
Weak and generalized Weyl form of the
commutation relation for unbounded operators

Camillo Trapani

Dipartimento di Matematica e Informatica, Università di Palermo, Italy
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Motivations

The commutator algebra of operators representing observables plays an important role

in QM

These operators are usually unbounded. This fact poses several problems for a correct

mathematical formulation of these notions.

Let A, B be unbounded operators in Hilbert sp.

. AB = BA can be meaningless

. strong commutation for selfadjoint operators

. Nelson’s example

. Weak commutation

. Commutators [A,B] := AB − BA can be meaningless too

. Weyl commutation relations

. Weak form of commutators
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When do A,B commute?

Many possible cases:

A,B bounded operators in H: clear
A,B self-adjoint unbounded : strong commutation

Commutation of spectral families {EA(λ)}, {EB (µ)}, λ, µ ∈ R
Commutation of the unitary groups UA(t) := e iAt , UB (s) := e iBs

Commutation of resolvent functions (A− λI )−1 ^ (B − µI )−1,
λ ∈ ρ(A), µ ∈ ρ(B).

A,B ∈ L†(D)

L†(D) := {closable A : AD ⊆ D; A∗D ⊆ D}

*-algebra ⇒ AB = BA well defined.

But Nelson’s example A,B ∈ L†(D)
A,B essentially selfadjoint (closures are selfadjoint)
ABξ = BAξ for every ξ ∈ D
but spectral families do not commute!
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In hermitian QM strong commutation is a natural concept

Probabilistic interpretation of the spectral measure:

EA(·) spectral family of A

Prob{(A, ψ) ∈ ∆} =
∫

∆
d〈EA(λ)ψ|ψ〉

Existence of joint probability distribution:

If A,B commute strongly

⇒ EA(·)EB (·) spectral measure on the plane

EA(·)EB (·) gives the joint probability distribution (A and B can be
measured simultaneously).

In nonhermitian QM ???
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Case of partial O*-algebras

A,B ∈ L†(D,H) = {closable A : D(A) = D, D(A∗) ⊃ D}

A† := A∗ � D.

Partial *-algebra w. r. to weak product � : [Antoine, Karwowski]

A�B exists iff

{
B : D → D(A†∗)
A† : D → D(B∗)

and (A�B)ξ = A†∗Bξ, ∀ξ ∈ D.

A � B = B � A: OK algebraically, same problems as before.
Moreover technically complicated.

WEAK COMMUTATION: easier to handle

〈Bξ|A†η〉 = 〈Aξ|B†η〉, ∀ξ, η ∈ D

See J.-P. Antoine, A. Inoue, C. Trapani, Partial *-algebras and their operator

realizations, Kluwer 2002.
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Commutators

In B(H), [A,B] = AB − BA well-defined bounded operator.

The map (A,B)→ [A,B] makes of B(H) a Banach Lie algebra:
everything works fine therein!

But representations of Lie algebras involve, in general unbounded
operators!

In L†(D), [A,B] is well-defined, but . . .

regularity, i.e. integrability is not guaranteed (Schmüdgen).

Even worse in L†(D,H)!
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Even worse in L†(D,H)!

6 / 25



Commutators

In B(H), [A,B] = AB − BA well-defined bounded operator.

The map (A,B)→ [A,B] makes of B(H) a Banach Lie algebra:
everything works fine therein!

But representations of Lie algebras involve, in general unbounded
operators!

In L†(D), [A,B] is well-defined, but . . .

regularity, i.e. integrability is not guaranteed (Schmüdgen).
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Even worse in L†(D,H)!

6 / 25



Commutators

In B(H), [A,B] = AB − BA well-defined bounded operator.

The map (A,B)→ [A,B] makes of B(H) a Banach Lie algebra:
everything works fine therein!

But representations of Lie algebras involve, in general unbounded
operators!

In L†(D), [A,B] is well-defined, but . . .

regularity, i.e. integrability is not guaranteed (Schmüdgen).
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Canonical commutation relations (CCR)

Heisenberg Lie Algebra h: generated by three elements a, b, c ∈ h whose
Lie brackets are defined by

[a, b] = c [a, c] = [b, c] = 0

A representation of h linear map π : h→ operator space such that

[π(a), π(b)] = π(c) =: 11 identity operator .

Theorem

(Wiener, Wielandt, von Neumann) There exists no bounded
representation of the Heisenberg algebra.
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Schrödinger representation

Domain: S(R) ⊂ L2(R). Define operators (annihilation , creation)

Af =
1√
2

(xf + Dx f ) and A†f =
1√
2

(xf − Dx f )

Then AA†f − A†Af = f , ∀f ∈ S(R)

σ(A†A) = N , number operator

Theorem

(Stone, von Neumann) Any integrable representation π of the Heisenberg
Lie algebra is unitarily equivalent to the Schrödinger repr.

Integrability: ∃ connected and simply connected Lie group G and a unitary

representation U of G such that π = dU.
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A more general set-up

Problem

Study of operators A,B such that B 6= A† and [A,B] = 11 in some sense
(Bagarello, Inoue, CT 2011, 2012)

• Bagarello’s pseudo-bosons

• nonintegrable repr. of CCR.

A,B closed operators, dense domains D(A) and D(B) in H.

To give a meaning to AB −BA = 11 we suppose ∃ a dense subspace D of H such that

(D.1) D ⊂ D(AB) ∩ D(BA) [D(AB) = {ξ ∈ D(B) : Bξ ∈ D(A)}].
(D.2) ABξ − BAξ = ξ, ∀ξ ∈ D.

(D.3) D ⊂ D(A∗) ∩ D(B∗).
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Then S := A � D and T := B � D belong to (partial *-algebra) L†(D,H)
and satisfy

〈T ξ|S†η〉 − 〈Sξ|T †η〉 = 〈ξ|η〉, ∀ξ, η ∈ D.

The study of this commutation relation is our main matter.

Particular cases: S and/or T are generators of some weakly continuous
semigroup V (t) of bdd operators.

X0 ∈ L†(D,H) is the D-generator of V (t) if

lim
t→0
〈V (t)− 11

t
ξ|η〉 = 〈X0ξ|η〉, ∀ξ, η ∈ D.
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Various notions

Definition

Let S ,T ∈ L†(D,H). We say that the c. r. [S ,T ] = 11D holds

(CR.1) in L†(D,H) if, S � T well-defined ⇒ T � S well-defined too and
S � T − T � S = 11D;

(CR.2) in weak sense if

〈Tξ|S†η〉 − 〈Sξ|T †η〉 = 〈ξ|η〉, ∀ξ, η ∈ D;

(CR.3) in quasi-strong sense if S is the D-generator of a w-continuous semigr. of bdd
operators VS (α) and

〈VS (α)Tξ|η〉 − 〈VS (α)ξ|T †η〉 = α〈VS (α)ξ|η〉, ∀ξ, η ∈ D, ∀α > 0;

(CR.4) in strong sense if S and T are D-generators of w-continuous semigr. of bdd
operators VS (α),VT (β) satisfying the generalized Weyl c.r.

VS (α)VT (β) = eαβVT (β)VS (α), ∀α, β > 0.
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(CR.4) ⇒ (CR.3) ⇒ (CR.2) ⇒ (CR.1).

Implications in the other direction: FALSE:

Example

∃ two essentially selfadjoint operators P,Q with common invariant
dense domain D such that PQξ − QPξ = −iξ, for ξ ∈ D, but the
unitary groups UP (t),UQ(s) generated by P, Q do not satisfy the
Weyl commutation relation UP (t)UQ(s) = e itsUQ(s)UP (t), s, t ∈ R.
(Fulgede, Schmüdgen).
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Existence of eigenvectors

Parallel to the case [A,A†] = 11 when a vacuum ξ0 exists: Aξ0 = 0

S ,T ∈ L†(D,H), satisfy [S ,T ] = 11D in weak sense.

Assume:
• ∃ a vector 0 6= ξ0 ∈ D such that Sξ0 = 0.
• T kξ0 ∈ D, k 6 n
Consider the operators

N := TS†∗, N] : S†∗T .

N acts as number operator on a subspace N0 of H.

(i) T nξ0 is an eigenvector of N = TS†∗ with eigenvalue n;

(ii) T n−1ξ0 is eigenvector of N] = S†∗T with eigenvalue n.
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The largest n for which T nξ0 ∈ D may be finite or infinite.
N0 := lspan{ξ0,T ξ0, . . .T

nξ0}.
N := TS†∗ leaves N0 invariant.

point spectrum: σp(N0) = {0, 1, . . . , n} in N0, n ∈ N ∪ {∞} =
largest natural number s.t. T ξ0,T

2ξ0, . . .T
n−1ξ0 all belong to D.

Each eigenvalue is simple (in N0).

ST kξ − (T †∗)k Sξ = kT k−1ξ, k 6 n.
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Examples

Hilbert space L2(R,wdx); the weight w∈ C 1(R), w > 0, s.t.

lim|x|→+∞ w(x) = 0;∫
R w(x)dx <∞.

D(p) =

{
f ∈ L2(R,wdx) : ∃g ∈ L2(R,wdx), f (x) =

∫ x

−∞
g(t)dt

}
.

Shortly, f ′(x) := g(x), for f ∈ D(p).

D(q) = {f ∈ L2(R,wdx) : xf (x) ∈ L2(R,wdx)}.

D := D(q) ∩ D(p). Define

(Sf )(x) = f ′(x), (Tf )(x) = xf (x), f ∈ D

Both map D into L2(R,wdx). T is symmetric in D.
Formally

(S∗g)(x) = −g ′(x)− g(x)
w ′(x)

w(x)
.

If w ′/w ∈ L∞(R), S ∈ L†(D,H) and [S ,T ] = 11D (weak sense).

Make some particular choices for w
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w(x) = wα(x) = (1 + x4)−α, α > 3
4 u0(x) = 1, is in L2(R,wαdx) for

α > 3
4 . It satisfies Su0 = 0

The largest n for which T nu0 belongs to D satisfies
n < 2α− 3

2 . ⇒ dimN0 is
[
2α− 3

2

]
+ 1.

w(x) = e−x2/2 D = all polynomials in x .

The functions uk (x) = xk , k = 1, 2, . . . , belong to D and
TS†∗uk = kuk for every k ∈ N.
The subspace N0 coincides in this case with D.
Every complex number λ with <λ > − 1

2 is an eigenvalue
of N = TS†∗; but the corresponding eigenvector is in D if
and only if <λ is a natural number.
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Remarks

The subspace N0 spanned by {T kξ0, k ∈ N} can be finite dimensional.

Thus N := (TS†∗)0 is a bounded symmetric operator on N0
∼= Cn,

having the numbers 0, 1, . . . , n as eigenvalues.

Hence N is positive and thus ∃ an operator C ∈ B(N ) such that
N = C †C . None of the possible solutions of this operator equation can,
however, satisfy the commutation relation [C ,C †] = 11, due to Wiener
-Wielandt - von Neumann theorem.

If N0 is infinite dimensional then N may fail to be symmetric, as the last
example shows.
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Intertwining operators

[S ,T ] = 11D (weak sense) ⇒ [T †,S†] = 11D (weak sense).

Assume ∃ also 0 6= η0 ∈ D s. t. T †η0 = 0
S†η0, (S†)2η0, . . . (S†)m−1η0 all belong to D.

Consider

M := S†T ∗, M] := T ∗S†.

M is a number operator on some subspace M0

m ∈ N ∪ {∞} := largest number satisfying assumptions

σp(M) = {0, 1, . . . ,m}

Any relation between n and m? No, in general.
Indeed, the operators S,T considered in the second case of the Example one finds

n =∞ and m = 0.
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Assume n = m =∞.

ξk := 1√
k!

T kξ0, k = 1, . . . , n ηr := 1√
r !

(S†)rη0, r = 1, . . . ,m.
Choose normalization of ξ0 and η0 s.t. 〈ξ0|η0〉 = 1.

Fξ := {ξk} and Fη := {ηr} are biorthogonal: 〈ξi |ηj〉 = δi,j , ∀i , j ∈ N.

Define intertwining operators:
Kξ(ηj ) = ξj , j ∈ N Kη(ξj ) = ηj , j ∈ N.
Kη = K−1

ξ , both unbounded in general; they obey intertwining relations:

Kη Nφ = M Kηφ, ∀φ ∈M0;

Kξ Mψ = N Kξψ, ∀ψ ∈ N0.

If N0 =M0 = H and Kξ, Kη bounded, then Fξ and Fη are Riesz bases of H:
∃ c,C > 0 such that

c
∑

j

|aj |2 6

∥∥∥∥∥∑
j

ajξj

∥∥∥∥∥
2

6 C
∑

j

|aj |2, ∀{an} ∈ `2

and they span H.

An orthonormal basis E = {ej} can be defined by, for instance, ej = K
1/2
η ξj .
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Some consequences of (CR.3)

Assume [S ,T ] = 11D in quasi-strong sense; i.e.

〈VS (α)Tξ|η〉 − 〈VS (α)ξ|T †η〉 = α〈VS (α)ξ|η〉, ∀ξ, η ∈ D;α > 0.

Apply the Cauchy-Schwarz inequality (ξ = η) ⇒ ∀z ∈ C,α > 0,

α|〈VS (α)ξ|ξ〉| 6 2 max{‖(T − z)ξ‖, ‖(T † − z)ξ‖}max{‖VS (α)ξ‖, ‖VS (α)∗ξ‖}. (1)

Consequences:

if T = T † ⇒ σp(T ) = ∅.
If VS uniformly bounded, i.e. ‖VS (α)‖ 6 M, ∀α > 0, (e.g. VS

isometries or contractions), by (1)
limα→∞ |〈VS (α)ξ|ξ〉| = 0, ∀ξ ∈ H.
VS semigroup of contractions (i.e.,‖VS (α)‖ 6 1), ∀α > 0 ⇒ every
eigenvalue of S has negative real part.

Corollary (Miyamoto’s result) If the generator X of VS has the form X = iH where H

is a self-adjoint operator, then σp(H) = ∅.
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is a self-adjoint operator, then σp(H) = ∅.
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Time operators

Schmüdgen studied pairs of operators (T ,H)
T symmetric, H self-adjoint s.t.

e−itH D(T ) ⊆ D(T );

Te−itHξ = e−itH (T + t)ξ

T ,H regarded as members of L†(D,H) with D = D(T ) ∩ D(S).
This is equivalent to the operators T ,S := iH satisfy [S ,T ] = 11 in
quasi-strong sense

Definition

T is time operator for H if (T ,H) satisfies the two conditions above.

In many examples, mostly taken from Physics, H is a semibounded
operator (H the Hamiltionian of some physical system).
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Theorem

(Arai) H = H∗, H semibounded. Then no time operator T of H can be
essentially self-adjoint.

Indeed, the spectrum σ(T ) is one of the following sets

C, if H is bounded

C or Π+ = {z ∈ C : =z > 0} if H is bounded below

C or Π− = {z ∈ C : =z 6 0} if H is bounded above.

Question: Which one is realized, depending on properties of H?

22 / 25



Theorem

(Arai) H = H∗, H semibounded. Then no time operator T of H can be
essentially self-adjoint.

Indeed, the spectrum σ(T ) is one of the following sets

C, if H is bounded

C or Π+ = {z ∈ C : =z > 0} if H is bounded below

C or Π− = {z ∈ C : =z 6 0} if H is bounded above.

Question: Which one is realized, depending on properties of H?

22 / 25



Theorem

(Arai) H = H∗, H semibounded. Then no time operator T of H can be
essentially self-adjoint.

Indeed, the spectrum σ(T ) is one of the following sets

C, if H is bounded

C or Π+ = {z ∈ C : =z > 0} if H is bounded below

C or Π− = {z ∈ C : =z 6 0} if H is bounded above.

Question: Which one is realized, depending on properties of H?

22 / 25



Theorem

(Arai) H = H∗, H semibounded. Then no time operator T of H can be
essentially self-adjoint.

Indeed, the spectrum σ(T ) is one of the following sets

C, if H is bounded

C or Π+ = {z ∈ C : =z > 0} if H is bounded below

C or Π− = {z ∈ C : =z 6 0} if H is bounded above.

Question: Which one is realized, depending on properties of H?

22 / 25



Theorem

(Arai) H = H∗, H semibounded. Then no time operator T of H can be
essentially self-adjoint.

Indeed, the spectrum σ(T ) is one of the following sets

C, if H is bounded

C or Π+ = {z ∈ C : =z > 0} if H is bounded below

C or Π− = {z ∈ C : =z 6 0} if H is bounded above.

Question: Which one is realized, depending on properties of H?

22 / 25



Examples

I interval of the real line. Denote by q the multiplication operator on
L2(I ) by the variable x ∈ I
q is selfadjoint.

Let p be the operator on L2(I ) defined as follows:
D(p) := C∞c (I )
(pg)(x) := −ig ′(x), g ∈ D(p)

CASE 1: I = [0,∞) q is positive; −p is time operator of q and
σ(−p) = Π+.

CASE 2: I = (−L/2, L/2), L > 0
q is a bounded self-adjoint operator.
−p is a time operator of q and σ(−p) = C.
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Relaxing assumptions

The assumption e−itHD(T ) ⊆ D(T ) is quite strong.

Try to relax it! (Bagarello, Inoue, CT, 2012)

Definition

{S ,T} ⊂ L†(D,H); S = S†; T = T †

{S,T} satisfy weak Weyl commutation relation if ∃ H self-adjoint
extension of S such that

D(T ) ⊂ D(H)

〈e−itHξ|Tη〉 = 〈(T + t)ξ|e itHη〉, ∀ξ, η ∈ D, ∀t ∈ R.

H := weak Weyl extension of S . Results:

Suppose T essentially self-adj. Then {H,T} satisfy the Weyl
commutation relations

e itH e−isT = e iste−isT e itH , ∀s, t ∈ R

If H is semibounded then T is not essentially selfadj.

H semibounded, D∞(T ∗) ⊂ D(T ). Then σ(T ) = C.
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Nonlinear extension

Generalization of condition (CR2)
{ϕn}, {ψn} two biorthogonal bases contained in D and

X =
∞∑

k=0

αk (ψk ⊗ ϕk ),

{αn} a sequence of positive real numbers.
Assume D ⊂ D(X ).

S and T satisfy the nonlinear CR.2 if, ∀ξ, η ∈ D,

〈T ξ|S† η〉 − 〈S ξ|T † η〉 = 〈ξ|X η〉, (2)

S and T † act as raising operators on bases vectors; S† and T as lowering
operators, but squares of eigenvalues do not depend linearly on n
An analysis similar to the case X = 11D can be done; some results extend
(with more constraints) to this nonlinear situation.
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