 
environment. The open systemS is considered 
in interaction with the environment E, and we 
study the reduced state.
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PROBLEMS OF EID
1. It can not be applied to closed systems (NO ENVIRONMENT)

In particular, it can not be applied to the universe as a whole.
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DECOHERENCE
In classical systems we have to eliminate the cross terms.
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MEAN VALUES APPROACH
States: when the state is diagonal, the interference terms disappear
from the mean values ofall the observables.
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Mean Values: If the interference terms disappear fromthe mean 
values ofall the observables, thenρ is diagonal.
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MEAN VALUES APPROACH
If our attention is restricted only to some observables instead of all of 
them, there is no need for the state to be diagonal
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A difference appears between these two perspectives: the approach
which emphasizes the states is more restrictive.  
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IRREVERSIBILITY AND DECOHERENCE

A physical systemhas an associated state operatorρ(t).

This means that the use of some kind of non-unitary evolution is needed
to explain the arrival to equilibrium.
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NON-UNITARY EVOLUTION

Unitary evolution Non-unitary evolution

Froma general point of view, this operation consists in the partitioning
of the maximal information of the systemin a relevant part and an

irrelevant part. 

operation

Maximal information

Relevant inf.
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NON-UNITARY EVOLUTION

Maximal information relevant information
operation
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In this kind of framework, the evolution would reach a situation of final 
equilibrium. 
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COARSE-GRAINING OPERATION
In QM the maximal information of a systemU is given by the spaceO of

all the observables that can be built for the system.

Maximal information O

Relevant information OO ⊂R

Definition:

Coarse-grained stateρG(t):
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COARSE-GRAINING OPERATION
A coarse-graining operation is equivalent to a projection

projector.  with ,   and  If ππ RRRR OOOO ˆˆ/ˆˆ =∈∃⇒∈⊂ OOOO

It is known that:

It can be shown thatρG can be interpreted as the projection of  ρ over 
OR’.
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COARSE-GRAINING OPERATION

Election of observables Information loss

Unitary evolution Non-unitary evolution
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THE HAMILTONIAN OF THE CLOSED SYSTEM

Given the total Hamiltonian H = H0 + V, whereH0 is the free Hamiltonian andV is a 
perturbation, V will be responsible for the introduction of poles. H0 satisfies:
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THE EFFECTIVE HAMILTONIAN
Vectors are the eigenvectors of, which are given by the Lippmann-Schwinger

equations :

We assume that and are analytic functions in the whole complex plane. The 
second term in both equations introduces poles. 
It is possible to build an effective Hamiltonian 

It can be shown that the poles appear in the mean values.
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TWO POLES WITHOUT KHALFIN
When we consider two poles and neglect the Khalfin term, we get:

The preferred basis is defined: is the one that banishes the interference.
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So, we define the times of decoherence associated withγ1 and relaxation with γ0.

01

11
γγ

== RD tt  and 

where 10 γγ <<

So aftertD

t

ρR

tt

(t)ρR etaOO
Rdiag

D

R

0)(0*

γ−
>

+=

Easy: With the poles, we determine tD, then build the base is easy.

)()()(~ titita
n
∑→



19

A GENERAL FRAMEWORK
1. Relevant observables are chosen

RRO O∈ˆ

3. It can be demonstrated (when relaxation occurs) thatmean values
reach a final equilibriumvalue in a time tR
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4. tD and the preferred basis are computed by analizing the 
characteristic decay times of the mean values. 
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THE FRAMEWORK  INCLUDES EID
1. Relevant observables are chosen
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4. It can be demonstrated (when there is decoherence)
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2. Mean Values are calculated
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3. It can be demonstrated (when there is relaxation)
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NOTATION
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It is convenient to use the following notation:

- The operators belong to spaceO.
- The states belong to spaceO’ (dual of O).
- The mean value is a real number.
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APPLICATION TO CASES WITH NO ENVIRONMENT

Given a quantum system with Hamiltonian H with continuous spectrum:

1. We choose thevan Hove observables :

The states ρ are represented by linear functionals on
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This restriction on the observables does not diminish the generality, 
because the observables not belonging to the van Hove space are not 

experimentally accessible
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APPLICATION TO CASES WITH NO ENVIRONMENT

2. The expected value of an observable is:

The time evolution of this expected value is given by:
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APPLICATION TO CASES WITH NO ENVIRONMENT

3. Since the functions are regular we can apply the Riemann-
Lebesgue theorem, then:

The mean value can be computed as if the system were in a 
stable final state:
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This means that the system decoheres on the basis of eigenvectors of the 
Hamiltonian.
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APPLICATION TO CASES WITH NO ENVIRONMENT

1) The framework can be applied to SID (self-induced decoherence).

4. tD and the preferred basis are computed by analizing the 
characteristic decay times of the mean values. 
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CONCLUSIONS
In this talk we showed that: 

� The ortodox approach of decoherence can not be applied to 
closed systems.

� The introduction of a coarse-graining operation transforms the
unitary evolution into a non unitary one.

� The characteristic times of the system are given by the 
imaginary part of the poles of the Hamiltonian.

� The introduction of the polar technique to the General 
Theoretical Framework for Decoherence allows us to describe 
decoherence and relaxation in closed systems.
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