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Schrodinger equation with complex Hamiltonian
ihdpp = [H —if |y
A, T hermitian, e.g., complex potential V(x), damping —yh2A

2
H= —%A +ReV(x) T =—4iA+ImV(x)

||| not conserved: modelling open systems, loss and gain.
e scattering resonances: complex scaling, absorbing potentials

e spectrum and pseudo-spectrum, PT symmetric operators

optical waveguides with absorbing and active materials, PT
symmetric waveguides

What type of classical dynamics emerges in the limit 7 — 07
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Semiclassical limit if ' = 0: WKB vs Ehrenfest
WKB : ¢(t,x) = a(t,x)e%s(t’x) insert in Schrodinger:
e 0:5(t,x)+ H(VS(t,x),x) =0, Hamilton Jacobi, solved using
Hamiltonian trajectories:

i—avha), a=(] ) =a W

e transport equation along (1) for a(t, x)

Ehrenfest theorem: 1(x), ¥(§) localised near g and p, then

(¥(t), py(1)) (¥(t), x1(t))

Z(t) = (P(t)> Q(t))v P(t) = Hw(t)HZ ’ Hl/)(t)H2

Q(t) :=

satisfies (1) approximately.
If I # 0: complex trajectories from (1), but Z(t) € R" x R"
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Coherent states and their geometry

1/4 .
¥Z(x) = (detim B)Y% i (@3- 0) Bx-Q)

2

(ﬂ.h)n/4
o Z=(P,Q) e R" xR", B € M,(C) symmetric, ImB > 0
e Wignerfunction
1 1
Wi(z) = —#(z2-2)-Gp(z—2)
(2) =GRt

o= (s ("8 )G %)

Expectation values and variance:

(A)y = A(Z)+0(h)  (AA) = ZVA(Z)-G;VA(Z)—FO(??)

G symplectic metric: GgQQGg = (Q, @ pure state with minimal
uncertainty.
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Coherent states: Background and Applications

Schrodinger '27: Follow classical trajectories for harmonic
oscillator
Ground state of harmonic oscillator: approximate groundstate
of anharmonic oscillator, normal forms
Gaussian beams, Babich et.al.
Time evolution if ' = 0: Hepp '74, Heller '74, Maslov '70’s,
Hagedorn '80, Combescure Robert '97, ... : If Z(t) satisfies
Hamiltons equations then

Wt x) = en” Oy 2 (x) + 0p2(Vh) |
where B(t) is related to linearized flow around Z(t).
Wide applications in chemistry: expansion into coherent
states, Initial value representations (IVR's), Herman Kluk
propagator, etc
Numerical propagation schemes: Lubich '09, Runborg, ...
Pseudo-spectrum: Dencker, Sjostrand and Zworski '04
(following Hormander)
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Non-Hermitian Ehrenfest Theorem: coherent states

_a@)
W(t,z) ~ & o H(z=20)6(0)-2()

(mh)"

up to O(Vh), if
Z=QVH(Z)-G VI (2)
G = H"(2)QG — GQH"(2)+T"(Z) — GQTT"(2)QG
a=2I(2Z) + gtr[r"(Z)Gfl]

e Expand H(z),T(z) up to second order around z = Z(t)
(following Hermitian case). Exact if H,I quadratic.

e Hamiltonian and gradient part of dynamics of Z(t), coupled
dynamics for Z(t) and metric G(t)
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Complex structures and complex phase space

Example: Anharmonic oscillator with damping
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Figure: Normalised exact Wigner function (top row) and the semiclassical
approximation (bottom row) at different times (t = 0, 1, 2.5, 4). The
white line shows the motion of the center.
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Example: Damped Harmonic Oscillator
Let @ € C with |a| =1 and Ima,Rea > 0, w > 0, and take

H—if = >

p? +

N | S
ASTRS

(wRea)t Im a(Rea) ™1 i< 2 <ol
Ima(Rea) ™ w[Rea + Ima(Rea) 2] '
with G = 0, and an attractor, and

Then G = (

P=-uw*Q-2wlmaP, Q=P
hence we get the underdamped oscillator

O+2wlmaQ+w2Q:O, 0<Imax<l1
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Relation to complex trajectories: Quadratic case:
(detIm B)Y/4
(Wh)"/4

e Exner '83, Hormander '95: H quadratic, then
P(t,x) = e%”(t)wz(t?(x), z(t) complex Hamiltonian trajectory

PB(x) = erP—+36=a)Be—al  ; _ (p g) € C"xC"

e Complex Structure:
Ji=-QGg, S=-I

e Heller, Huber, Littlejohn '88; Graefe, RS '12: complex centre
z equivalent to real centre Z =Rez + JImz.

Y7 (x) = Gz (x)

o Graefe, RS "12: If z(t) complex Hamiltonian trajectory, then
Z(t) = Rez(t) + J(t) Im z(t) is Ehrenfest trajectory.
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Relation to complex trajectories: general case

propagated state: ¥(t,x) = a(t’x)e%S(t,x).

9S(t,x) + H(VS(t,x),x) —il(VS(t,x),x) =0

a(t, x) satisfies transport equation. Expectation values

(1), Ad(E)) = / AVS (2, ), x)a(t, x) 2o 2 ™S9 dx 4 O(h)
= [ (t)I*PA(Z(t)) + O(h)
main contribution from stationary point Q(t):
VIimS(t,Q(t)) =0, then P(t):=VS(t,Q(t)) e R"
and Z(t) == (P(t), Q(t)) € R x R satisfies

Z =QVH(Z)-Gz'VI(Z), with Gg defined by B(t) = S"(t, Q(t))



Conclusions

Summary and Outlook

We studied Schrodinger equation with non-Hermitian
Hamiltonian A — if .
Two different semiclassical dynamics emerging:

e Ehrenfest Theorem: Mixed Hamiltonian and gradient flow with

coupled time dependent metric.

e Hamilton-Jacobi: Hamiltonian flow in complex phase space
Relation given by projection using complex structure
J=-QG:

i—J
Open problems:

e Accurate remainder estimates: suitable function spaces and
a-priori estimates.
e Explore underlying complex symplectic geometry.
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