Non-Hermitian operators in quantum physics

David KREJČIŘÍK
http://gemma.ujf.cas.cz/~david/
Nuclear Physics Institute ASCR Řež, Czech Republic

First, there's the room you can see through the glass - that's just the same as our drawing-room, only the things go the other way.

Hors de ligne

(Outline)

Hors de ligne

(Outline)

1. QM with non-Hermitian operators
(just some conceptual remarks)
2. PJ-symmetry
(what is known and my point of view)
3. physical $\mathcal{P J}$-symmetric models in QM (non-self-adjoint Robin boundary conditions)
4. imaginary cubic oscillator
(about the non-existence of the metric operator)
5. Conclusions

¿ QM with non-Hermitian operators?

Imaginary Numbers by Yves Tanguy, 1954
(Museo Thyssen-Bornemisza, Madrid)

Insignificant non-Hermiticity

Example 1. evolution operator $U(t)=\exp (-i t H): \quad\left\{\begin{array}{l}i \dot{U}(t)=H U(t) \\ U(0)=I\end{array}\right.$

Insignificant non-Hermiticity

Example 1. evolution operator $U(t)=\exp (-i t H): \quad\left\{\begin{array}{l}i \dot{U}(t)=H U(t) \\ U(0)=I\end{array}\right.$

Example 2. resolvent operator $R(z)=(H-z)^{-1}, \quad z \in \mathbb{C}$

Insignificant non-Hermiticity

Example 1. evolution operator $U(t)=\exp (-i t H): \quad\left\{\begin{array}{l}i \dot{U}(t)=H U(t) \\ U(0)=I\end{array}\right.$

Example 2. resolvent operator $R(z)=(H-z)^{-1}, \quad z \in \mathbb{C}$

Theorem (spectral theorem).
Let $H=H^{*}$. Then

$$
f(H)=\int_{\sigma(H)} f(\lambda) \mathrm{d} E_{H}(\lambda)
$$

for any complex-valued continuous function f.

Technical non-Hermiticity

Technical non-Hermiticity

Example 1. complex scaling $H_{\theta}:=S_{\theta}(-\Delta+V) S_{\theta}^{-1}, \quad\left(S_{\theta} \psi\right)(x):=e^{\theta / 2} \psi\left(e^{\theta} x\right)$

[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], ...

Technical non-Hermiticity

Example 1. complex scaling $H_{\theta}:=S_{\theta}(-\Delta+V) S_{\theta}^{-1}, \quad\left(S_{\theta} \psi\right)(x):=e^{\theta / 2} \psi\left(e^{\theta} x\right)$

[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], ...

Example 2. adiabatic transition probability for $H(t):=\vec{\gamma}(t / \tau) \cdot \vec{\sigma}, \quad \tau \rightarrow \infty$ [Berry 1990], [Joye, Kunz, Pfister 1991], [Jakšić, Segert 1993], ...

Technical non-Hermiticity

Example 1. complex scaling $H_{\theta}:=S_{\theta}(-\Delta+V) S_{\theta}^{-1}, \quad\left(S_{\theta} \psi\right)(x):=e^{\theta / 2} \psi\left(e^{\theta} x\right)$

[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], ...

Example 2. adiabatic transition probability for $H(t):=\vec{\gamma}(t / \tau) \cdot \vec{\sigma}, \quad \tau \rightarrow \infty$ [Berry 1990], [Joye, Kunz, Pfister 1991], [Jakšić, Segert 1993], ...

Example 3. Regge theory $H_{l}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{l(l+1)}{r^{2}}+V(r), \quad l \in \mathbb{C}$
[Regge 1957], [Connor 1990], [Sokolovski 2011], ...

Approximate non-Hermiticity

open systems

Example 1. radioactive decay

Example 2. dissipative Schrödinger operators in semiconductor physics Baro, Behrndt, Kaiser, Neidhardt, Rehberg, ...

Example 3. repeated interaction quantum systems
Bruneau, Joye, Merkli, Pillet, ..

¿ Fundamental non-Hermiticity?

i.e. non-Hermitian observables, without violating physical axioms of QM

¿ Fundamental non-Hermiticity ?

i.e. non-Hermitian observables, without violating physical axioms of QM

i no!

Theorem (Stone's theorem).
Unitary groups on a Hilbert space are generated by self-adjoint operators.

¿ Fundamental non-Hermiticity ?

i.e. non-Hermitian observables, without violating physical axioms of QM

i no!

Theorem (Stone's theorem).
Unitary groups on a Hilbert space are generated by self-adjoint operators.

¿ yes ?

by changing the Hilbert space, preserving a similarity to self-adjoint operators

Non-Hermitian Hamiltonians with real spectra

$$
-\Delta+V \quad \text { in } \quad L^{2}(\mathbb{R})
$$

$$
V(x)=x^{2}+i x^{3}
$$

[Caliceti, Graffi, Maioli 1980]

$V(x)=\left\{\begin{aligned} i \operatorname{sgn}(x) & \text { if } \quad x \in(-L, L) \\ \infty & \text { elsewhere }\end{aligned}\right.$
¿ What is behind the reality of the spectrum?

$\mathcal{P J}$-symmetry

$$
\begin{gathered}
{[H, \mathcal{P T}]=0} \\
(\mathcal{P} \psi)(x):=\psi(-x) \\
(\mathcal{T} \psi)(x):=\overline{\psi(x)}
\end{gathered}
$$

We have in mind $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$.

$\mathcal{P J}$-symmetry

$$
\begin{gathered}
{[H, \mathcal{P T}]=0} \\
(\mathcal{P} \psi)(x):=\psi(-x) \\
(\mathcal{T} \psi)(x):=\overline{\psi(x)}
\end{gathered}
$$

We have in mind $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$.
$\mathcal{P J}$ is an antilinear symmetry \Longrightarrow in general only: $\quad \lambda \in \sigma(H) \Leftrightarrow \bar{\lambda} \in \sigma(H)$

$\mathcal{P J}$-symmetry

$$
\begin{gathered}
{[H, \mathcal{P T}]=0} \\
(\mathcal{P} \psi)(x):=\psi(-x) \\
(\mathcal{T} \psi)(x):=\overline{\psi(x)}
\end{gathered}
$$

We have in mind $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$.
$\mathcal{P J}$ is an antilinear symmetry \Longrightarrow in general only: $\lambda \in \sigma(H) \Leftrightarrow \bar{\lambda} \in \sigma(H)$ unbroken $\mathcal{P T}$-symmetry : $\Leftrightarrow H$ and $\mathcal{P T}$ have the same eigenstates $\Leftrightarrow \sigma(H) \subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

$\mathcal{P J}$-symmetry

$$
\begin{gathered}
{[H, \mathcal{P T}]=0} \\
(\mathcal{P} \psi)(x):=\psi(-x) \\
(\mathcal{T} \psi)(x):=\overline{\psi(x)}
\end{gathered}
$$

We have in mind $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$.
$\mathcal{P T}$ is an antilinear symmetry \Longrightarrow in general only: $\quad \lambda \in \sigma(H) \Leftrightarrow \bar{\lambda} \in \sigma(H) \quad *$ unbroken $\mathcal{P T}$-symmetry $: \Leftrightarrow H$ and $\mathcal{P T}$ have the same eigenstates $\Leftrightarrow \sigma(H) \subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

$\mathcal{P T}$-symmetry

$$
\begin{gathered}
{[H, \mathcal{P T}]=0} \\
(\mathcal{P} \psi)(x):=\psi(-x) \\
(\mathcal{T} \psi)(x):=\overline{\psi(x)}
\end{gathered}
$$

We have in mind $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$. $\mathcal{P T}$ is an antilinear symmetry \Longrightarrow in general only: $\lambda \in \sigma(H) \Leftrightarrow \bar{\lambda} \in \sigma(H) \quad$ * unbroken $\mathcal{P T}$-symmetry : $\Leftrightarrow H$ and $\mathcal{P T}$ have the same eigenstates $\Leftrightarrow \sigma(H) \subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

Moreover, let the eigenstates of H form a Riesz basis. $H \psi_{n}=E_{n} \psi_{n}, H^{*} \phi_{n}=E_{n} \phi_{n}$

$\mathcal{P J}$-symmetry

$$
\begin{gathered}
{[H, \mathcal{P T}]=0} \\
(\mathcal{P} \psi)(x):=\psi(-x) \\
(\mathcal{T} \psi)(x):=\overline{\psi(x)}
\end{gathered}
$$

We have in mind $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$.

$\mathcal{P T}$ is an antilinear symmetry \Longrightarrow in general only: $\quad \lambda \in \sigma(H) \Leftrightarrow \bar{\lambda} \in \sigma(H) \quad *$ unbroken $\mathcal{P J}$-symmetry $: \Leftrightarrow H$ and $\mathcal{P T}$ have the same eigenstates $\Leftrightarrow \sigma(H) \subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

Moreover, let the eigenstates of H form a Riesz basis. $H \psi_{n}=E_{n} \psi_{n}, H^{*} \phi_{n}=E_{n} \phi_{n}$ $\Longrightarrow H^{*}=\Theta H \Theta^{-1}$ where $\Theta:=\sum_{n} \phi_{n}\left\langle\phi_{n}, \cdot\right\rangle$ is positive, bounded, boundedly invertible $\Longrightarrow H$ is self-adjoint in $\left(L^{2},\langle\cdot, \Theta \cdot\rangle\right), \quad$ i.e. $\Theta^{1 / 2} H \Theta^{-1 / 2}$ is selfic sadjoint in $\left(L^{2},\langle\cdot, \cdot\rangle\right)$

$\mathcal{P J}$-symmetry

$$
\begin{gathered}
{[H, \mathcal{P T}]=0} \\
(\mathcal{P} \psi)(x):=\psi(-x) \\
(\mathcal{T} \psi)(x):=\overline{\psi(x)}
\end{gathered}
$$

We have in mind $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$. $\mathcal{P T}$ is an antilinear symmetry \Longrightarrow in general only: $\quad \lambda \in \sigma(H) \Leftrightarrow \bar{\lambda} \in \sigma(H) \quad *$ unbroken $\mathcal{P T}$-symmetry $: \Leftrightarrow H$ and $\mathcal{P T}$ have the same eigenstates $\Leftrightarrow \sigma(H) \subset \mathbb{R}$ Here we assume that H has purely discrete spectrum.

perturbation-theory insight

Moreover, let the eigenstates of H form a Riesz basis. $H \psi_{n}=E_{n} \psi_{n}, H^{*} \phi_{n}=E_{n} \phi_{n}$
$\Longrightarrow H^{*}=\Theta H \Theta^{-1}$ where $\Theta:=\sum_{n} \phi_{n}\left\langle\phi_{n}, \cdot\right\rangle$ is positive, bounded, boundedly invertible $\Longrightarrow H$ is self-adjoint in $\left(L^{2},\langle\cdot, \Theta \cdot\rangle\right), \quad$ i.e. $\Theta^{1 / 2} H \Theta^{-1 / 2}$ is self-adjoint in $\left(L^{2},\langle\cdot, \cdot\rangle\right)$ metric

Albeverio-Fei-Kurasov, Bender-Brody-Jones, Caliceti-Graffi-Sjöstrand, Fring, Graefe-Schubert, Kretschmer-Szymanowski, Langer-Tretter, Mostafazadeh, Scholtz-Geyer-Hahne, Znojil, ...

Speculations about "unbounded metric"

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

Speculations about "unbounded metric"

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$
H:=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \text { on } \mathbb{C}^{2} \quad \text { satisfies } \quad H^{*} \Theta=\Theta H \quad \text { with } \Theta:=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Speculations about "unbounded metric"

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$
H:=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \text { on } \mathbb{C}^{2} \quad \text { satisfies } \quad H^{*} \Theta=\Theta H \quad \text { with } \quad \Theta:=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

\downarrow Mostafazadeh's construction

$$
h=1 \text { on } \mathbb{C}
$$

Speculations about "unbounded metric"

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$
H:=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \text { on } \mathbb{C}^{2} \quad \text { satisfies } \quad H^{*} \Theta=\Theta H \quad \text { with } \Theta:=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

$$
h=1 \text { on } \mathbb{C}
$$

In ∞-dimensional spaces: \mathfrak{j} similar examples with $\Theta>0$ invertible but Θ^{-1} unbounded ! i possible $\left\langle\phi_{n}, \psi_{n}\right\rangle \neq 0$ for all n but $\left\langle\phi_{n}, \psi_{n}\right\rangle \xrightarrow[n \rightarrow \infty]{ } 0$! i unbounded Θ or Θ^{-1} always exist !

Speculations about "unbounded metric"

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$
H:=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \text { on } \mathbb{C}^{2} \quad \text { satisfies } \quad H^{*} \Theta=\Theta H \quad \text { with } \Theta:=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

$$
h=1 \text { on } \mathbb{C}
$$

In ∞-dimensional spaces: \mathfrak{j} similar examples with $\Theta>0$ invertible but Θ^{-1} unbounded!
i possible $\left\langle\phi_{n}, \psi_{n}\right\rangle \neq 0$ for all n but $\left\langle\phi_{n}, \psi_{n}\right\rangle \xrightarrow[n \rightarrow \infty]{ } 0$!
i unbounded Θ or Θ^{-1} always exist!
Moreover: i physically relevant quantities are not preserved!
(continuous spectrum, pseudospectrum)
i spectral instablities !

Speculations about "unbounded metric"

[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

$$
H:=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \text { on } \mathbb{C}^{2} \quad \text { satisfies } \quad H^{*} \Theta=\Theta H \quad \text { with } \Theta:=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

$$
h=1 \text { on } \mathbb{C}
$$

In ∞-dimensional spaces: \mathfrak{j} similar examples with $\Theta>0$ invertible but Θ^{-1} unbounded!

$$
\text { i possible }\left\langle\phi_{n}, \psi_{n}\right\rangle \neq 0 \text { for all } n \text { but }\left\langle\phi_{n}, \psi_{n}\right\rangle \xrightarrow[n \rightarrow \infty]{ } 0 \text { ! }
$$

i unbounded Θ or Θ^{-1} always exist!
Moreover: i physically relevant quantities are not preserved!
(continuous spectrum, pseudospectrum)
i spectral instablities !

Mathematical frameworks

to understand $\mathscr{P T} H \mathcal{P T}=H$ in a more general setting

Mathematical frameworks

to understand $\mathcal{P T} H \mathcal{P T}=H$ in a more general setting than:

- $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$
- $(\mathcal{P} \psi)(x):=\psi(-x), \quad(\mathcal{T} \psi)(x):=\overline{\psi(x)}$

Remark. In general, a $\mathcal{P J}$-symmetric operator is not similar to a self-adjoint, normal or spectral operator.

Mathematical frameworks

to understand $\mathcal{P J} H \mathcal{P T}=H$ in a more general setting than:

- $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$
- $(\mathcal{P} \psi)(x):=\psi(-x),(\mathcal{T} \psi)(x):=\overline{\psi(x)}$

Remark. In general, a $\mathcal{P J}$-symmetric operator is not similar to a self-adjoint, normal or spectral operator.

1. antilinear symmetry $[H, \mathcal{S}]=0$ with \mathcal{S} antiunitary (bijective and $\langle\mathcal{S} \phi, \mathcal{S} \psi\rangle=\langle\psi, \phi\rangle$) e.g. $\mathcal{S}:=\mathcal{P T}$

Mathematical frameworks

to understand $\mathcal{P T} H \mathcal{P T}=H$ in a more general setting than:

- $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$
- $(\mathcal{P} \psi)(x):=\psi(-x),(\mathcal{T} \psi)(x):=\overline{\psi(x)}$

Remark. In general, a $\mathcal{P J}$-symmetric operator is not similar to a self-adjoint, normal or spectral operator.

1. antilinear symmetry $[H, \mathcal{S}]=0$ with \mathcal{S} antiunitary (bijective and $\langle\mathcal{S} \phi, \mathcal{S} \psi\rangle=\langle\psi, \phi\rangle$) e.g. $\mathcal{S}:=\mathcal{P J}$
2. self-adjointness in Krein spaces H is self-adjoint in an indefinite inner product space e.g. $[\cdot, \cdot]:=\langle\cdot, \mathcal{P} \cdot\rangle$ after noticing $\mathcal{P} H \mathcal{P}=\mathcal{T} H \mathcal{T}=H^{*}$

Mathematical frameworks

to understand $\mathcal{P T} H \mathcal{P T}=H$ in a more general setting than:

- $H=-\Delta+V$ on $L^{2}\left(\mathbb{R}^{d}\right)$ with $\overline{V(-x)}=V(x)$
- $(\mathcal{P} \psi)(x):=\psi(-x), \quad(\mathcal{T} \psi)(x):=\overline{\psi(x)}$

Remark. In general, a $\mathcal{P J}$-symmetric operator is not similar to a self-adjoint, normal or spectral operator.

1. antilinear symmetry $[H, \mathcal{S}]=0$ with \mathcal{S} antiunitary (bijective and $\langle\mathcal{S} \phi, \mathcal{S} \psi\rangle=\langle\psi, \phi\rangle$) e.g. $\mathcal{S}:=\mathcal{P T}$
2. self-adjointness in Krein spaces H is self-adjoint in an indefinite inner product space e.g. $[\cdot, \cdot]:=\langle\cdot, \mathcal{P} \cdot\rangle$ after noticing $\mathcal{P} H \mathcal{P}=\mathcal{T} H \mathcal{T}=H^{*}$
[Langer, Tretter 2004]
3. \mathcal{J}-self-adjointness $H^{*}=\mathcal{J} H \mathcal{J}$ with \mathcal{J} conjugation (involutive and $\langle\mathcal{J} \phi, \mathcal{J} \psi\rangle=\langle\psi, \phi\rangle$) e.g. $\mathcal{J}:=\mathcal{T}$ after noticing $\mathcal{T} H \mathcal{T}=\mathcal{P} H \mathcal{P}=H^{*}$
[Borisov, D.K. 2007]

Mathematical frameworks

to understand $\mathcal{P J} H \mathcal{P T}=H$ in a more general setting than:

$$
\begin{aligned}
& \text { - } H=-\Delta+V \text { on } L^{2}\left(\mathbb{R}^{d}\right) \text { with } \overline{V(-x)}=V(x) \\
& \text { - }(\mathcal{P} \psi)(x):=\psi(-x), \quad(\mathcal{T} \psi)(x):=\overline{\psi(x)}
\end{aligned}
$$

Remark. In general, a $\mathcal{P J}$-symmetric operator is not similar to a self-adjoint, normal or spectral operator.

1. antilinear symmetry $[H, \mathcal{S}]=0$ with \mathcal{S} antiunitary (bijective and $\langle\mathcal{S} \phi, \mathcal{S} \psi\rangle=\langle\psi, \phi\rangle$) e.g. $\mathcal{S}:=\mathcal{P J}$
2. self-adjointness in Krein spaces H is self-adjoint in an indefinite inner product space e.g. $[\cdot, \cdot]:=\langle\cdot, \mathcal{P} \cdot\rangle$ after noticing $\mathcal{P} H \mathcal{P}=\mathcal{T} H \mathcal{T}=H^{*}$
[Langer, Tretter 2004]
3. \mathcal{J}-self-adjointness $H^{*}=\mathcal{J} H \mathcal{J}$ with \mathcal{J} conjugation (involutive and $\langle\mathscr{J} \phi, \mathcal{J} \psi\rangle=\langle\psi, \phi\rangle$) e.g. $\mathcal{J}:=\mathcal{T}$ after noticing $\mathcal{T} H \mathcal{T}=\mathcal{P} H \mathcal{P}=H^{*}$
[Borisov, D.K. 2007]

Remark. In general (in ∞-dimensional spaces), all the classes of operators are unrelated.

¿ Physical relevance?

suggestions:

- nuclear physics [Scholtz, Geyer, Hahne 1992]
- optics [Klaiman, Günther, Moiseyev 2008], [Schomerus 2010], [West, Kottos, Prosen 2010]
- solid state physics [Bendix, Fleischmann, Kottos, Shapiro 2009]
- superconductivity [Rubinstein, Sternberg, Ma 2007]
- electromagnetism [Ruschhaupt, Delgado, Muga 2005], [Mostafazadeh 2009] experiments:
- optics [Guo et al. 2009], [Longhi 2009], [Rüter et al. 2010]
- mechanics [Bender, Berntson, Parker, Samuel 2012]

¿ Physical relevance?

suggestions:

- nuclear physics [Scholtz, Geyer, Hahne 1992]
- optics [Klaiman, Günther, Moiseyev 2008], [Schomerus 2010], [West, Kottos, Prosen 2010]
- solid state physics [Bendix, Fleischmann, Kottos, Shapiro 2009]
- superconductivity [Rubinstein, Sternberg, Ma 2007]
- electromagnetism [Ruschhaupt, Delgado, Muga 2005], [Mostafazadeh 2009] experiments:
- optics [Guo et al. 2009], [Longhi 2009], [Rüter et al. 2010]
- mechanics [Bender, Berntson, Parker, Samuel 2012]

i but!

"So far, there have been no experiments that prove clearly and definitively that quantum systems defined by non-Hermitian $\mathcal{P J}$-symmetric Hamiltonians do exist in nature."
[Bender 2007]

The simplest $\mathcal{P J}$-symmetric model

$$
\begin{aligned}
& \mathcal{H}:=L^{2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad \text { [D.K., Bíla, Znojil 2006] } \\
& H_{\alpha} \psi:=-\psi^{\prime \prime}, \quad D\left(H_{\alpha}\right):=\left\{\psi \in W^{2,2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \left\lvert\, \psi^{\prime}\left(\pm \frac{\pi}{2}\right)+i \alpha \psi\left(\pm \frac{\pi}{2}\right)=0\right.\right\}, \quad \alpha \in \mathbb{R} \\
& \frac{d \psi}{d n}-i \alpha \psi=0 \quad
\end{aligned}
$$

The simplest $\mathcal{P J}$-symmetric model

$$
\begin{array}{cc}
\mathcal{H}:=L^{2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) & \text { [D.K., Bíla, Znojil 2006] } \\
H_{\alpha} \psi:=-\psi^{\prime \prime}, D\left(H_{\alpha}\right):=\left\{\psi \in W^{2,2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \left\lvert\, \psi^{\prime}\left(\pm \frac{\pi}{2}\right)+i \alpha \psi\left(\pm \frac{\pi}{2}\right)=0\right.\right\}, \quad \alpha \in \mathbb{R} \\
-\Delta & \frac{d \psi}{d n}-i \alpha \psi=0
\end{array}
$$

Theorem 1. $\quad H_{\alpha}$ is an m-sectorial operator with compact resolvent satisfying

$$
H_{\alpha}^{*}=H_{-\alpha}=\mathcal{T} H_{\alpha} \mathcal{T} \quad \text { (T} \text {-self-adjointness) }
$$

The simplest $\mathcal{P T}$-symmetric model

$$
\mathcal{H}:=L^{2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

[D.K., Bía, Znojil 2006]

$$
H_{\alpha} \psi:=-\psi^{\prime \prime}, \quad D\left(H_{\alpha}\right):=\left\{\psi \in W^{2,2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \left\lvert\, \psi^{\prime}\left(\pm \frac{\pi}{2}\right)+i \alpha \psi\left(\pm \frac{\pi}{2}\right)=0\right.\right\}, \quad \alpha \in \mathbb{R}
$$

Theorem 1. $\quad H_{\alpha}$ is an m-sectorial operator with compact resolvent satisfying

$$
H_{\alpha}^{*}=H_{-\alpha}=\mathcal{T} H_{\alpha} \mathcal{T} \quad \text { (T-self-adjointness) }
$$

Theorem 2.

$$
\sigma\left(H_{\alpha}\right)=\left\{\alpha^{2}\right\} \cup\left\{n^{2}\right\}_{n=1}^{\infty}
$$

The simplest $\mathcal{P T}$-symmetric model

$$
\mathcal{H}:=L^{2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

[D.K., Bía, Znojil 2006]

$$
H_{\alpha} \psi:=-\psi^{\prime \prime}, \quad D\left(H_{\alpha}\right):=\left\{\psi \in W^{2,2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \left\lvert\, \psi^{\prime}\left(\pm \frac{\pi}{2}\right)+i \alpha \psi\left(\pm \frac{\pi}{2}\right)=0\right.\right\}, \quad \alpha \in \mathbb{R}
$$

Theorem 1. $\quad H_{\alpha}$ is an m-sectorial operator with compact resolvent satisfying

$$
H_{\alpha}^{*}=H_{-\alpha}=\mathcal{T} H_{\alpha} \mathcal{T} \quad \text { (} \mathcal{T} \text {-self-adjointness) }
$$

Theorem 2.

$$
\sigma\left(H_{\alpha}\right)=\left\{\alpha^{2}\right\} \cup\left\{n^{2}\right\}_{n=1}^{\infty}
$$

Corollary. The spectrum of H_{α} is $\left\{\begin{array}{l}\text { always real, } \\ \text { simple if } \alpha \notin \mathbb{Z} \backslash\{0\} .\end{array}\right.$

Scattering realisation in QM

[Hernandez-Coronado, D.K., Siegl 2011]
scattering by a compactly supported even potential $V: \quad-\psi^{\prime \prime}+V \psi=k^{2} \psi \quad k>0$

Scattering realisation in QM

[Hernandez-Coronado, D.K., Siegl 2011]
scattering by a compactly supported even potential $V: \quad-\psi^{\prime \prime}+V \psi=k^{2} \psi \quad k>0$

$\underset{\quad \text { perfect transmission }}{(i . e .} R=0) \quad \Longrightarrow\left\{\begin{array}{c}-\psi^{\prime \prime}+V \psi=k^{2} \psi \quad \text { in } \quad(0, \pi) \\ \psi^{\prime}-i k \psi=0 \quad \text { at } 0, \pi\end{array}\right.$ non-linear

Scattering realisation in QM

[Hernandez-Coronado, D.K., Siegl 2011]
scattering by a compactly supported even potential $V: \quad-\psi^{\prime \prime}+V \psi=k^{2} \psi \quad k>0$

$\underset{\text { perfect transmission }}{\text { (i.e. } R=0)} \Longrightarrow\left\{\begin{array}{c}-\psi^{\prime \prime}+V \psi=k^{2} \psi \quad \text { in } \quad(0, \pi) \\ \psi^{\prime}-i k \psi=0 \quad \text { at } 0, \pi\end{array}\right.$ non-linear
solutions given by a non-self-adjoint $\mathcal{P J}$-symmetric spectral problem:

$$
\left\{\begin{array}{rlrl}
-\psi^{\prime \prime}+V \psi & =\mu(\alpha) \psi & \text { in } \quad(0, \pi) \\
\psi^{\prime}+i \alpha \psi & =0 & \text { at } \quad 0, \pi \\
\mu(\alpha) & =\alpha^{2} & &
\end{array}\right.
$$

The metric operator

[D.K., Siegl, Železný 2011]

Theorem 3. Let $\alpha \notin \mathbb{Z} \backslash\{0\}$.
Then H_{α} is similar to a self-adjoint operator $h_{\alpha}:=\Omega H_{\alpha} \Omega^{-1}$ with the metric

$$
\Theta:=\Omega^{*} \Omega=I+K
$$

$$
K(x, y)=\frac{2 i}{\pi} e^{i \frac{\alpha}{2}(x-y)} \sin \left(\frac{\alpha}{2}(x-y)\right)+\frac{i \alpha}{\pi}(|y-x|-\pi) \operatorname{sgn}(y-x)+\frac{\alpha^{2}}{\pi}\left(\frac{\pi^{2}}{4}-x y-\frac{\pi}{2}|y-x|\right)
$$

The metric operator

[D.K., Siegl, Železný 2011]
Theorem 3. Let $\alpha \notin \mathbb{Z} \backslash\{0\}$.
Then H_{α} is similar to a self-adjoint operator $h_{\alpha}:=\Omega H_{\alpha} \Omega^{-1}$ with the metric

$$
\Theta:=\Omega^{*} \Omega=I+K
$$

$K(x, y)=\frac{2 i}{\pi} e^{i \frac{\alpha}{2}(x-y)} \sin \left(\frac{\alpha}{2}(x-y)\right)+\frac{i \alpha}{\pi}(|y-x|-\pi) \operatorname{sgn}(y-x)+\frac{\alpha^{2}}{\pi}\left(\frac{\pi^{2}}{4}-x y-\frac{\pi}{2}|y-x|\right)$
Moreover, $h_{\alpha}=-\Delta_{N}+\alpha^{2} \chi_{0}^{N}\left\langle\chi_{0}^{N}, \cdot\right\rangle$!!! $\quad \chi_{0}^{N}(x):=\pi^{-1 / 2} \quad$ (Neumann ground state)
non-Hermitian $H_{\alpha} \longleftrightarrow$ non-local h_{α}

The metric operator

[D.K., Siegl, Železný 2011]
Theorem 3. Let $\alpha \notin \mathbb{Z} \backslash\{0\}$.
Then H_{α} is similar to a self-adjoint operator $h_{\alpha}:=\Omega H_{\alpha} \Omega^{-1}$ with the metric

$$
\Theta:=\Omega^{*} \Omega=I+K
$$

$$
K(x, y)=\frac{2 i}{\pi} e^{i \frac{\alpha}{2}(x-y)} \sin \left(\frac{\alpha}{2}(x-y)\right)+\frac{i \alpha}{\pi}(|y-x|-\pi) \operatorname{sgn}(y-x)+\frac{\alpha^{2}}{\pi}\left(\frac{\pi^{2}}{4}-x y-\frac{\pi}{2}|y-x|\right)
$$

Moreover, $h_{\alpha}=-\Delta_{N}+\alpha^{2} \chi_{0}^{N}\left\langle\chi_{0}^{N}, \cdot\right\rangle$!!! $\quad \chi_{0}^{N}(x):=\pi^{-1 / 2} \quad$ (Neman ground state)
non-Hermitian $H_{\alpha} \longleftrightarrow$ non-local h_{α}
Proof. "backward usage of the spectral theorem" [D.K. 2008]

$$
\begin{aligned}
& E_{n}=\left\{\begin{array}{lll}
\alpha^{2} & \text { if } \quad n=0 \\
n^{2}=E_{n}^{N}=E_{n}^{D} & \text { if } & n \geq 1
\end{array} \quad \phi_{n}(x)= \begin{cases}\frac{1}{\sqrt{\pi}} e^{i \alpha\left(x+\frac{\pi}{2}\right)} & \text { if } n=0 \\
\chi_{n}^{N}(x)+i \frac{\alpha}{n} \chi_{n}^{D}(x) & \text { if } n \geq 1\end{cases} \right. \\
& \begin{aligned}
\Omega:=\sum_{n=0}^{\infty} \chi_{n}^{N}\left\langle\phi_{n}, \cdot\right\rangle & =\chi_{0}^{N}\left\langle\phi_{0}, \cdot\right\rangle-\chi_{0}^{N}\left\langle\chi_{0}^{N}, \cdot\right\rangle+\sum_{n=0}^{\infty} \chi_{n}^{N}\left\langle\chi_{n}^{N}, \cdot\right\rangle-i \alpha \sum_{n=1}^{\infty} \frac{1}{n} \chi_{n}^{N}\left\langle\chi_{n}^{D}, \cdot\right\rangle \\
& =\chi_{0}^{N}\left\langle\phi_{0}, \cdot\right\rangle-\chi_{0}^{N}\left\langle\chi_{0}^{N}, \cdot\right\rangle+I+\alpha p\left(-\Delta_{D}\right)^{-1} \quad\left(-\Delta_{D}=p^{*} p\right)
\end{aligned}
\end{aligned}
$$

The \mathcal{C} operator

Definition ([Bender, Brody Jones 2002], [Albeverio, Kuzhel 2005]).
Let H be \mathcal{P}-self-adjoint and \mathcal{C} bounded.

$$
H \text { is } \mathcal{C} \text {-symmetric }: \Longleftrightarrow\left\{\begin{array}{l}
{[H, \mathcal{C}]=0} \\
\mathcal{C}^{2}=I \\
\mathcal{P C} \text { is a metric for } H
\end{array}\right.
$$

The \mathcal{C} operator

Definition ([Bender, Brody Jones 2002], [Albeverio, Kuzhel 2005]).
Let H be \mathcal{P}-self-adjoint and \mathcal{C} bounded.

$$
H \text { is } \mathfrak{C} \text {-symmetric }: \Longleftrightarrow\left\{\begin{array}{l}
{[H, \mathcal{C}]=0} \\
\mathcal{C}^{2}=I \\
\mathcal{P C} \text { is a metric for } H
\end{array}\right.
$$

Thus: $\mathcal{C}:=\mathcal{P} \Theta$ for Θ satisfying $(\mathcal{P} \Theta)^{2}=I$

The \mathcal{C} operator

Definition ([Bender, Brody Jones 2002], [Albeverio, Kuzhel 2005]).
Let H be \mathcal{P}-self-adjoint and \mathcal{C} bounded.

$$
H \text { is } \mathcal{C} \text {-symmetric }: \Longleftrightarrow\left\{\begin{array}{l}
{[H, \mathcal{C}]=0} \\
\mathcal{C}^{2}=I \\
\mathcal{P C} \text { is a metric for } H
\end{array}\right.
$$

Thus: $\mathcal{C}:=\mathcal{P} \Theta$ for Θ satisfying $(\mathcal{P} \Theta)^{2}=I$

Our explicit result:
$\mathcal{C}=\mathcal{P}+L \quad$ with
$L(x, y)=\alpha e^{-i \alpha(y+x)}\left[\tan \left(\alpha \frac{\pi}{2}\right)-i \operatorname{sgn}(y+x)\right] \quad(|\alpha|<1)$

General $\mathcal{P T}$-symmetric case

[D.K., Siegl 2010]

$$
H_{\alpha, \beta} \psi:=-\psi^{\prime \prime}, \quad D\left(H_{\alpha, \beta}\right):=\left\{\psi \in W^{2,2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \left\lvert\, \psi^{\prime}\left(\pm \frac{\pi}{2}\right)+(i \alpha \pm \beta) \psi\left(\pm \frac{\pi}{2}\right)=0\right.\right\}
$$

$$
\beta>0
$$

$$
\beta=0
$$

$$
\beta<0
$$

General $\mathcal{P J}$-symmetric case

[D.K., Siegl 2010]

$$
H_{\alpha, \beta} \psi:=-\psi^{\prime \prime}, \quad D\left(H_{\alpha, \beta}\right):=\left\{\psi \in W^{2,2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \left\lvert\, \psi^{\prime}\left(\pm \frac{\pi}{2}\right)+(i \alpha \pm \beta) \psi\left(\pm \frac{\pi}{2}\right)=0\right.\right\}
$$

$$
\beta>0
$$

$\Theta=I+K \quad$ with
$K(x, y)=e^{i \alpha(x-y)-\beta|x-y|}[c+i \alpha \operatorname{sgn}(x-y)] \quad c \in \mathbb{R}$
$\Theta>0$ if $\beta>0$ large or $c^{2}+\alpha^{2}$ small

Imaginary cubic oscillator

[D.K., Siegl 2012]

$$
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+i x^{3} \quad \text { on } \quad L^{2}(\mathbb{R})
$$

Imaginary cubic oscillator

[D.K., Siegl 2012]

$$
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+i x^{3} \quad \text { on } \quad L^{2}(\mathbb{R}), \quad D(H):=\left\{\psi \in L^{2}(\mathbb{R}) \mid H \psi \in L^{2}(\mathbb{R})\right\}
$$

- H is m -accretive $\Rightarrow \Re \sigma(H) \geq 0$
[Edmunds, Evans 1987]
- H has purely discrete spectrum
- all eigenvalues of H are real
[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]
[Dorey, Dunning, Tateo 2001], [Shin 2002]

Imaginary cubic oscillator

[D.K., Siegl 2012]

$$
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+i x^{3} \quad \text { on } \quad L^{2}(\mathbb{R}), \quad D(H):=\left\{\psi \in L^{2}(\mathbb{R}) \mid H \psi \in L^{2}(\mathbb{R})\right\}
$$

- H is m -accretive $\Rightarrow \Re \sigma(H) \geq 0$ [Edmunds, Evans 1987]
- H has purely discrete spectrum
[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]
- all eigenvalues of H are real
[Dorey, Dunning, Tateo 2001], [Shin 2002]
¿ Does H possess metric?

Imaginary cubic oscillator

[D.K., Siegl 2012]

$$
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+i x^{3} \quad \text { on } \quad L^{2}(\mathbb{R}), \quad D(H):=\left\{\psi \in L^{2}(\mathbb{R}) \mid H \psi \in L^{2}(\mathbb{R})\right\}
$$

- H is m -accretive $\Rightarrow \Re \sigma(H) \geq 0$ [Edmunds, Evans 1987]
- H has purely discrete spectrum
[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]
- all eigenvalues of H are real
[Dorey, Dunning, Tateo 2001], [Shin 2002]
¿ Does H possess metric?
- eigenfunctions of H form a complete set

Imaginary cubic oscillator

[D.K., Siegl 2012]

$$
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+i x^{3} \quad \text { on } \quad L^{2}(\mathbb{R}), \quad D(H):=\left\{\psi \in L^{2}(\mathbb{R}) \mid H \psi \in L^{2}(\mathbb{R})\right\}
$$

- H is m -accretive $\Rightarrow \Re \sigma(H) \geq 0$
[Edmunds, Evans 1987]
- H has purely discrete spectrum
[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]
- all eigenvalues of H are real
[Dorey, Dunning, Tateo 2001], [Shin 2002]
¿ Does H possess metric?
- eigenfunctions of H form a complete set

Theorem. Metric operator for H does not exist.

Imaginary cubic oscillator

[D.K., Siegl 2012]

$$
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+i x^{3} \quad \text { on } \quad L^{2}(\mathbb{R}), \quad D(H):=\left\{\psi \in L^{2}(\mathbb{R}) \mid H \psi \in L^{2}(\mathbb{R})\right\}
$$

- H is m -accretive $\Rightarrow \Re \sigma(H) \geq 0$
[Edmunds, Evans 1987]
- H has purely discrete spectrum
- all eigenvalues of H are real
[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]
[Dorey, Dunning, Tateo 2001], [Shin 2002]

¿ Does H possess metric?

- eigenfunctions of H form a complete set

Theorem. Metric operator for H does not exist.
Proof.

- Let metric exist $\Rightarrow\left\|(H-z)^{-1}\right\| \leq \frac{C}{|\Im z|}, \quad \forall z \in \mathbb{C}, \quad \Im z \neq 0$

Imaginary cubic oscillator

[D.K., Siegl 2012]

$$
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+i x^{3} \quad \text { on } \quad L^{2}(\mathbb{R}), \quad D(H):=\left\{\psi \in L^{2}(\mathbb{R}) \mid H \psi \in L^{2}(\mathbb{R})\right\}
$$

- H is m -accretive $\Rightarrow \Re \sigma(H) \geq 0$
[Edmunds, Evans 1987]
- H has purely discrete spectrum
- all eigenvalues of H are real
[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]
[Dorey, Dunning, Tateo 2001], [Shin 2002]

¿ Does H possess metric?

- eigenfunctions of H form a complete set

Theorem. Metric operator for H does not exist.
Proof.

- Let metric exist $\Rightarrow\left\|(H-z)^{-1}\right\| \leq \frac{C}{|\Im z|}, \quad \forall z \in \mathbb{C}, \quad \Im z \neq 0$
- $\left\|(H-\sigma z)^{-1}\right\|=\sigma^{-1}\left\|\left(H_{h}-z\right)^{-1}\right\| \quad$ with $\quad H_{h}:=-h^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+i x^{3}, \quad h:=\sigma^{-5 / 6}$

Imaginary cubic oscillator

[D.K., Siegl 2012]

$$
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+i x^{3} \quad \text { on } \quad L^{2}(\mathbb{R}), \quad D(H):=\left\{\psi \in L^{2}(\mathbb{R}) \mid H \psi \in L^{2}(\mathbb{R})\right\}
$$

- H is m -accretive $\Rightarrow \Re \sigma(H) \geq 0$
[Edmunds, Evans 1987]
- H has purely discrete spectrum
- all eigenvalues of H are real
[Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]
[Dorey, Dunning, Tateo 2001], [Shin 2002]

¿ Does H possess metric?

- eigenfunction of H form a complete set

Theorem. Metric operator for H does not exist.
Proof.

- Let metric exist $\Rightarrow\left\|(H-z)^{-1}\right\| \leq \frac{C}{|\Im z|}, \quad \forall z \in \mathbb{C}, \quad \Im z \neq 0$
- $\left\|(H-\sigma z)^{-1}\right\|=\sigma^{-1}\left\|\left(H_{h}-z\right)^{-1}\right\| \quad$ with $\quad H_{h}:=-h^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+i x^{3}, \quad h:=\sigma^{-5 / 6}$
- $\left\|\left(H_{h}-z\right)^{-1}\right\|=\mathcal{O}\left(h^{-n}\right), \quad \forall n>0 \quad \Rightarrow \quad$ contradiction

Pseudospectra and $\mathcal{P T}$-symmetry

[work in progress with Siegl and Tater]

Pseudospectra and $\mathcal{P J}$-symmetry

[work in progress with Siegl and Tater]

$$
\sigma_{\varepsilon}(H):=\left\{z \in \mathbb{C} \mid\left\|(H-z)^{-1}\right\|>\varepsilon^{-1}\right\}
$$

[Trefethen, Embree 2005], [Davies 2007]

Pseudospectra and $\mathcal{P J}$-symmetry

[work in progress with Siegl and Tater]

$$
\sigma_{\varepsilon}(H):=\left\{z \in \mathbb{C} \mid\left\|(H-z)^{-1}\right\|>\varepsilon^{-1}\right\}
$$

[Trefethen, Embree 2005], [Davies 2007]

- H is self-adjoint $\Longrightarrow\left\|(H-z)^{-1}\right\|=\frac{1}{\operatorname{dist}(z, \sigma(H))} \quad \Longrightarrow \quad$ trivial pseudospectrum

Pseudospectra and $\mathcal{P T}$-symmetry

[work in progress with Siegl and Tater]

$$
\sigma_{\varepsilon}(H):=\left\{z \in \mathbb{C} \mid\left\|(H-z)^{-1}\right\|>\varepsilon^{-1}\right\}
$$

[Trefethen, Embree 2005], [Davies 2007]

- H is self-adjoint $\Longrightarrow\left\|(H-z)^{-1}\right\|=\frac{1}{\operatorname{dist}(z, \sigma(H))} \quad \Longrightarrow \quad$ trivial pseudospectrum
- For non-self-adjoint operators, pseudospectra more relevant than spectra !

Pseudospectra and $\mathcal{P T}$-symmetry

[work in progress with Siegl and Tater]

$$
\sigma_{\varepsilon}(H):=\left\{z \in \mathbb{C} \mid\left\|(H-z)^{-1}\right\|>\varepsilon^{-1}\right\}
$$

[Trefethen, Embree 2005], [Davies 2007]

- H is self-adjoint $\Longrightarrow\left\|(H-z)^{-1}\right\|=\frac{1}{\operatorname{dist}(z, \sigma(H))} \quad \Longrightarrow \quad$ trivial pseudospectrum
- For non-self-adjoint operators, pseudospectra more relevant than spectra !
- $\sigma_{\varepsilon}(H)=\bigcup_{\|V\|<\varepsilon} \sigma(H+V) \quad \Longrightarrow \quad$ spectral instabilities

Pseudospectra and $\mathcal{P J}$-symmetry

[work in progress with Siegl and Tater]

$$
\sigma_{\varepsilon}(H):=\left\{z \in \mathbb{C} \mid\left\|(H-z)^{-1}\right\|>\varepsilon^{-1}\right\}
$$

[Trefethen, Embree 2005], [Davies 2007]

- H is self-adjoint $\Longrightarrow\left\|(H-z)^{-1}\right\|=\frac{1}{\operatorname{dist}(z, \sigma(H))} \quad \Longrightarrow \quad$ trivial pseudospectrum
- For non-self-adjoint operators, pseudospectra more relevant than spectra !
- $\sigma_{\varepsilon}(H)=\bigcup_{\|V\|<\varepsilon} \sigma(H+V) \quad \Longrightarrow \quad$ spectral instabilities
- \exists metric \Longrightarrow trivial pseudospectrum

Conclusions

Ad $\mathcal{P J}$-symmetry:

\rightarrow no extension of QM
\rightarrow rather an alternative (quasi-Hermitian) representation
\rightarrow overlooked for over 70 years
¡ some rigorous treatments still missing !

Conclusions

Ad $\mathcal{P J}$-symmetry:

\rightarrow no extension of QM
\rightarrow rather an alternative (quasi-Hermitian) representation
\rightarrow overlooked for over 70 years
¡ some rigorous treatments still missing !

Ad our model:
\rightarrow shamefully simple
\rightarrow closed fomulae for the spectrum, metric operator, self-adjoint counterpart, etc.
\rightarrow rigorous treatment
i physical relevance!

Conclusions

Ad $\mathcal{P J}$-symmetry:

\rightarrow no extension of QM
\rightarrow rather an alternative (quasi-Hermitian) representation
\rightarrow overlooked for over 70 years
¡ some rigorous treatments still missing !

Ad our model:
\rightarrow shamefully simple
\rightarrow closed fomulae for the spectrum, metric operator, self-adjoint counterpart, etc.
\rightarrow rigorous treatment
i physical relevance!

Ad $i x^{3}$:
; metric operator does not exist !
(bad basicity properties, non-trivial pseudospectrum, spectral instabilities)

Collection of open problems

ESF exploratory workshop on

Mathematical aspects of the physics with non-self-adjoint operators

Some of the open problems also available in Integral Equations Operator Theory.

My $\mathcal{P T}$-symmetric life

http://gemma.ujf.cas.cz/~david/

- D.K., H. Bíla, M. Znojil: Closed formula for the metric in the Hilbert space of a $\mathcal{P T}$-symmetric model; J. Phys. A 39 (2006), 10143-10153.
- D.K.: Calculation of the metric in the Hilbert space of a $\mathcal{P T}$-symmetric model via the spectral theorem; J. Phys. A: Math. Theor. 41 (2008) 244012.
- D. Borisov, D.K.: PT-symmetric waveguides; Integral Equations Operator Theory 62 (2008), 489-515.
- D.K., M. Tater: Non-Hermitian spectral effects in a $\mathcal{P T}$-symmetric waveguide;
J. Phys. A: Math. Theor. 41 (2008) 244013.
- D.K., P. Siegl: PJ-symmetric models in curved manifolds;
J. Phys. A: Math. Theor. 43 (2010) 485204.
- H. Hernandez-Coronado, D.K., P. Siegl: Perfect transmission scattering as a $\mathcal{P} \mathcal{T}$-symmetric spectral problem; Phys. Lett. A 375 (2011), 2149-2152.
- D. Borisov, D.K.: The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions; Asympt. Anal. 76 (2012), 49-59.
- D.K., P. Siegl, J. Železný: Non-Hermitian \mathcal{P} T-symmetric Sturm-Liouville operators and to them similar Hamiltonians; arXiv:1108.4946 [math.SP] (2011).
- D. Kochan, D.K., R. Novák, P. Siegl: The Pauli equation with complex boundary conditions;
J. Phys. A: Math. Theor., to appear; arXiv:1203.5011 [quant.ph] (2012).
- P. Siegl, D.K.: Metric operator for the imaginary cubic oscillator does not exist;
arXiv:1208.1866 [quant-ph] (2012).

