▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Non-Hermitian propagation of coherent states

Roman Schubert Bristol Joint work with E.M. Graefe, Imperial

PHHQP XI, Paris 2012

- E. M. Graefe, M. Höning, and H. J. Korsch: J. Phys. A 43 (2010) 075306
- Graefe, RS: Phys. Rev. A 83 (2011), 060101.
- Graefe, RS: J. Phys. A 45 (2012) 244033

Schrödinger equation with complex Hamiltonian

 $\mathrm{i}\hbar\partial_t\psi=[\hat{H}-\mathrm{i}\hat{\Gamma}]\psi$

 \hat{H} , $\hat{\Gamma}$ hermitian, e.g., complex potential V(x), damping $-\gamma\hbar^2\Delta$

$$\hat{\mathcal{H}} = -\frac{\hbar^2}{2m}\Delta + \operatorname{Re}V(x)$$
 $\hat{\Gamma} = -\gamma\hbar^2\Delta + \operatorname{Im}V(x)$

- $\|\psi\|$ not conserved: modelling open systems, loss and gain.
- scattering resonances: complex scaling, absorbing potentials
- spectrum and pseudo-spectrum, PT symmetric operators
- optical waveguides with absorbing and active materials, *PT* symmetric waveguides

What type of classical dynamics emerges in the limit $\hbar \to 0 \ref{eq:holdsystem}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Semiclassical limit if $\Gamma = 0$: WKB vs Ehrenfest

WKB: $\psi(t,x) = a(t,x)e^{\frac{i}{\hbar}S(t,x)}$ insert in Schrödinger:

∂_tS(t,x) + H(∇S(t,x),x) = 0, Hamilton Jacobi, solved using Hamiltonian trajectories:

$$\dot{z} = \Omega \nabla H(z)$$
, $\Omega = \begin{pmatrix} 0 & -l \\ l & 0 \end{pmatrix}$ $z = (p, q)$ (1)

• transport equation along (1) for a(t, x)Ehrenfest theorem: $\psi(x)$, $\hat{\psi}(\xi)$ localised near q and p, then

$$Z(t)=\left(extsf{P}(t), Q(t)
ight), \quad P(t):=rac{\langle\psi(t), \hat{p}\psi(t)
angle}{\|\psi(t)\|^2}, \quad Q(t):=rac{\langle\psi(t), imes\psi(t)
angle}{\|\psi(t)\|^2}$$

satisfies (1) approximately. If $\Gamma \neq 0$: complex trajectories from (1), but $Z(t) \in \mathbb{R}^n \times \mathbb{R}^n$

Coherent states and their geometry

$$\psi_Z^{\mathcal{B}}(x) = \frac{(\det \operatorname{Im} \mathcal{B})^{1/4}}{(\pi\hbar)^{n/4}} e^{\frac{i}{\hbar}[\mathcal{P} \cdot (x-Q) + \frac{1}{2}(x-Q) \cdot \mathcal{B}(x-Q)]}$$

- $Z = (P, Q) \in \mathbb{R}^n \times \mathbb{R}^n$, $B \in M_n(\mathbb{C})$ symmetric, Im B > 0
- Wignerfunction

$$W(z) = rac{1}{(\pi\hbar)^n} \mathrm{e}^{-rac{1}{\hbar}(z-Z)\cdot G_B(z-Z)}$$

• $G_B = \begin{pmatrix} I & 0 \\ -\operatorname{Re} B & I \end{pmatrix} \begin{pmatrix} (\operatorname{Im} B)^{-1} & 0 \\ 0 & \operatorname{Im} B \end{pmatrix} \begin{pmatrix} I & -\operatorname{Re} B \\ 0 & I \end{pmatrix}$

• Expectation values and variance:

$$\langle \hat{A} \rangle_{\psi} = A(Z) + O(\hbar) \quad (\Delta \hat{A})^2_{\psi} = \frac{\hbar}{2} \nabla A(Z) \cdot G_B^{-1} \nabla A(Z) + O(\hbar^2)$$

• *G* symplectic metric: $G_B\Omega G_B = \Omega$, ψ pure state with minimal uncertainty.

Coherent states: Background and Applications

- Schrödinger '27: Follow classical trajectories for harmonic oscillator
- Ground state of harmonic oscillator: approximate groundstate of anharmonic oscillator, normal forms
- Gaussian beams, Babich et.al.
- Time evolution if $\Gamma = 0$: Hepp '74, Heller '74, Maslov '70's, Hagedorn '80, Combescure Robert '97, ... : If Z(t) satisfies Hamiltons equations then

 $\psi(t,x) = \mathrm{e}^{\frac{\mathrm{i}}{\hbar}\sigma(t)}\psi^{B(t)}_{Z(t)}(x) + O_{L^2}(\sqrt{\hbar}) \ ,$

where B(t) is related to linearized flow around Z(t).

- Wide applications in chemistry: expansion into coherent states, Initial value representations (IVR's), Herman Kluk propagator, etc
- Numerical propagation schemes: Lubich '09, Runborg, ...
- Pseudo-spectrum: Dencker, Sjöstrand and Zworski '04 (following Hörmander)

Non-Hermitian Ehrenfest Theorem: coherent states

$$W(t,z) \approx rac{\mathrm{e}^{-rac{lpha(t)}{\hbar}}}{(\pi\hbar)^n} \mathrm{e}^{-rac{1}{\hbar}(z-Z(t))\cdot G(t)(z-Z(t))}$$

up to $O(\sqrt{\hbar})$, if

$$\dot{Z} = \Omega \nabla H(Z) - G^{-1} \nabla \Gamma(Z)$$

$$\dot{G} = H''(Z)\Omega G - G\Omega H''(Z) + \Gamma''(Z) - G\Omega^{T} \Gamma''(Z)\Omega G$$

$$\dot{\alpha} = 2\Gamma(Z) + \frac{\hbar}{2} \operatorname{tr}[\Gamma''(Z)G^{-1}]$$

- Expand H(z), Γ(z) up to second order around z = Z(t) (following Hermitian case). Exact if H, Γ quadratic.
- Hamiltonian and gradient part of dynamics of Z(t), coupled dynamics for Z(t) and metric G(t)

Example: Anharmonic oscillator with damping

Figure: Normalised exact Wigner function (top row) and the semiclassical approximation (bottom row) at different times (t = 0, 1, 2.5, 4). The white line shows the motion of the center.

$$H = \frac{1}{2}(p^2 + q^2) + \frac{1}{8}q^4, \quad \Gamma = \frac{1}{10}(p^2 + q^2), \quad \hbar = 1$$

Example: Damped Harmonic Oscillator

Let $\alpha \in \mathbb{C}$ with $|\alpha| = 1$ and $\operatorname{Im} \alpha, \operatorname{Re} \alpha > 0$, $\omega > 0$, and take

$$\hat{H} - \mathrm{i}\hat{\Gamma} = \frac{\bar{\alpha}^2}{2}\hat{p}^2 + \frac{\omega}{2}\hat{q}^2$$

Then $G = \begin{pmatrix} (\omega \operatorname{Re} \alpha)^{-1} & \operatorname{Im} \alpha (\operatorname{Re} \alpha)^{-1} \\ \operatorname{Im} \alpha (\operatorname{Re} \alpha)^{-1} & \omega [\operatorname{Re} \alpha + \operatorname{Im} \alpha (\operatorname{Re} \alpha)^{-2}] \end{pmatrix}$ is a sol. with $\dot{G} = 0$, and an attractor, and

$$\dot{P}=-\omega^2 Q-2\omega\,{
m Im}\,lpha\,\,P\,\,,\,\,\,\,\,\dot{Q}=P$$

hence we get the underdamped oscillator

$$\ddot{Q} + 2\omega \ln lpha \, \dot{Q} + \omega^2 Q = 0 \;, \quad 0 \leq \ln lpha < 1$$

Relation to complex trajectories: Quadratic case:

$$\psi_z^B(x) = \frac{(\det \operatorname{Im} B)^{1/4}}{(\pi\hbar)^{n/4}} e^{\frac{i}{\hbar}[p \cdot (x-q) + \frac{1}{2}(x-q) \cdot B(x-q)]} , \quad z = (p,q) \in \mathbb{C}^n \times \mathbb{C}^n$$

- Exner '83, Hörmander '95: *H* quadratic, then $\psi(t, x) = e^{\frac{i}{\hbar}\sigma(t)}\psi_{z(t)}^{B(t)}(x)$, z(t) complex Hamiltonian trajectory
- Complex Structure:

$$J:=-\Omega G_B, \qquad J^2=-I$$

Heller, Huber, Littlejohn '88; Graefe, RS '12: complex centre z equivalent to real centre Z = Re z + J Im z.

$$\psi_z^B(x) = C_z \psi_Z^B(x)$$

• Graefe, RS '12: If z(t) complex Hamiltonian trajectory, then $Z(t) = \operatorname{Re} z(t) + J(t) \operatorname{Im} z(t)$ is Ehrenfest trajectory.

Relation to complex trajectories: general case propagated state: $\psi(t, x) = a(t, x)e^{\frac{i}{\hbar}S(t, x)}$.

 $\partial S(t,x) + H(\nabla S(t,x),x) - i\Gamma(\nabla S(t,x),x) = 0$

a(t, x) satisfies transport equation. Expectation values

$$egin{aligned} &\langle\psi(t),\hat{A}\psi(t)
angle &= \int A(
abla S(t,x),x)|a(t,x)|^2 \mathrm{e}^{-rac{2}{\hbar}\ln S(t,x)}\,\mathrm{d}x + O(\hbar) \ &= \|\psi(t)\|^2 A(Z(t)) + O(\hbar) \end{aligned}$$

main contribution from stationary point Q(t):

 $abla \operatorname{\mathsf{Im}} S(t,Q(t)) = 0$, then $P(t) :=
abla S(t,Q(t)) \in \mathbb{R}^n$

and $Z(t) := (P(t), Q(t)) \in \mathbb{R}^n \times \mathbb{R}^n$ satisfies

 $\dot{Z} = \Omega
abla H(Z) - G_B^{-1}
abla \Gamma(Z)$, with G_B defined by B(t) = S''(t, Q(t))

Conclusions

Summary and Outlook

- We studied Schrödinger equation with non-Hermitian Hamiltonian $\hat{H} i\hat{\Gamma}$.
- Two different semiclassical dynamics emerging:
 - Ehrenfest Theorem: Mixed Hamiltonian and gradient flow with coupled time dependent metric.
 - Hamilton-Jacobi: Hamiltonian flow in complex phase space
- Relation given by projection using complex structure $J = -\Omega G$:

 $i \rightarrow J$

- Open problems:
 - Accurate remainder estimates: suitable function spaces and a-priori estimates.
 - Explore underlying complex symplectic geometry.