Landau-Zener-Stueckelberg interferometry in PT-symmetric optical waveguides

Luis Morales-Molina, Sebastián A. Reyes, Fabián Olivares

Facultad de Física, Pontificia Universidad Católica de Chile

Outline

- Motivation:
 - PT-symmetry
 - Optical waveguides
- The Model
 - Forced Schrödinger equation
 - Effective two level system
 - Driven two level system
- Landau-Zener-Stückelberg
 - Non-symmetric Landau-Zener-Stückelberg interferometry
 - Results
- Conclusions

PT-symmetric hamiltonians

- Conventionally we require Hermiticity to ensure that the Hamiltonian has real spectrum and unitary evolution.

- If we require instead *PT*-symmetry invariance, we can also have real spectrum and unitary evolution.

Bender and Boettcher, PRL (1998) Bender, Rep. Prog. Phys. (2007)

Optical waveguides

In the scalar and paraxial approximation the equations for wave propagation look exactly like the Schrödinger equation.

$$i\lambda\partial_Z\psi = -\frac{\lambda^2}{2n_s}\frac{\partial^2\psi}{\partial x^2} + U(x)\psi - F(Z)x\psi \equiv \mathcal{H}_0\psi - F(Z)x\psi$$

$$\lambda = \lambda/2\pi \qquad x = X - X_0(Z)$$

$$U(x) \approx n_s - n(x)$$

$$F(Z) = -n_s \ddot{X}_0(Z)$$

Optical waveguides

Engineered photonic waveguides can be used as a classical analog of QM.

For example, a quantum particle bouncing under the effect of gravity can be visualized on a curved array of waveguides.

S. Longhi, Laser & Photon. Rev. (2009)

Observation of parity-time symmetry in optics

Christian E. Rüter¹, Konstantinos G. Makris², Ramy El-Ganainy², Demetrios N. Christodoulides², Mordechai Segev³ and Detlef Kip¹*

ARTICLE

doi:10.1038/nature11298

Parity-time synthetic photonic lattices

Alois Regensburger^{1,2}, Christoph Bersch^{1,2}, Mohammad-Ali Miri³, Georgy Onishchukov², Demetrios N. Christodoulides³ & Ulf Peschel¹

PT-symmetric lattice

By appropriately tayloring the gain and loss regions a PT-symmetric lattice may be realized.

$$U(x) = U_1 \cos(2\pi x/a) + iU_2 \sin(2\pi x/a)$$

Eigenvalues of H_0 are real for: $U_2 < U_2^{crit}$

PT-symmetric lattice

A sinusoidal curvature along the propagation direction mimics an AC field.

$$X_0(Z) = A\cos(2\pi Z/\Lambda)$$

$$\bigcup$$

$$F(Z) = n_s A \omega^2 \cos(\omega Z)$$

$$\omega = 2\pi/\Lambda$$
(Alternate driving "field")

Driving around a level "crossing"

$$q(Z) = q_0 + n_s A\omega \sin(\omega Z)$$

Evolution of the quasimomentum under the AC driving.

We can study LZS interferometry!

Driven two level system

Schevchenko et. al. Phys. Rep. (2010)

$$H = \frac{1}{2} \begin{pmatrix} \epsilon(t) & \Delta \\ \Delta & -\epsilon(t) \end{pmatrix}$$

$$\epsilon(t) = \beta t$$

(Landau-Zener) $P_{LZ} = \exp[-\pi \Delta^2/2\beta]$

$$\epsilon(t) = A\sin(\omega t + \phi)$$

(Landau-Zener-Stüeckelberg)

Driving around an anticrossing

Near the level crossing we can find an effective TLS:

$$H = \frac{1}{2} \begin{pmatrix} \epsilon & \Delta + \delta \\ \Delta - \delta & -\epsilon \end{pmatrix}$$

(It is non-symmetric!)

$$\Delta = 2V_1 \qquad \delta = 2V_2$$
$$E_{\pm} = \pm \frac{1}{2}\sqrt{\epsilon^2 + (\Delta^2 - \delta^2)}$$

An analytical aproximation can be obtained using the adiabaticimpulse model.

$$\mathbf{b}(t_{a}) = e^{-i\sigma_{z}\zeta(t_{a})}Ne^{-i\sigma_{z}\zeta(t_{a})}\mathbf{b}(-t_{a})$$

$$N = \begin{pmatrix} \sqrt{\frac{\Delta+\delta}{\Delta-\delta}}\sqrt{1-P_{LZ}} e^{-i\varphi_S} & \sqrt{P_{LZ}} \\ -\sqrt{P_{LZ}} & \sqrt{\frac{\Delta-\delta}{\Delta+\delta}}\sqrt{1-P_{LZ}} e^{i\varphi_S} \end{pmatrix}$$

The system is prepared in the ground state and then driven several times through the avoided level crossing. We obtain the following analytical results:

$$P_{+}^{even}(n) = 4 \underbrace{\left(\frac{\Delta - \delta}{\Delta + \delta}\right)} P_{LZ}(1 - P_{LZ}) \sin^2(\Phi_{St}) \frac{\sin^2(n\phi)}{\sin^2(\phi)}$$
$$P_{+}^{odd}(n) = 2Q_1 \frac{\sin^2(n\phi)}{\sin^2(\phi)} - Q_2 \frac{\sin(2n\phi)}{\sin(\phi)} + P_{LZ}\cos(2n\phi)$$

$$P_{LZ} = e^{-2\pi\gamma} \qquad \gamma = (\Delta^2 - \delta^2)/4v$$

SR, L. Morales-Molina and F. Olivares, to appear in J. Phys. A.

Critical limits:

$$\frac{\delta \to \Delta}{P_{+}^{even}(n) = 0}$$

$$P_{+}^{odd}(n) = 1$$

$$\delta \to -\Delta$$

$$P_{+}^{even}(n) = \frac{8\pi\Delta^2}{v} \sin^2(\Phi_{St}) \frac{\sin^2(n(\zeta_{12} + \zeta_{45} - \zeta_{24}))}{\sin^2(\zeta_{12} + \zeta_{45} - \zeta_{24})}$$

$$P_{+}^{odd}(n) = 1.$$

SR, L. Morales-Molina and F. Olivares, to appear in J. Phys. A.

Results compare very well with numerical simulations of the full system.

$$\epsilon_{0} = 0, \ \tilde{A} = 2, \ \tilde{\omega} = 0.02 \text{ and } \Delta = 2V_{1} = 0.2$$

$$e_{0} = 0, \ \tilde{A} = 2, \ \tilde{\omega} = 0.02 \text{ and } \Delta = 2V_{1} = 0.2$$

$$e_{0} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0.1$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0$$

$$e_{0} = 0, \ \tilde{A} = 2V_{2} = 0$$

Results compare very well with numerical simulations of the full system.

Summary

- Engineered photonic waveguides can be used as classical analogues of *PT*-symmetric quantum mechanics.
- We study LZS transitions on a PT-symmetric optical lattice.
- Analytical calculations are possible for a non-symmetric two level system.
- The results reveal that the imaginary part of the potential δ , opens new possibilities for the control of the resulting mode energy.
- Can be used also for discrete systems...

Thank you!

$$\psi_q(x, Z) = \sum_l a_q^l(Z) \,\mathrm{e}^{\mathrm{i}(2kl+q)x}$$

$$i\frac{\partial a_q^l}{\partial z} = (2l + \tilde{q})^2 a_q^l + (V_1 + V_2)a_q^{l+1} + (V_1 - V_2)a_q^{l-1}$$

$$\cos\phi = (1 - P_{LZ})\cos(\zeta_{15} + 2\varphi_S) + P_{LZ}\cos(\zeta_{12} + \zeta_{45} - \zeta_{24})$$

 $Q_1 = P_{LZ} \left[P_{LZ} \sin^2(\zeta_{12} + \zeta_{45} - \zeta_{24}) + (1 - P_{LZ})(1 - \cos(\zeta_{15} + 2\phi_S)\cos(\zeta_{12} + \zeta_{45} - \zeta_{24})) \right]$

$$Q_2 = 2P_{LZ}(1 - P_{LZ})\sin(\varphi_S + \zeta_{12} + \zeta_{45})\sin(\varphi_S + \zeta_{24})$$