Non-Hermitian operators in quantum physics

David KREJČIŘÍK

http://gemma.ujf.cas.cz/~david/

Nuclear Physics Institute ASCR Řež, Czech Republic

First, there's the room you can see through the glass — that's just the same as our drawing-room, only the things go the other way.

Hors de ligne

(Outline)

Hors de ligne

(Outline)

- QM with non-Hermitian operators
 (just some conceptual remarks)
- 2. PT-symmetry(what is known and my point of view)
- 3. physical PT-symmetric models in QM (non-self-adjoint Robin boundary conditions)
- 4. imaginary cubic oscillator(about the non-existence of the metric operator)
- 5. Conclusions

¿ QM with non-Hermitian operators?

 \mathbb{C}

 \mathbb{R}

 $H^* = H$

Imaginary Numbers by Yves Tanguy, 1954 (Museo Thyssen-Bornemisza, Madrid)

 $H^{\mathfrak{PT}} = H$

Insignificant non-Hermiticity

Example 1. evolution operator
$$U(t) = \exp(-itH)$$
:
$$\begin{cases} i\dot{U}(t) = H\,U(t) \\ U(0) = I \end{cases}$$

$$\begin{cases} i\dot{U}(t) = H U(t) \\ U(0) = I \end{cases}$$

Insignificant non-Hermiticity

Example 1. evolution operator $U(t) = \exp(-itH)$: $\begin{cases} i\dot{U}(t) = H\,U(t) \\ U(0) = I \end{cases}$

Example 2. resolvent operator $R(z)=(H-z)^{-1}$, $z\in\mathbb{C}$

Insignificant non-Hermiticity

Example 1. evolution operator $U(t) = \exp(-itH)$: $\begin{cases} iU(t) = HU(t) \\ U(0) = I \end{cases}$

$$\begin{cases} i\dot{U}(t) = H U(t) \\ U(0) = I \end{cases}$$

Example 2. resolvent operator $R(z)=(H-z)^{-1}$, $z\in\mathbb{C}$

Theorem (spectral theorem).

Let $H = H^*$. Then

$$f(H) = \int_{\sigma(H)} f(\lambda) \, dE_H(\lambda)$$

for any complex-valued continuous function f.

Example 1. complex scaling $H_{\theta} := S_{\theta}(-\Delta + V)S_{\theta}^{-1}$, $(S_{\theta}\psi)(x) := e^{\theta/2} \psi(e^{\theta}x)$

[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], ...

Example 1. complex scaling $H_{\theta} := S_{\theta}(-\Delta + V)S_{\theta}^{-1}$, $(S_{\theta}\psi)(x) := e^{\theta/2} \psi(e^{\theta}x)$

[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], . . .

Example 2. adiabatic transition probability for $H(t) := \vec{\gamma}(t/\tau) \cdot \vec{\sigma}, \quad \tau \to \infty$ [Berry 1990], [Joye, Kunz, Pfister 1991], [Jakšić, Segert 1993], . . .

Example 1. complex scaling $H_{\theta} := S_{\theta}(-\Delta + V)S_{\theta}^{-1}$, $(S_{\theta}\psi)(x) := e^{\theta/2} \psi(e^{\theta}x)$

[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], . . .

- **Example 2.** adiabatic transition probability for $H(t) := \vec{\gamma}(t/\tau) \cdot \vec{\sigma}, \quad \tau \to \infty$ [Berry 1990], [Joye, Kunz, Pfister 1991], [Jakšić, Segert 1993], . . .
- **Example 3.** Regge theory $H_l:=-rac{\mathrm{d}^2}{\mathrm{d}r^2}+rac{l(l+1)}{r^2}+V(r), \quad l\in\mathbb{C}$ [Regge 1957], [Connor 1990], [Sokolovski 2011], ...

Approximate non-Hermiticity

open systems

Example 1. radioactive decay

Example 2. dissipative Schrödinger operators in semiconductor physics Baro, Behrndt, Kaiser, Neidhardt, Rehberg, . . .

Example 3. repeated interaction quantum systems Bruneau, Joye, Merkli, Pillet, . . .

¿ Fundamental non-Hermiticity ?

i.e. non-Hermitian observables, without violating physical axioms of QM

¿ Fundamental non-Hermiticity ?

i.e. non-Hermitian observables, without violating physical axioms of QM

i no!

Theorem (Stone's theorem).

Unitary groups on a Hilbert space are generated by self-adjoint operators.

¿ Fundamental non-Hermiticity ?

i.e. non-Hermitian observables, without violating physical axioms of QM

i no!

Theorem (Stone's theorem).

Unitary groups on a Hilbert space are generated by self-adjoint operators.

¿ yes?

by changing the Hilbert space, preserving a similarity to self-adjoint operators

Non-Hermitian Hamiltonians with real spectra

$$-\Delta + V$$
 in $L^2(\mathbb{R})$

$$V(x) = x^2 + ix^3$$

[Caliceti, Graffi, Maioli 1980]

[Bessis, Zinn-Justin]
[Bender, Boettcher 1998]
[Dorey, Dunning, Tateo 2001]
[Shin 2002]

[Azizov, Kuzhel, Günther, Trunk 2010]

$$V(x) = \begin{cases} i \operatorname{sgn}(x) & \text{if} \quad x \in (-L, L) \\ \infty & \text{elsewhere} \end{cases}$$

[Znojil 2001]

¿ What is behind the reality of the spectrum?

$$[H, \mathfrak{PT}] = 0$$

$$(\mathcal{P}\psi)(x) := \psi(-x)$$

$$(\Im\psi)(x) := \overline{\psi(x)}$$

We have in mind $H=-\Delta+V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)}=V(x)$.

$$[H, \mathfrak{PT}] = 0$$

$$(\mathcal{P}\psi)(x) := \psi(-x)$$

$$(\mathfrak{T}\psi)(x) := \overline{\psi(x)}$$

We have in mind $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$.

 \mathfrak{PT} is an *antilinear* symmetry \implies in general only: $\lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$

$$[H, \mathfrak{PT}] = 0$$

$$(\mathcal{P}\psi)(x) := \psi(-x)$$

$$(\Im\psi)(x) := \overline{\psi(x)}$$

We have in mind $H=-\Delta+V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)}=V(x)$.

 \mathfrak{PT} is an *antilinear* symmetry \implies in general only: $\lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$

unbroken $\operatorname{\mathcal{P}T}$ -symmetry $:\Leftrightarrow H$ and $\operatorname{\mathcal{P}T}$ have the same eigenstates $\Leftrightarrow \sigma(H)\subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

$$[H, \mathfrak{PT}] = 0$$

$$(\mathcal{P}\psi)(x) := \psi(-x)$$

$$(\Im\psi)(x) := \overline{\psi(x)}$$

We have in mind $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$.

 \mathfrak{PT} is an antilinear symmetry \implies in general only: $\lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$

unbroken $\mathfrak{P}\mathfrak{T}$ -symmetry $:\Leftrightarrow H$ and $\mathfrak{P}\mathfrak{T}$ have the same eigenstates $\Leftrightarrow \sigma(H)\subset\mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

 $H_0 + \varepsilon \, V =: H \quad \leadsto \quad \text{spectrum moves at most by } \varepsilon \, \|V\|$ $\text{$\mathcal{P}$T-symmetric} \quad \stackrel{*}{\Longrightarrow} \quad \text{simple eigenvalues remain real for small } \varepsilon$ self-adjoint

$$[H, \mathfrak{PT}] = 0$$

$$(\mathcal{P}\psi)(x) := \psi(-x)$$

$$(\mathfrak{T}\psi)(x) := \overline{\psi(x)}$$

We have in mind $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$.

 \mathfrak{PT} is an antilinear symmetry \implies in general only: $\lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$

unbroken $\mathfrak{P}T$ -symmetry $:\Leftrightarrow H$ and $\mathfrak{P}T$ have the same eigenstates $\Leftrightarrow \sigma(H) \subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

 $H_0 + \varepsilon V =: H \ \leadsto \ \operatorname{spectrum\ moves\ at\ most\ by} \ \varepsilon \, \|V\|$ $\operatorname{\mathcal{P}T-symmetric} \stackrel{*}{\Longrightarrow} \operatorname{simple\ eigenvalues\ remain\ real\ for\ small\ } arepsilon$ self-adjoint

Moreover, let the eigenstates of H form a Riesz basis. $H\psi_n = E_n\psi_n$, $H^*\phi_n = E_n\phi_n$

$$[H, \mathfrak{PT}] = 0$$

$$(\mathcal{P}\psi)(x) := \psi(-x)$$

$$(\mathfrak{T}\psi)(x) := \overline{\psi(x)}$$

We have in mind $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$.

 \mathfrak{PT} is an *antilinear* symmetry \implies in general only: $\lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$

unbroken $\operatorname{\mathcal{P}T}$ -symmetry $:\Leftrightarrow H$ and $\operatorname{\mathcal{P}T}$ have the same eigenstates $\Leftrightarrow \sigma(H)\subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

 $H_0 + \varepsilon \, V =: H \ \, \leadsto \ \, \text{spectrum moves at most by } \varepsilon \, \|V\|$ self-adjoint $\text{$\mathcal{P}$T-symmetric} \quad \stackrel{*}{\Longrightarrow} \quad \text{simple eigenvalues remain real for small } \varepsilon$

Moreover, let the eigenstates of H form a Riesz basis. $H\psi_n = E_n\psi_n$, $H^*\phi_n = E_n\phi_n$

$$\Longrightarrow$$
 $H^* = \Theta H \Theta^{-1}$ where $\Theta := \sum_n \phi_n \langle \phi_n, \cdot \rangle$ is positive, bounded, boundedly invertible

 $\Longrightarrow H$ is self-adjoint in $\left(L^2,\langle\cdot,\Theta\cdot\rangle\right)$, i.e. $\Theta^{1/2}H\Theta^{-1/2}$ is self-adjoint in $\left(L^2,\langle\cdot,\cdot\rangle\right)$

$$[H, \mathfrak{PT}] = 0$$

$$(\mathcal{P}\psi)(x) := \psi(-x)$$

$$(\mathfrak{T}\psi)(x) := \overline{\psi(x)}$$

We have in mind $H = -\Delta + V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)} = V(x)$.

 \mathfrak{PT} is an *antilinear* symmetry \implies in general only: $\lambda \in \sigma(H) \Leftrightarrow \overline{\lambda} \in \sigma(H)$

unbroken $\operatorname{\mathcal{P}T}$ -symmetry $:\Leftrightarrow H$ and $\operatorname{\mathcal{P}T}$ have the same eigenstates $\Leftrightarrow \sigma(H)\subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

 $H_0 + \varepsilon \, V =: H \ \, \leadsto \ \, \text{spectrum moves at most by } \varepsilon \, \|V\|$ self-adjoint $\text{$\mathcal{P}$T-symmetric} \quad \stackrel{*}{\Longrightarrow} \quad \text{simple eigenvalues remain real for small } \varepsilon$

Moreover, let the eigenstates of H form a Riesz basis. $H\psi_n = E_n\psi_n$, $H^*\phi_n = E_n\phi_n$

$$\Longrightarrow$$
 $H^* = \Theta H \Theta^{-1}$ where $\Theta := \sum_n \phi_n \langle \phi_n, \cdot \rangle$ is positive, bounded, boundedly invertible

 $\Longrightarrow H$ is self-adjoint in $\left(L^2,\langle\cdot,\Theta\cdot\rangle\right)$, i.e. $\Theta^{1/2}H\Theta^{-1/2}$ is self-adjoint in $\left(L^2,\langle\cdot,\cdot\rangle\right)$ metric

Albeverio-Fei-Kurasov, Bender-Brody-Jones, Caliceti-Graffi-Sjöstrand, Fring, Graefe-Schubert, Kretschmer-Szymanowski, Langer-Tretter, Mostafazadeh, Scholtz-Geyer-Hahne, Znojil, . . .

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$H:=egin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix}$$
 on \mathbb{C}^2 satisfies $H^*\Theta=\Theta H$ with $\Theta:=egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$H:=egin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix}$$
 on \mathbb{C}^2 satisfies $H^*\Theta=\Theta H$ with $\Theta:=egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$

Mostafazadeh's construction

$$h=1$$
 on $\mathbb C$

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$H:=egin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix}$$
 on \mathbb{C}^2 satisfies $H^*\Theta=\Theta H$ with $\Theta:=egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$

Mostafazadeh's construction

$$h=1$$
 on $\mathbb C$

In ∞ -dimensional spaces: | similar examples with $\Theta>0$ invertible but Θ^{-1} unbounded!

j possible $\langle \phi_n, \psi_n \rangle \neq 0$ for all n but $\langle \phi_n, \psi_n \rangle \xrightarrow[n \to \infty]{} 0$!

i unbounded Θ or Θ^{-1} always exist !

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$H:=egin{pmatrix} 1 & 2 \ 0 & 1 \end{pmatrix}$$
 on \mathbb{C}^2 satisfies $H^*\Theta=\Theta H$ with $\Theta:=egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$

Mostafazadeh's construction

h=1 on $\mathbb C$

- In ∞ -dimensional spaces: | similar examples with $\Theta>0$ invertible but Θ^{-1} unbounded !
 - j possible $\langle \phi_n, \psi_n \rangle \neq 0$ for all n but $\langle \phi_n, \psi_n \rangle \xrightarrow[n \to \infty]{} 0$!
 - i unbounded Θ or Θ^{-1} always exist !
- Moreover: physically relevant quantities are not preserved!
 - (continuous spectrum, pseudospectrum)
 - ; spectral instablities!

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$H:=egin{pmatrix}1&2\0&1\end{pmatrix}$$
 on \mathbb{C}^2 satisfies $H^*\Theta=\Theta H$ with $\Theta:=egin{pmatrix}0&0\0&1\end{pmatrix}$

Mostafazadeh's construction

$$h=1$$
 on $\mathbb C$

In ∞ -dimensional spaces: similar examples with $\Theta>0$ invertible but Θ^{-1} unbounded!

- j possible $\langle \phi_n, \psi_n \rangle \neq 0$ for all n but $\langle \phi_n, \psi_n \rangle \xrightarrow[n \to \infty]{} 0$!
- i unbounded Θ or Θ^{-1} always exist!

Moreover: physically relevant quantities are not preserved! (continuous spectrum, pseudospectrum)

spectral instablities!

concept of "unbounded metric" is trivial and physically doubtful

to understand

 $\mathfrak{PT}H\,\mathfrak{PT}=H$ in a more general setting

to understand $\mathfrak{PT}H\,\mathfrak{PT}=H$ in a more general setting than:

$$ullet$$
 $H=-\Delta+V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)}=V(x)$

•
$$(\mathcal{P}\psi)(x) := \psi(-x), \quad (\mathcal{T}\psi)(x) := \overline{\psi(x)}$$

Remark. In general, a PT-symmetric operator is not similar to a self-adjoint, normal or spectral operator.

to understand $\mathfrak{PT}H\,\mathfrak{PT}=H$ in a more general setting than:

- ullet $H=-\Delta+V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)}=V(x)$
- $(\mathcal{P}\psi)(x) := \psi(-x), \quad (\mathcal{T}\psi)(x) := \overline{\psi(x)}$

Remark. In general, a PT-symmetric operator is not similar to a self-adjoint, normal or spectral operator.

1. antilinear symmetry [H, S] = 0 with S antiunitary (bijective and $\langle S\phi, S\psi \rangle = \langle \psi, \phi \rangle$)

e.g. $S := \mathcal{PT}$

to understand $\mathfrak{PT}H\mathfrak{PT}=H$ in a more general setting than:

- ullet $H=-\Delta+V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)}=V(x)$
- $(\mathcal{P}\psi)(x) := \psi(-x), \ \ (\mathcal{T}\psi)(x) := \overline{\psi(x)}$

Remark. In general, a $\mathfrak{P}T$ -symmetric operator is not similar to a self-adjoint, normal or spectral operator.

- **1.** antilinear symmetry [H, S] = 0 with S antiunitary (bijective and $\langle S\phi, S\psi \rangle = \langle \psi, \phi \rangle$) e.g. $S := \mathcal{PT}$
- **2.** self-adjointness in Krein spaces H is self-adjoint in an *indefinite* inner product space e.g. $[\cdot,\cdot]:=\langle\cdot,\mathcal{P}\cdot\rangle$ after noticing $\mathcal{P}H\mathcal{P}=\mathfrak{T}H\mathfrak{T}=H^*$ [Langer, Tretter 2004]

to understand $\mathfrak{PT}H\mathfrak{PT}=H$ in a more general setting than:

- ullet $H=-\Delta+V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)}=V(x)$
- $(\mathcal{P}\psi)(x) := \psi(-x), \quad (\mathcal{T}\psi)(x) := \overline{\psi(x)}$

Remark. In general, a \mathfrak{PT} -symmetric operator is not similar to a self-adjoint, normal or spectral operator.

- **1.** antilinear symmetry [H, S] = 0 with S antiunitary (bijective and $\langle S\phi, S\psi \rangle = \langle \psi, \phi \rangle$) e.g. $S := \mathcal{PT}$
- **2.** self-adjointness in Krein spaces H is self-adjoint in an *indefinite* inner product space e.g. $[\cdot,\cdot]:=\langle\cdot,\mathcal{P}\cdot\rangle$ after noticing $\mathcal{P}H\mathcal{P}=\mathcal{T}H\mathcal{T}=H^*$ [Langer, Tretter 2004]
- **3.** \mathcal{J} -self-adjointness $H^* = \mathcal{J}H\mathcal{J}$ with \mathcal{J} conjugation (involutive and $\langle \mathcal{J}\phi, \mathcal{J}\psi \rangle = \langle \psi, \phi \rangle$) e.g. $\mathcal{J} := \mathcal{T}$ after noticing $\mathcal{T}H\mathcal{T} = \mathcal{P}H\mathcal{P} = H^*$ [Borisov, D.K. 2007]

to understand $\mathfrak{PT}H\,\mathfrak{PT}=H$ in a more general setting than:

- ullet $H=-\Delta+V$ on $L^2(\mathbb{R}^d)$ with $\overline{V(-x)}=V(x)$
- $(\mathcal{P}\psi)(x) := \psi(-x), \quad (\mathcal{T}\psi)(x) := \overline{\psi(x)}$

Remark. In general, a $\mathfrak{P}T$ -symmetric operator is not similar to a self-adjoint, normal or spectral operator.

- **1.** antilinear symmetry [H, S] = 0 with S antiunitary (bijective and $\langle S\phi, S\psi \rangle = \langle \psi, \phi \rangle$) e.g. $S := \mathcal{PT}$
- **2.** self-adjointness in Krein spaces H is self-adjoint in an *indefinite* inner product space e.g. $[\cdot,\cdot]:=\langle\cdot,\mathcal{P}\cdot\rangle$ after noticing $\mathcal{P}H\mathcal{P}=\mathcal{T}H\mathcal{T}=H^*$ [Langer, Tretter 2004]
- **3.** \mathcal{J} -self-adjointness $H^* = \mathcal{J}H\mathcal{J}$ with \mathcal{J} conjugation (involutive and $\langle \mathcal{J}\phi, \mathcal{J}\psi \rangle = \langle \psi, \phi \rangle$) e.g. $\mathcal{J} := \mathcal{T}$ after noticing $\mathcal{T}H\mathcal{T} = \mathcal{P}H\mathcal{P} = H^*$ [Borisov, D.K. 2007]

Remark. In general (in ∞ -dimensional spaces), all the classes of operators are unrelated.

[Siegl 2008]

¿ Physical relevance ?

¿ Physical relevance ?

suggestions:

- nuclear physics [Scholtz, Geyer, Hahne 1992]
- optics [Klaiman, Günther, Moiseyev 2008], [Schomerus 2010], [West, Kottos, Prosen 2010]
- solid state physics [Bendix, Fleischmann, Kottos, Shapiro 2009]
- superconductivity [Rubinstein, Sternberg, Ma 2007]
- electromagnetism [Ruschhaupt, Delgado, Muga 2005], [Mostafazadeh 2009]

experiments:

- optics [Guo et al. 2009], [Longhi 2009], [Rüter et al. 2010]
- mechanics [Bender, Berntson, Parker, Samuel 2012]

¿ Physical relevance ?

suggestions:

- nuclear physics [Scholtz, Geyer, Hahne 1992]
- optics [Klaiman, Günther, Moiseyev 2008], [Schomerus 2010], [West, Kottos, Prosen 2010]
- solid state physics [Bendix, Fleischmann, Kottos, Shapiro 2009]
- superconductivity [Rubinstein, Sternberg, Ma 2007]
- electromagnetism [Ruschhaupt, Delgado, Muga 2005], [Mostafazadeh 2009]

experiments:

- optics [Guo et al. 2009], [Longhi 2009], [Rüter et al. 2010]
- mechanics [Bender, Berntson, Parker, Samuel 2012]

i but!

"So far, there have been no experiments that prove clearly and definitively that quantum systems defined by non-Hermitian PT-symmetric Hamiltonians do exist in nature."

[Bender 2007]

The simplest PT-symmetric model

$$\mathcal{H} := L^2(-\frac{\pi}{2}, \frac{\pi}{2})$$

$$H_{\alpha}\psi := -\psi''$$
, $D(H_{\alpha}) := \left\{ \psi \in W^{2,2}(-\frac{\pi}{2}, \frac{\pi}{2}) \mid \psi'(\pm \frac{\pi}{2}) + i\alpha \psi(\pm \frac{\pi}{2}) = 0 \right\}$, $\alpha \in \mathbb{R}$

$$-\Delta$$

$$\frac{d\psi}{dn} - i\alpha\psi = 0$$

$$\frac{d\psi}{dn} + i\alpha\psi = 0$$

The simplest PT-symmetric model

[D.K., Bíla, Znojil 2006]

$$\mathcal{H}:=L^2(-\tfrac{\pi}{2},\tfrac{\pi}{2})$$

$$H_{\alpha}\psi := -\psi''$$
, $D(H_{\alpha}) := \left\{ \psi \in W^{2,2}(-\frac{\pi}{2}, \frac{\pi}{2}) \mid \psi'(\pm \frac{\pi}{2}) + i\alpha\psi(\pm \frac{\pi}{2}) = 0 \right\}$, $\alpha \in \mathbb{R}$

$$-\Delta$$

$$\frac{d\psi}{dn} - i\alpha\psi = 0$$

$$\frac{d\psi}{dn} + i\alpha\psi = 0$$

Theorem 1. H_{α} is an m-sectorial operator with compact resolvent satisfying

$$H_{\alpha}^{*} = H_{-\alpha} = \mathfrak{T}H_{\alpha}\mathfrak{T}$$
 (T-self-adjointness)

The simplest PT-symmetric model

[D.K., Bíla, Znojil 2006]

$$\mathcal{H} := L^2(-\frac{\pi}{2}, \frac{\pi}{2})$$

$$H_{\alpha}\psi := -\psi''$$
, $D(H_{\alpha}) := \left\{ \psi \in W^{2,2}(-\frac{\pi}{2}, \frac{\pi}{2}) \mid \psi'(\pm \frac{\pi}{2}) + i\alpha\psi(\pm \frac{\pi}{2}) = 0 \right\}$, $\alpha \in \mathbb{R}$

Theorem 1. H_{α} is an m-sectorial operator with compact resolvent satisfying

$$H_{\alpha}^* = H_{-\alpha} = \Im H_{\alpha} \Im$$

(T-self-adjointness)

Theorem 2.

$$\sigma(H_{\alpha}) = \{\alpha^2\} \cup \{n^2\}_{n=1}^{\infty}$$

The simplest \mathfrak{PT} -symmetric model

[D.K., Bíla, Znojil 2006]

$$\mathcal{H} := L^2(-\frac{\pi}{2}, \frac{\pi}{2})$$

$$H_{\alpha}\psi := -\psi''$$
, $D(H_{\alpha}) := \left\{ \psi \in W^{2,2}(-\frac{\pi}{2}, \frac{\pi}{2}) \mid \psi'(\pm \frac{\pi}{2}) + i\alpha\psi(\pm \frac{\pi}{2}) = 0 \right\}$, $\alpha \in \mathbb{R}$

 H_{α} is an m-sectorial operator with compact resolvent satisfying Theorem 1.

$$H_{\alpha}^{*} = H_{-\alpha} = \mathfrak{T}H_{\alpha}\mathfrak{T}$$
 (T-self-adjointness)

Theorem 2.

$$\sigma(H_{\alpha}) = \{\alpha^2\} \cup \{n^2\}_{n=1}^{\infty}$$

Corollary. The spectrum of H_{α} is $\begin{cases} \text{always real,} \\ \text{simple if} \quad \alpha \notin \mathbb{Z} \setminus \{0\}. \end{cases}$

simple if
$$~lpha
ot\in\mathbb{Z}\setminus\{0\}$$

Scattering realisation in QM

[Hernandez-Coronado, D.K., Siegl 2011]

scattering by a compactly supported *even* potential V: $-\psi'' + V\psi = k^2\psi$

$$-\psi'' + V\psi = k^2\psi \qquad k > 0$$

Scattering realisation in QM

[Hernandez-Coronado, D.K., Siegl 2011]

scattering by a compactly supported *even* potential V: $-\psi'' + V\psi = k^2\psi$ k > 0

$$-\psi'' + V\psi = k^2\psi \qquad k$$

perfect transmission
$$\Longrightarrow$$

$$\begin{cases} -\psi'' + V\psi = k^2\psi & \text{in} \quad (0,\pi) \\ \psi' - ik\psi = 0 & \text{at} \quad 0,\pi \end{cases}$$
 non-linear

Scattering realisation in QM

[Hernandez-Coronado, D.K., Siegl 2011]

scattering by a compactly supported *even* potential V: $-\psi'' + V\psi = k^2\psi$ k > 0

$$-\psi'' + V\psi = k^2\psi$$

$$\begin{array}{lll} \textbf{perfect transmission} &\Longrightarrow & \left\{ \begin{array}{lll} -\psi'' + V\psi = k^2 \psi & \text{in} & (0,\pi) \\ \\ \psi' - ik\psi = 0 & \text{at} & 0,\pi \end{array} \right. \\ \end{array}$$

solutions given by a non-self-adjoint $\mathcal{P}\mathcal{T}$ -symmetric spectral problem:

$$\begin{cases} -\psi'' + V\psi = \mu(\alpha)\psi & \text{in} \quad (0,\pi) \\ \psi' + i\alpha\psi = 0 & \text{at} \quad 0,\pi \end{cases}$$
 non-Hermitian
$$\mu(\alpha) = \alpha^2$$

The metric operator

[D.K., Siegl, Železný 2011]

Theorem 3. Let $\alpha \notin \mathbb{Z} \setminus \{0\}$.

Then H_{α} is similar to a self-adjoint operator $h_{\alpha} := \Omega H_{\alpha} \Omega^{-1}$ with the metric

$$\Theta:=\Omega^*\Omega=I+K$$

$$K(x,y) = \frac{2i}{\pi} e^{i\frac{\alpha}{2}(x-y)} \sin\left(\frac{\alpha}{2}(x-y)\right) + \frac{i\alpha}{\pi} \left(|y-x| - \pi\right) \operatorname{sgn}(y-x) + \frac{\alpha^2}{\pi} \left(\frac{\pi^2}{4} - xy - \frac{\pi}{2}|y-x|\right)$$

The metric operator

[D.K., Siegl, Železný 2011]

Theorem 3. Let $\alpha \notin \mathbb{Z} \setminus \{0\}$.

Then H_{α} is similar to a self-adjoint operator $h_{\alpha} := \Omega H_{\alpha} \Omega^{-1}$ with the metric

$$\Theta:=\Omega^*\Omega=I+K$$

$$K(x,y) = \frac{2i}{\pi} e^{i\frac{\alpha}{2}(x-y)} \sin\left(\frac{\alpha}{2}(x-y)\right) + \frac{i\alpha}{\pi} \left(|y-x| - \pi\right) \operatorname{sgn}(y-x) + \frac{\alpha^2}{\pi} \left(\frac{\pi^2}{4} - xy - \frac{\pi}{2}|y-x|\right)$$

non-Hermitian $H_{\alpha} \longleftrightarrow$ non-local h_{α}

The metric operator

[D.K., Siegl, Železný 2011]

Theorem 3. Let $\alpha \notin \mathbb{Z} \setminus \{0\}$.

Then H_{α} is similar to a self-adjoint operator $h_{\alpha}:=\Omega H_{\alpha} \Omega^{-1}$ with the metric

$$\Theta := \Omega^*\Omega = I + K$$

$$K(x,y) = \frac{2i}{\pi} e^{i\frac{\alpha}{2}(x-y)} \sin\left(\frac{\alpha}{2}(x-y)\right) + \frac{i\alpha}{\pi} \left(|y-x| - \pi\right) \operatorname{sgn}(y-x) + \frac{\alpha^2}{\pi} \left(\frac{\pi^2}{4} - xy - \frac{\pi}{2}|y-x|\right)$$

non-Hermitian $H_{\alpha} \longleftrightarrow$ non-local h_{α}

Proof. "backward usage of the spectral theorem" [D.K. 2008]

$$E_n = \begin{cases} \alpha^2 & \text{if } n = 0 \\ n^2 = E_n^N = E_n^D & \text{if } n \ge 1 \end{cases} \qquad \phi_n(x) = \begin{cases} \frac{1}{\sqrt{\pi}} e^{i\alpha(x + \frac{\pi}{2})} & \text{if } n = 0 \\ \chi_n^N(x) + i\frac{\alpha}{n} \chi_n^D(x) & \text{if } n \ge 1 \end{cases}$$

$$\begin{split} \Omega := \sum_{n=0}^{\infty} \chi_{n}^{N} \langle \phi_{n}, \cdot \rangle &= \chi_{0}^{N} \langle \phi_{0}, \cdot \rangle - \chi_{0}^{N} \langle \chi_{0}^{N}, \cdot \rangle + \sum_{n=0}^{\infty} \chi_{n}^{N} \langle \chi_{n}^{N}, \cdot \rangle - i\alpha \sum_{n=1}^{\infty} \frac{1}{n} \chi_{n}^{N} \langle \chi_{n}^{D}, \cdot \rangle \\ &= \chi_{0}^{N} \langle \phi_{0}, \cdot \rangle - \chi_{0}^{N} \langle \chi_{0}^{N}, \cdot \rangle + I + \alpha p \left(-\Delta_{D} \right)^{-1} & \left(-\Delta_{D} = p^{*} p \right) & \stackrel{\circ}{\Rightarrow} \end{split}$$

The C operator

Definition ([Bender, Brody Jones 2002], [Albeverio, Kuzhel 2005]).

Let H be $\mathcal P$ -self-adjoint and $\mathcal C$ bounded.

$$H$$
 is ${\mathcal C}\text{-symmetric}$: \iff $\begin{cases} [H,{\mathcal C}]=0 \\ {\mathcal C}^2=I \end{cases}$ ${\mathcal P}{\mathcal C}$ is a metric for H

The C operator

Definition ([Bender, Brody Jones 2002], [Albeverio, Kuzhel 2005]).

Let H be $\mathcal{P}\text{-self-adjoint}$ and \mathcal{C} bounded.

$$H \text{ is } \begin{array}{c} \mathbb{C}\text{-symmetric} \\ \mathbb{C}^2 = I \\ \mathbb{C}^2 \text{ is a metric for } H \end{array}$$

Thus: $\mathcal{C} := \mathcal{P}\Theta$ for Θ satisfying $(\mathcal{P}\Theta)^2 = I$

The C operator

Definition ([Bender, Brody Jones 2002], [Albeverio, Kuzhel 2005]).

Let H be \mathcal{P} -self-adjoint and \mathcal{C} bounded.

$$H$$
 is ${ extbf{C-symmetric}}:\iff egin{cases} [H,\mathcal{C}]=0 \\ \mathcal{C}^2=I \\ \mathcal{P}\mathcal{C} ext{ is a metric for } H \end{cases}$

Thus: $\mathcal{C} := \mathcal{P}\Theta$ for Θ satisfying $(\mathcal{P}\Theta)^2 = I$

Our explicit result:

$$\mathcal{C} = \mathcal{P} + L$$
 with

$$\mathcal{C}=\mathcal{P}+L$$
 with
$$\boxed{L(x,y)=\alpha\,e^{-i\alpha(y+x)}\left[\tan(\alpha\frac{\pi}{2})-i\,\mathrm{sgn}(y+x)\right]} \qquad \left(|\alpha|<1\right)$$

General PT-symmetric case

[D.K., Siegl 2010]

$$H_{\alpha,\beta}\psi := -\psi''$$
, $D(H_{\alpha,\beta}) := \left\{ \psi \in W^{2,2}(-\frac{\pi}{2}, \frac{\pi}{2}) \mid \psi'(\pm \frac{\pi}{2}) + (i\alpha \pm \beta)\psi(\pm \frac{\pi}{2}) = 0 \right\}$

General PT-symmetric case

[D.K., Siegl 2010]

$$H_{\alpha,\beta}\psi := -\psi''$$
, $D(H_{\alpha,\beta}) := \left\{ \psi \in W^{2,2}(-\frac{\pi}{2}, \frac{\pi}{2}) \mid \psi'(\pm \frac{\pi}{2}) + (i\alpha \pm \beta)\psi(\pm \frac{\pi}{2}) = 0 \right\}$

$$\Theta = I + K$$
 with

$$K(x,y) = e^{i\alpha(x-y)-\beta|x-y|} \left[c + i\alpha \operatorname{sgn}(x-y) \right]$$

$$c \in \mathbb{R}$$

$$\Theta>0$$
 if $\beta>0$ large or $c^2+\alpha^2$ small

[D.K., Siegl 2012]

$$H=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+ix^3$$
 on $L^2(\mathbb{R})$

[D.K., Siegl 2012]

$$H=-\frac{\mathrm{d}^2}{\mathrm{d}x^2}+ix^3 \qquad \text{on} \quad L^2(\mathbb{R}), \quad D(H):=\left\{\psi\in L^2(\mathbb{R})\mid H\psi\in L^2(\mathbb{R})\right\}$$

- H is m-accretive $\Rightarrow \Re \sigma(H) \geq 0$
- H has purely discrete spectrum
- all eigenvalues of H are real

[Edmunds, Evans 1987]

[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]

[Dorey, Dunning, Tateo 2001], [Shin 2002]

[D.K., Siegl 2012]

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + ix^3$$

on
$$L^2(\mathbb{R})$$

$$H=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+ix^3$$
 on $L^2(\mathbb{R})$, $D(H):=\left\{\psi\in L^2(\mathbb{R})\mid H\psi\in L^2(\mathbb{R})
ight\}$

• H is m-accretive $\Rightarrow \Re \sigma(H) \geq 0$

[Edmunds, Evans 1987]

H has purely discrete spectrum

[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]

all eigenvalues of H are real

[Dorey, Dunning, Tateo 2001], [Shin 2002]

i Does H possess metric ?

[D.K., Siegl 2012]

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + ix^3$$

on
$$L^2(\mathbb{R})$$

$$H=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+ix^3$$
 on $L^2(\mathbb{R})$, $D(H):=\left\{\psi\in L^2(\mathbb{R})\mid H\psi\in L^2(\mathbb{R})
ight\}$

• H is m-accretive $\Rightarrow \Re \sigma(H) \geq 0$

[Edmunds, Evans 1987]

H has purely discrete spectrum

[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]

all eigenvalues of H are real

[Dorey, Dunning, Tateo 2001], [Shin 2002]

i Does H possess metric ?

eigenfunctions of H form a complete set

[D.K., Siegl 2012]

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + ix^3$$

on
$$L^2(\mathbb{R})$$

$$H=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+ix^3$$
 on $L^2(\mathbb{R})$, $D(H):=\left\{\psi\in L^2(\mathbb{R})\mid H\psi\in L^2(\mathbb{R})
ight\}$

• H is m-accretive $\Rightarrow \Re \sigma(H) \geq 0$

[Edmunds, Evans 1987]

H has purely discrete spectrum

[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]

all eigenvalues of H are real

[Dorey, Dunning, Tateo 2001], [Shin 2002]

i Does H possess metric ?

eigenfunctions of H form a complete set

Metric operator for H does not exist. Theorem.

[D.K., Siegl 2012]

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + ix^3$$

on
$$L^2(\mathbb{R})$$

$$H=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+ix^3$$
 on $L^2(\mathbb{R})$, $D(H):=\left\{\psi\in L^2(\mathbb{R})\mid H\psi\in L^2(\mathbb{R})
ight\}$

• H is m-accretive $\Rightarrow \Re \sigma(H) \geq 0$

[Edmunds, Evans 1987]

H has purely discrete spectrum

[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]

all eigenvalues of H are real

[Dorey, Dunning, Tateo 2001], [Shin 2002]

i Does H possess metric ?

eigenfunctions of H form a complete set

Metric operator for H does not exist. Theorem.

Proof.

• Let metric exist
$$\Rightarrow \|(H-z)^{-1}\| \le \frac{C}{|\Im z|}$$
, $\forall z \in \mathbb{C}$, $\Im z \ne 0$

[D.K., Siegl 2012]

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + ix^3$$

on
$$L^2(\mathbb{R})$$

$$H=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+ix^3$$
 on $L^2(\mathbb{R})$, $D(H):=\left\{\psi\in L^2(\mathbb{R})\mid H\psi\in L^2(\mathbb{R})
ight\}$

• H is m-accretive $\Rightarrow \Re \sigma(H) \geq 0$

[Edmunds, Evans 1987]

H has purely discrete spectrum

[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]

all eigenvalues of H are real

[Dorey, Dunning, Tateo 2001], [Shin 2002]

i Does H possess metric ?

eigenfunctions of H form a complete set

Metric operator for H does not exist. Theorem.

Proof.

• Let metric exist
$$\Rightarrow \|(H-z)^{-1}\| \le \frac{C}{|\Im z|}, \quad \forall z \in \mathbb{C}, \ \Im z \ne 0$$

•
$$\|(H - \sigma z)^{-1}\| = \sigma^{-1} \|(H_h - z)^{-1}\|$$
 with $H_h := -h^2 \frac{\mathrm{d}^2}{\mathrm{d}x^2} + ix^3$, $h := \sigma^{-5/6}$

[D.K., Siegl 2012]

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + ix^3$$

on
$$L^2(\mathbb{R})$$

$$H=-rac{\mathrm{d}^2}{\mathrm{d}x^2}+ix^3$$
 on $L^2(\mathbb{R}),\quad D(H):=\left\{\psi\in L^2(\mathbb{R})\mid H\psi\in L^2(\mathbb{R})
ight\}$

• H is m-accretive $\Rightarrow \Re \sigma(H) \geq 0$

[Edmunds, Evans 1987]

H has purely discrete spectrum

[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]

all eigenvalues of H are real

[Dorey, Dunning, Tateo 2001], [Shin 2002]

i Does H possess metric ?

eigenfunctions of H form a complete set

Metric operator for H does not exist. Theorem.

Proof.

• Let metric exist $\Rightarrow \|(H-z)^{-1}\| \leq \frac{C}{|\Im z|}, \quad \forall z \in \mathbb{C}, \ \Im z \neq 0$

•
$$\|(H - \sigma z)^{-1}\| = \sigma^{-1} \|(H_h - z)^{-1}\|$$
 with $H_h := -h^2 \frac{\mathrm{d}^2}{\mathrm{d}x^2} + ix^3$, $h := \sigma^{-5/6}$

•
$$\|(H_h - z)^{-1}\| = \mathcal{O}(h^{-n})$$
, $\forall n > 0 \Rightarrow \text{contradiction}$ [Davies 1999]

Pseudospectra and $\mathcal{P}T$ -symmetry

[work in progress with Siegl and Tater]

$$\sigma_{\varepsilon}(H) := \left\{ z \in \mathbb{C} \mid \|(H - z)^{-1}\| > \varepsilon^{-1} \right\}$$

[Trefethen, Embree 2005], [Davies 2007]

[work in progress with Siegl and Tater]

$$\sigma_{\varepsilon}(H) := \left\{ z \in \mathbb{C} \mid \|(H-z)^{-1}\| > \varepsilon^{-1} \right\}$$
 [Trefethen, Embree 2005], [Davies 2007]

 $\bullet \ \ H \ \text{is self-adjoint} \quad \Longrightarrow \quad \|(H-z)^{-1}\| = \frac{1}{\operatorname{dist} \big(z,\sigma(H)\big)} \quad \Longrightarrow \quad \text{trivial pseudospectrum}$

$$\sigma_{\varepsilon}(H) := \left\{ z \in \mathbb{C} \mid \|(H-z)^{-1}\| > \varepsilon^{-1} \right\}$$
 [Trefethen, Embree 2005], [Davies 2007]

- H is self-adjoint $\implies \|(H-z)^{-1}\| = \frac{1}{\operatorname{dist}(z,\sigma(H))} \implies \text{trivial pseudospectrum}$
- For non-self-adjoint operators, pseudospectra more relevant than spectra!

$$\sigma_{\varepsilon}(H) := \left\{ z \in \mathbb{C} \mid \|(H-z)^{-1}\| > \varepsilon^{-1} \right\}$$
 [Trefethen, Embree 2005], [Davies 2007]

- H is self-adjoint $\implies \|(H-z)^{-1}\| = \frac{1}{\operatorname{dist}(z,\sigma(H))} \implies \text{trivial pseudospectrum}$
- For non-self-adjoint operators, pseudospectra more relevant than spectra!
- $\sigma_{\varepsilon}(H) = \bigcup \sigma(H+V) \implies \text{spectral instabilities}$ $||V|| < \varepsilon$

$$\sigma_{\varepsilon}(H):=\left\{z\in\mathbb{C}\;\middle|\; \|(H-z)^{-1}\|>arepsilon^{-1}
ight\}$$
 [Trefethen, Embree 2005], [Davies 2007]

- $\bullet \ \ H \ \text{is self-adjoint} \quad \Longrightarrow \quad \|(H-z)^{-1}\| = \frac{1}{\operatorname{dist}(z,\sigma(H))} \quad \Longrightarrow \quad \text{trivial pseudospectrum}$
- For non-self-adjoint operators, pseudospectra more relevant than spectra!
- $\sigma_{\varepsilon}(H) = \bigcup \sigma(H+V) \implies \text{spectral instabilities}$ $||V|| < \varepsilon$
- \exists metric \Longrightarrow trivial pseudospectrum

Conclusions

Ad PT-symmetry:

- ightarrow no extension of QM
- → rather an alternative (quasi-Hermitian) representation
- → overlooked for over 70 years
- i some rigorous treatments still missing!

Conclusions

Ad PT-symmetry:

- ightarrow no extension of QM
- \rightarrow rather an alternative (quasi-Hermitian) representation
- → overlooked for over 70 years
- some rigorous treatments still missing!

Ad our model:

- → shamefully simple
- → closed fomulae for the spectrum, metric operator, self-adjoint counterpart, etc.
- → rigorous treatment
- j physical relevance!

Conclusions

Ad PT-symmetry:

- \rightarrow no extension of QM
- \rightarrow rather an alternative (quasi-Hermitian) representation
- \rightarrow overlooked for over 70 years
- some rigorous treatments still missing!

Ad our model:

- → shamefully simple
- → closed fomulae for the spectrum, metric operator, self-adjoint counterpart, etc.
- → rigorous treatment
- j physical relevance!

Ad ix^3 :

i metric operator does not exist!

(bad basicity properties, non-trivial pseudospectrum, spectral instabilities)

Collection of open problems

ESF exploratory workshop on

Mathematical aspects of the physics with non-self-adjoint operators

30 August - 3 September 2010 Prague, Czech Republic

http://www.ujf.cas.cz/ESFxNSA/

Imaginary numbers 1954 by Y. Tanguy

Studying non-self-adjoint operators is like being a vet rather than a doctor: one has to acquire a much wider range of knowledge, and to accept that one cannot expect to have as high a rate of success when confronted with particular cases.

E. B. Davies 2007

Convenors: J.-P. Gazeau (Paris), D. Krejcirik (Prague), P. Siegl (Prague)

Some of the open problems also available in Integral Equations Operator Theory.

My PT-symmetric life

http://gemma.ujf.cas.cz/~david/

- D.K., H. Bíla, M. Znojil: Closed formula for the metric in the Hilbert space of a PT-symmetric model; J. Phys. A 39 (2006), 10143–10153.
- D.K.: Calculation of the metric in the Hilbert space of a PT-symmetric model via the spectral theorem; J. Phys. A: Math. Theor. 41 (2008) 244012.
- D. Borisov, D.K.: PT-symmetric waveguides;
 Integral Equations Operator Theory 62 (2008), 489–515.
- D.K., M. Tater: Non-Hermitian spectral effects in a \mathfrak{PT} -symmetric waveguide; J. Phys. A: Math. Theor. 41 (2008) 244013.
- D.K., P. Siegl: PT-symmetric models in curved manifolds; J. Phys. A: Math. Theor. 43 (2010) 485204.
- H. Hernandez-Coronado, D.K., P. Siegl: *Perfect transmission scattering as a* $\mathfrak{P}T$ -symmetric spectral problem; Phys. Lett. A 375 (2011), 2149–2152.
- D. Borisov, D.K.: The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions; Asympt. Anal. 76 (2012), 49–59.
- D.K., P. Siegl, J. Železný: Non-Hermitian PT-symmetric Sturm-Liouville operators and to them similar Hamiltonians; arXiv:1108.4946 [math.SP] (2011).
- D. Kochan, D.K., R. Novák, P. Siegl: *The Pauli equation with complex boundary conditions*; J. Phys. A: Math. Theor., to appear; arXiv:1203.5011 [quant.ph] (2012).
- P. Siegl, D.K.: Metric operator for the imaginary cubic oscillator does not exist; arXiv:1208.1866 [quant-ph] (2012).