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Imaginary Numbers by Yves Tanguy, 1954
(Museo Thyssen-Bornemisza, Madrid)
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Insignificant non-Hermiticity

iU(t) = HU(t)

U0) =1

Example 1. evolution operator U(t) = exp(—itH): {

Example 2. resolvent operator R(z) = (H —2)"!, 2¢€C

Theorem (spectral theorem).
Let H = H*. Then

J(H) = / PRLOELAEY

for any complex-valued continuous function f.
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Technical non-Hermiticity

Example 1. complex scaling Hy := Sg(—=A+V)S; ', (Sep) () := /2 1p(e%x)
0=0 360 > 0

X
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[Aguilar/Balslev, Combes 1971], [Simon 1972], [Van Winter 1974], ...

Example 2. adiabatic transition probability for H(t) :=~(t/7)-&, T — o0
[Berry 1990], [Joye, Kunz, Pfister 1991], [Jaksi¢, Segert 1993], ...

dz  I(l+1)
BT

r r
[Regge 1957], [Connor 1990], [Sokolovski 2011], ...

Example 3. Regge theory H; := +V(r), 1€C



Approximate non-Hermiticity
open systems

Example 1. radioactive decay

)
Beta particle
o v A
< 45353

Alpha particle -wﬂ :

Example 2. dissipative Schrodinger operators in semiconductor physics

Baro, Behrndt, Kaiser, Neidhardt, Rehberg, . ..

Example 3. repeated interaction quantum systems

Bruneau, Joye, Merkli, Pillet, ...
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i Fundamental non-Hermiticity ?

I.e. non-Hermitian observables,
without violating physical axioms of QM

Theorem (Stone’s theorem).
Unitary groups on a Hilbert space are generated by self-adjoint operators.

i yes ?

by changing the Hilbert space,
preserving a similarity to self-adjoint operators



Non-Hermitian Hamiltonians with real spectra
~A+V in L*R)

V(z) = 22 +iz3 [Caliceti, Graffi, Maioli 1980]

[Bessis, Zinn-Justin]

[Bender, Boettcher 1998]
[Dorey, Dunning, Tateo 2001
f [Shin 2002]
| [Azizov, Kuzhel, Giinther, Trunk 2010]

Energy

V(z) = 22 (ix)°

[Znojil 2001]
oo elsewhere

vsgn(x) if x € (—L,
V(x):{ gn(x) € (—L,L)

i What is behind the reality of the spectrum ?
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We have in mind H = —A +V on L?(R%) with V(—z) = V().
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—> H*=0©HO ! where |©:=>" ¢,{(¢n,)| is positive, bounded, boundedly invertible

—> H is self-adjoint in (L2 (-,0")), ie. ©/2HO™'? s self-adjoint in (L?, (-, "))

metric

Albeverio-Fei-Kurasov, Bender-Brody-Jones, Caliceti-Graffi-Sjostrand, Fring, Graefe-Schubert,
Kretschmer-Szymanowski, Langer-Tretter, Mostafazadeh, Scholtz-Geyer-Hahne, Znojil, . ..
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Speculations about “unbounded metric”
[Kretschmer, Szymanowski 2004], [Mostafazadeh 2012], [Bender, Kuzhel 2012]

1 2
H = on C2 satisfles H*©O =0OH with © =

0 1 0 1
\l, Mostafazadeh's construction

h=1 on C

In oo-dimensional spaces:  similar examples with ® > 0 invertible but ® ! unbounded !

i possible (¢, 1) # 0 for all n but (¢, V) ——0 !

i unbounded © or ©~! always exist !

Moreover: j physically relevant quantities are not preserved !
(continuous spectrum, pseudospectrum)

i spectral instablities !

concept of “unbounded metric” is trivial and physically doubtful
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Mathematical frameworks

to understand | PT H PT = H |in a more general setting than:
e H=—-A+V on L?RY%) with V(—x)=V(x)

o (Py)(x) :=v(—x), (TY)(z):= ()

Remark. In general, a PJT-symmetric operator is not similar
to a self-adjoint, normal or spectral operator.

1. antilinear symmetry |[H,8] =0 with 8 antiunitary (bijective and (8¢, 8v¢) = (), ¢))
eg. &:=PT

2. self-adjointness in Krein spaces H is self-adjoint in an indefinite inner product space

e.g. |, :=(,P) after noticing PHP =THT = H" [Langer, Tretter 2004]

3. J-self-adjointness H* = JHJ with J conjugation (involutive and (J¢, Jv) = (1, $))
e.g. J:= T after noticing THT = PHP = H" [Borisov, D.K. 2007]

Remark. In general (in co-dimensional spaces), all the classes of operators are unrelated.
[Siegl 2008]
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i Physical relevance ?

suggestions:
e nuclear physics [Scholtz, Geyer, Hahne 1992]
e optics [Klaiman, Giinther, Moiseyev 2008], [Schomerus 2010], [West, Kottos, Prosen 2010]
e solid state physics [Bendix, Fleischmann, Kottos, Shapiro 2009]
e superconductivity [Rubinstein, Sternberg, Ma 2007]
e electromagnetism [Ruschhaupt, Delgado, Muga 2005], [Mostafazadeh 2009]

experiments:
e optics [Guo et al. 2009], [Longhi 2009], [Riter et al. 2010]
e mechanics [Bender, Berntson, Parker, Samuel 2012]

i but !

“So far, there have been no experiments that prove clearly and definitively that quantum
systems defined by non-Hermitian PT-symmetric Hamiltonians do exist in nature.”
[Bender 2007]



The simplest PJ - symmetric model

[D.K., Bila, Znojil 2006]

H = LQ(_%v %)

Hob = —" | D(H,) := {zp e W22(—Z ) | /(£Z) +iap(£Z) =0 } a € R
—A
W _ o =0 W Lo =0

dn dn



The simplest PJ - symmetric model

g-(: — LQ(_E E) [DK, Bllla, ZnOJI| 2006]

27 2
Hop = —¢", D(H,)={¢ e W**(-3,5) | ¢/(£) +iay(+5) =0} aeR
A
[ |
o o
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Theorem 1. H, is an m-sectorial operator with compact resolvent satisfying

H:=H_,=TH,7J (T-self-adjointness)
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I o= [2(—Z, T) [D.K., Bila, Znojil 2006]

27 2
Hop = —¢", D(H,)={¢ e W**(-3,5) | ¢/(£) +iay(+5) =0} aeR
A
[ |
o o
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Theorem 1. H, is an m-sectorial operator with compact resolvent satisfying

H:=H_,=TH,7J (T-self-adjointness)
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Theorem 2. | o(H,) = {a?} U {n?}, ™t /
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The simplest PJ - symmetric model

I o= [2(—Z, T) [D.K., Bila, Znojil 2006]

27 2
Hop = —¢", D(H,)={¢ e W**(-3,5) | ¢/(£) +iay(+5) =0} aeR
A
[ |
o o
%——zaw—() %4—@0@—0

Theorem 1. H, is an m-sectorial operator with compact resolvent satisfying

H:=H_,=TH,7J (T-self-adjointness)

L
Theorem 2. | o(H,) = {a?} U {n?}, ’ /

15F /
10

always real,

Corollary.  The spectrum of [, is { simple if o ¢Z\ {0}.



Scattering realisation in QM
[Hernandez-Coronado, D.K., Siegl 2011]

scattering by a compactly supported even potential V':

Yin(x) = € 4 Remike L () ?

/\ /N

"+ VY = k%

wout (37) =T ez’k:c

k>0

'o\/lr

Y
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Scattering realisation in QM
[Hernandez-Coronado, D.K., Siegl 2011]

scattering by a compactly supported even potential V: —¢" + Vi =£k?p k>0

—_— - —

Yin(x) = F% 4 Re~ k= P Y(z) ? bout () = T etk
/\

/\

| |
N\ :,;

Y

" +Vip=k*p in (0,m)
perfect transmission — non-linear
solutions given by a non-self-adjoint PT-symmetric spectral problem: \l/
(=" + Vi =p(a)y in (0,m)
) W+ ioh = 0 at 0.7 non-Hermitian

\ pla) = o



The metric operator

[D.K., Siegl, Zelezny 2011]
Theorem 3. Let a ¢ Z )\ {0}.
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The metric operator

[D.K., Siegl, Zelezny 2011]
Let o € Z \ {0}.

Then H,, is similar to a self-adjoint operator h, := QH, Q! with the metric

O=0Q=71+K
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2

7_(_2

4

vy — 5ly — )
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The metric operator

[D.K., Siegl, Zelezny 2011]
Theorem 3. Let a ¢ Z )\ {0}.
Then H,, is similar to a self-adjoint operator h, := QH, Q! with the metric

O=0Q=71+K

2 2

K(z,y) = 220V sin (§(z —y)) + 2 (Jy —a| —7)sgn(y — 2) + & (Gp — 2y — §ly — )

Moreover, | ho = —Apn + a® XY (X3, *) 1 & (z) := 7~ 1/2 (Neumann ground state)

non-Hermitian H, <— non-local h,

Proof. "“backward usage of the spectral theorem” [D.K. 2008]

o if n=0 L gialz+3) if n=0
E, = 5 N D - gbn(x) = \/; , D _
n“=FE'=FE” if n>1 Xn (@) +i2 X (z) if n>1

n=0 n=0 n=1 .
(D)

= {0, ) = x¥ Oy + T +ap(—Ap)~! (-Ap =p*p) &




The C operator

Definition ([Bender, Brody Jones 2002], [Albeverio, Kuzhel 2005]).

Let H be P-self-adjoint and € bounded.

H is C-symmetric

= <

([H,€] =0
C2 =1

\ PC is a metric for H
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The C operator

Definition ([Bender, Brody Jones 2002], [Albeverio, Kuzhel 2005]).

Let H be P-self-adjoint and € bounded.
(|H,Cl =0

His C-symmetric «— { C°=1

\ PC is a metric for H

Thus: C:=PO for O satisfying (PO)* =1

Our explicit result:

C=P+L with
L(z,y) = ae "Wt [tan(al) —isgn(y + =)]|  (Ja| <1)
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General PJ-symmetric case
[D.K., Siegl 2010]

Hopthi= —4" . D(Hag) = {$ € W?*(=3,5) | ¢/(£3) + (i % B)$(+F) =0 |

>0 =0 B <0

©=I1+K with

K(z,y) = elel@v)=ble=vllc 4 jasgn(z —y)]| c€R

© >0 if 8#>0large or ¢* + o small
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d2
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Theorem. Metric operator for H does not exist.

Proof.
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e Let metric exist = H(H - z)_lH < Sz VzeC, Sz+#0
3z

2
o [(H—o2)7|=0"Y|(Hy—2)7Y| with Hj = —hQ% Vigd = o5/



Imaginary cubic oscillator
[D.K., Siegl 2012]

d2
H:—FJri:v?’ on L*(R), D(H):={¢ € L*R)|Hy € L*R)}
x
e H is m-accretive = Ro(H) >0 [Edmunds, Evans 1987]
e [ has purely discrete spectrum [Caliceti, Graffi, Maioli 1980], [Mezinescu 2001]
e all eigenvalues of H are real [Dorey, Dunning, Tateo 2001], [Shin 2002]

i Does H possess metric ?

e cigenfunctions of H form a complete set

Theorem. Metric operator for H does not exist.

Proof. .
e Let metric exist = H(H - z)_lH < Sa] VzeC, Sz+#0
2
o |(H—o0z) " ||=0 " ||(H,—2)~ with  Hp := —h*—5 +1x°, h:=o0"
1 1 1 Qdde 3 5/6
o [((Hy, —2) "||=0(h™™), Vn >0 = contradiction g.e.d.
|(Hy, = 2)7H| = 0(h™)

[Davies 1999]



Pseudospectra and PJ-symmetry

[work in progress with Siegl and Tater]



Pseudospectra and PJ-symmetry

[work in progress with Siegl and Tater]

o.(H):={2€C||(H-2)7Y >}

[Trefethen, Embree 2005], [Davies 2007]



Pseudospectra and PJ-symmetry

[work in progress with Siegl and Tater]

o.(H):={z€C ’ [(H—2)"t >e 1} [Trefethen, Embree 2005], [Davies 2007]

. . 1 .
o Hisself-adjoint — |(H—2)"Y = Tt (2, o (1)) — trivial pseudospectrum




Pseudospectra and PJ-symmetry

[work in progress with Siegl and Tater]

o.(H):={z€C ’ [(H—2)"t >e 1} [Trefethen, Embree 2005], [Davies 2007]

1
o Hisself-adjoint — |(H—2)"Y = Tt (2, o (1)) — trivial pseudospectrum

e For non-self-adjoint operators, pseudospectra more relevant than spectra !



Pseudospectra and PJ-symmetry

[work in progress with Siegl and Tater]

o.(H):={z€C ’ [(H—2)"t >e 1} [Trefethen, Embree 2005], [Davies 2007]

1
o Hisself-adjoint — |(H—2)"Y = Tt (2, o (1)) — trivial pseudospectrum

e For non-self-adjoint operators, pseudospectra more relevant than spectra !

e 0.(H)= U o(H+V) = spectral instabilities
IVil<e



Pseudospectra and PJ-symmetry

[work in progress with Siegl and Tater]

o.(H) := {z cC ’ |(H — 2)7 | > 8_1} [Trefethen, Embree 2005], [Davies 2007]

1
H is self-adjoint = |[(H—2)"1| = Tt (2, o (1)) — trivial pseudospectrum

For non-self-adjoint operators, pseudospectra more relevant than spectra !

o-(H) = U o(H+V) = spectral instabilities
IVI<e

d metric = trivial pseudospectrum
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Conclusions

Ad PT-symmetry :

— no extension of QM
— rather an alternative (quasi-Hermitian) representation
— overlooked for over 70 years

i some rigorous treatments still missing !

Ad our model:

— shamefully simple
— closed fomulae for the spectrum, metric operator, self-adjoint counterpart, etc.
— rigorous treatment

i physical relevance !

Ad ix3:
i metric operator does not exist !

(bad basicity properties, non-trivial pseudospectrum, spectral instabilities)



Collection of open problems
ESF exploratory workshop on
Mathematical aspects of the physics with

non-self-adjoint operators

30 August - 3 September 2010
Prague, Czech Republic

http://www.ujf.cas.cz/ESFxNSA/

LIROP&EAN Studying non-self-adjoint
CIENCE operators is like being a
—OLUNDATION vet rather than a doctor:

SETTING SCIENCE AGENDAS FOR EUROPE .
one has to acquire a much

wider range of knowledge,
and to accept that one

cannot expect to have as
high a rate of success
when confronted with

particular cases.

Doppler Institute

E. B. Davies 2007

St
Rty

Imaginary numbers 1954 by Y. Tanguy

Convenors:  J.-P. Gazeau (Paris), D. Krejcirik (Prague), P. Siegl (Prague)

Some of the open problems also available in Integral Equations Operator Theory.
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