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The commutator algebra of operators representing observables plays an important role
in QM
These operators are usually unbounded. This fact poses several problems for a correct
mathematical formulation of these notions.
Let A, B be unbounded operators in Hilbert sp.

. AB = BA can be meaningless

. strong commutation for selfadjoint operators

Nelson’s example

. Weak commutation

. Commutators [A, B] := AB — BA can be meaningless too

. Weyl commutation relations

. Weak form of commutators
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When do A, B commute?

Many possible cases:

o A, B bounded operators in H: clear
o A, B self-adjoint unbounded : strong commutation
o Commutation of spectral families {Ea(A)}, {Es(p)}, A, n € R
o Commutation of the unitary groups Ux(t) := e, Ug(s) :=e
o Commutation of resolvent functions (A — \)~! — (B — ul)71,
A€ p(A), n € p(B).

iBs
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When do A, B commute?

Many possible cases:

o A, B bounded operators in H: clear
o A, B self-adjoint unbounded : strong commutation

o Commutation of spectral families {Ea(A)}, {Es(p)}, A, n € R

o Commutation of the unitary groups Ux(t) := e, Ug(s) := e'Bs

o Commutation of resolvent functions (A — \)~! — (B — ul)71,
A€ p(A), n € p(B).

o A, B e LI(D)
LY(D) := {closable A: AD C D; A*D C D}
*_algebra = AB = BA well defined.

But Nelson's example A, B € LT(D)

A, B essentially selfadjoint (closures are selfadjoint)
AB¢ = BAE for every € € D

but spectral families do not commute!
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In hermitian QM strong commutation is a natural concept

@ Probabilistic interpretation of the spectral measure:

EA(-) spectral family of A
Prob{(A, ¥) € A} = [, d(Ea(N)¥[¢))
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In hermitian QM strong commutation is a natural concept

@ Probabilistic interpretation of the spectral measure:
EA(-) spectral family of A
Prob{(A,v) € A} = [, d(Ea(A)¥[¢)

@ Existence of joint probability distribution:
If A, B commute strongly
= Ea(-)Eg(-) spectral measure on the plane

EA(-)Es(-) gives the joint probability distribution (A and B can be
measured simultaneously).

In nonhermitian QM 7?7
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Case of partial O*-algebras

A,B € LT(D, 1) = {closable A: D(A) =D, D(A*) > D}
At := A* | D.
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A,B € LT(D, 1) = {closable A: D(A) =D, D(A*) > D}
At := A* | D.

Partial *-algebra w. r. to weak product TO: [Antoine, Karwowski]

o B : D — D(A™)
A0 B exists |ff{ AT:D—>D(B*)

and (AnB)¢ = A™ B¢, Ve eD.

Ao B = BoA: OK algebraically, same problems as before.
Moreover technically complicated.

WEAK COMMUTATION: easier to handle

(BE|ATn) = (A¢|Bn), Ye¢neD

See J.-P. Antoine, A. Inoue, C. Trapani, Partial *-algebras and their operator

realizations, Kluwer 2002.
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In B(H), [A, B] = AB — BA well-defined bounded operator.

The map (A, B) — [A, B] makes of B(H) a Banach Lie algebra:
everything works fine therein!
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In B(H), [A, B] = AB — BA well-defined bounded operator.

The map (A, B) — [A, B] makes of B(H) a Banach Lie algebra:
everything works fine therein!

But representations of Lie algebras involve, in general unbounded
operators!

In LT(D), [A, B] is well-defined, but . ..
regularity, i.e. integrability is not guaranteed (Schmiidgen).
Even worse in LT(D,H)!
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Canonical commutation relations (CCR)

Heisenberg Lie Algebra h: generated by three elements a, b, ¢ € hh whose
Lie brackets are defined by

[a,b] =c [a,c]=[b,c]=0

A representation of b linear map 7 : h — operator space such that

[r(a), m(b)] = 7(c) =: 1 identity operator .

(Wiener, Wielandt, von Neumann) There exists no bounded
representation of the Heisenberg algebra.
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Schrédinger representation

Domain: S(R) C L?(R). Define operators (annihilation , creation)

1
Af = —(xf + Df) and ATf =
ﬁ(x )

Then AATf — ATAf = £, Vf € S(R)

(xf — Dyf)

Nia

o(ATA) = N, number operator
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Schrodinger representation

Domain: S(R) C L?(R). Define operators (annihilation , creation)

1
Af = —(xf + Df) and ATf =
ﬁ(x )

Then AATf — ATAf = £, Vf € S(R)

(xf — Dyf)

Nia

o(ATA) = N, number operator

(Stone, von Neumann) Any integrable representation w of the Heisenberg
Lie algebra is unitarily equivalent to the Schrodinger repr.

Integrability: 3 connected and simply connected Lie group G and a unitary
representation U of G such that 7 = dU.
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A more general set-up

Study of operators A, B such that B # A" and [A, B] = 1 in some sense
(Bagarello, Inoue, CT 2011, 2012)

e Bagarello's pseudo-bosons
e nonintegrable repr. of CCR.

A, B closed operators, dense domains D(A) and D(B) in H.

To give a meaning to AB — BA = 1L we suppose 3 a dense subspace D of H such that
(D.1) D c D(AB)ND(BA) [D(AB) ={¢ € D(B): B¢ € D(A)}].

(D.2) ABE —BAE=¢, YEeD.

(D.3) D C D(A*)Nn D(B*).
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Then S:= A [Dand T := B | D belong to (partial *-algebra) LT(D,#)
and satisfy

(TE|STy) — (S| TTy) = (€ln), VE,meD.

The study of this commutation relation is our main matter.

Particular cases: S and/or T are generators of some weakly continuous
semigroup V/(t) of bdd operators.
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Then S:= A [Dand T := B | D belong to (partial *-algebra) LT(D,#)
and satisfy

(TE|STy) — (S| TTy) = (€ln), VE,meD.

The study of this commutation relation is our main matter.

Particular cases: S and/or T are generators of some weakly continuous
semigroup V/(t) of bdd operators.

Xo € LT(D,H) is the D-generator of V/(t) if

lim (V(t)

t—0

&n) = (Xo€ln), V&, m € D.
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Various notions

Let S, T € LT(D,H). We say that the c. r. [S, T] = 1p holds

(CR.1) in LY(D,H) if, SO T well-defined = T 0S well-defined too and
SOT-ToS=1p;

(CR.2) in weak sense if

(TEISTn) — (SE|TTn) = (€ln), VE&m € D;

(CR.3) in quasi-strong sense if S is the D-generator of a w-continuous semigr. of bdd
operators Vs(a) and

(Vs(a) Télm) — (Vs(a)€|TTn) = a(Vs(a)éln), V& n € D,Va > 0;

(CR.4) in strong sense if S and T are D-generators of w-continuous semigr. of bdd
operators Vs(a), V1 (B) satisfying the generalized Weyl c.r.

Vs(a)Vr(B) = e*P V1 (8)Vs(a), Va,pB > 0.

11/25



(CR.4) = (CR.3) = (CR.2) = (CR.1).
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(CR.4) = (CR.3) = (CR.2) = (CR.1).

Implications in the other direction: FALSE:

3 two essentially selfadjoint operators P, @ with common invariant
dense domain D such that PQ¢ — QPE = —i&, for £ € D, but the
unitary groups Up(t), Ug(s) generated by P, Q do not satisfy the
Weyl commutation relation Up(t)Uq(s) = e™Uq(s)Up(t), s, t € R.
(Fulgede, Schmiidgen).
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Existence of eigenvectors

Parallel to the case [A, AT] = 1 when a vacuum & exists: Ay =0

S, T € L1(D,H), satisfy [S, T] = 1p in weak sense.
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Existence of eigenvectors

Parallel to the case [A, AT] = 1 when a vacuum & exists: Ay =0

S, T € L1(D,H), satisfy [S, T] = 1p in weak sense.
Assume:

e J a vector 0 # & € D such that S = 0.

° T"fg €D, k<n

Consider the operators

N := TS, NE - STT.

N acts as number operator on a subspace Ny of H.

(i) T"& is an eigenvector of N = TS™ with eigenvalue n;

(i) Tn=1& is eigenvector of N¥ = ST T with eigenvalue n.
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@ The largest n for which T"¢, € D may be finite or infinite.

No = lIspan{&, T&, ... T"&0}
N := TS™ leaves Ny invariant.
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@ The largest n for which T"¢, € D may be finite or infinite.
No = lIspan{&, T&o, ... T}
N := TS™ leaves Ny invariant.

e point spectrum: o,(Ng) ={0,1,...,n} in Ng, n € NU{oo} =
largest natural number s.t. T&, T2&,... T"1& all belong to D.
Each eigenvalue is simple (in Ap).

o STK¢ — (TT)KSe = kTH-1¢, k< n.
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Hilbert space L?(R, wdx); the weight we C1(R), w >0, s.t.
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Hilbert space L?(R, wdx); the weight we C1(R), w >0, s.t.
@ limy 400 W(x) =0;

@ [xw(x)dx < oo.

D(p) = {f € L%(R, wdx) : 3g € L*(R, wdx), f(x) = /j g(t)dt}.

Shortly, f'(x) := g(x), for f € D(p).
D(q) = {f € L*(R, wdx) : xf(x) € L*(R, wdx)}.

D := D(q) N D(p). Define
(5A)(x) = f'(x), (TH(x) =xf(x), feD

Both map D into L*(R, wdx). T is symmetric in D.
Formally
w'(x)

(5")() = &0~ £0) "2 2.
If w'/w € L®(R), S € LT(D,H) and [S, T] = 1p (weak sense).

Make some particular choices for w
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Wo(x) = (14+x)7 a> 2| up(x) =1, is in L*(R, wydx) for

o > 3. It satisfies Sug = 0
The largest n for which T"uy belongs to D satisfies
n<2a—3 = dim\gis 20— 3] + 1.
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w(x) = wo(x) = (1+x*)7 a> 2| w(x) =1,is in L2(R, wadx) for

o> %. It satisfies Sug = 0
The largest n for which T"ug belongs to D satisfies
n<2a—%. = dim\j is [Qa—%] +1.

D = all polynomials in x.

The functions ux(x) = x*, k =1,2,..., belong to D and

TS™u, = kuy for every k € N.

The subspace Ny coincides in this case with D.

Every complex number A with A > —% is an eigenvalue

of N = TS™; but the corresponding eigenvector is in D if
and only if R is a natural number.
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The subspace Ny spanned by {T*&y, k € N} can be finite dimensional.
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however, satisfy the commutation relation [C, CT] = 1, due to Wiener
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The subspace Ny spanned by {T*&y, k € N} can be finite dimensional.

Thus N := (TS™)g is a bounded symmetric operator on Ay = C”,
having the numbers 0,1, ..., n as eigenvalues.

Hence N is positive and thus 3 an operator C € B(N) such that

N = CtC. None of the possible solutions of this operator equation can,
however, satisfy the commutation relation [C, CT] = 1, due to Wiener
-Wielandt - von Neumann theorem.

If Ny is infinite dimensional then N may fail to be symmetric, as the last
example shows.
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Intertwining operators

[S, T] = p (weak sense) = [TT,5T] = llp (weak sense).

Assume Falso 0 £y €Ds. t. Tingy =0
Stno, (57)%n0,... (ST)™ 1o all belong to D.
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Intertwining operators

[S, T] = p (weak sense) = [TT,5T] = llp (weak sense).

Assume Falso 0 £y €Ds. t. Tingy =0
Stno, (57)%n0,... (ST)™ 1o all belong to D. Consider

M:=STT*, Mt .= T*ST.

M is a number operator on some subspace M,
m € N U {oo} := largest number satisfying assumptions
op(M)={0,1,...,m}

Any relation between n and m? No, in general.
Indeed, the operators S, T considered in the second case of the Example one finds

n=o00and m=0.
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Assume n = m = oo.

1 k _ 1 _
fk.—\/—HTfo,k—l,...7n n,.—ﬁ(ST)’no,r—l,...7m.
Choose normalization of £q and ng st. (€9]mg) = 1.

Fe = {&} and F,, := {n,} are biorthogonal: (&|n;) = d;;, Vi,jeN.
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Assume n = m = oo

1 k _ R | r _
fk.—ﬁT&Oyk—l,...7n ?’]r.—ﬁ(ST)nOvr_lw"am'
Choose normalization of £ and ng s.t. (§glng) = 1.

Fe = {&} and F,, := {n,} are biorthogonal: (&|n;) = d;;, Vi,jeN.

Define intertwining operators:
Ke(j)=¢&.J €N Ky(§) =mn jeN.

Ky = Kgl, both unbounded in general; they obey intertwining relations:
Ky, Np = M Ky, Vo € Mo;

Kf My = Nngv Vi € No.

If Mo = Mo =H and K¢, K, bounded, then F¢ and F;, are Riesz bases of H:
3¢, C > 0 such that

> lalf <
j

and they span H.

2

<C> |’ V{an} €
J

> g

Jj

An orthonormal basis £ = {e;} can be defined by, for instance, ¢ = K»,]7-/2§j.
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Some consequences of (CR.3)
Assume [S, T] = 1p in quasi-strong sense; i.e.
(Vs(a) T€ln) — (Vs(a)é| TTn) = a(Vs(a)éln), Vén € Dia > 0.

Apply the Cauchy-Schwarz inequality (£ =n) = Vz € C,a > 0,
al(Vs()élé)] < 2max{||(T = 2)é]l, (T = 2)€]1} max{||Vs(a)éll, | Vs(a)“€ll}. (1)
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Some consequences of (CR.3)

Assume [S, T] = 1p in quasi-strong sense; i.e.

(Vs(@) T¢In) — (Vs(a)é| TTn) = a(Vs(a)éln), V& n € Dia > 0.

Apply the Cauchy-Schwarz inequality (£ =n) = Vz € C,a > 0,

al(Vs(a)élé)] < 2max{|[(T = 2)l, [(TT = 2)¢]} max{||Vs(a)£]l, [ Vs(a) €]} (1)
Consequences:

o if T=T1 = o,(T)=0.

o If Vs uniformly bounded, i.e. ||Vs(a)|| < M, Va >0, (e.g. Vs

isometries or contractions), by (1)
liMma—oo [{Vs(a)€|€)] =0, VEeH.
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Assume [S, T] = 1p in quasi-strong sense; i.e.

(Vs(a) T€ln) — (Vs(a)é| TTn) = a(Vs(a)éln), Vén € Dia > 0.

Apply the Cauchy-Schwarz inequality (£ =n) = Vz € C,a > 0,
al(Vs()élé)] < 2max{||(T = 2)é]l, (T = 2)€]1} max{||Vs(a)éll, | Vs(a)“€ll}. (1)

Consequences:
o if T=T1=0,(T)=0.
o If Vs uniformly bounded, i.e. ||Vs(a)|| < M, Va >0, (e.g. Vs
isometries or contractions), by (1)
liMma—oo [{Vs(a)€|€)] =0, VEeH.
e Vs semigroup of contractions (i.e.,||Vs(a)|| < 1), Va = 0 = every
eigenvalue of S has negative real part.

Corollary (Miyamoto's result) If the generator X of Vs has the form X = iH where H

is a self-adjoint operator, then o,(H) = 0.
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Time operators

Schmiidgen studied pairs of operators (T, H)
T symmetric, H self-adjoint s.t.

e e ™MD(T) C D(T);
o Te tHe = e ™(T 1 t)¢
T, H regarded as members of LT(D,H) with D = D(T) N D(S).

This is equivalent to the operators T, S := iH satisfy [S, T] = 1 in
quasi-strong sense

Definition

T is time operator for H if (T, H) satisfies the two conditions above.
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T symmetric, H self-adjoint s.t.

e e ™MD(T) C D(T);

o Te tHe = e ™(T 1 t)¢
T, H regarded as members of LT(D,H) with D = D(T) N D(S).
This is equivalent to the operators T, S := iH satisfy [S, T] = 1 in
quasi-strong sense

Definition

T is time operator for H if (T, H) satisfies the two conditions above.

In many examples, mostly taken from Physics, H is a semibounded
operator (H the Hamiltionian of some physical system).
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(Arai) H = H*, H semibounded. Then no time operator T of H can be
essentially self-adjoint.

Indeed, the spectrum o(T) is one of the following sets
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(Arai) H = H*, H semibounded. Then no time operator T of H can be
essentially self-adjoint.

Indeed, the spectrum o(T) is one of the following sets
o C, if H is bounded
e CorNy ={zeC:9z
e CorNM_={zeC:S

} if H is bounded below

0
0} if H is bounded above.

//\ WV

22/25



(Arai) H = H*, H semibounded. Then no time operator T of H can be
essentially self-adjoint.

Indeed, the spectrum o(T) is one of the following sets

o C, if H is bounded
e CorNy ={zeC:9z
e CorM_={zeC:9z

0} if H is bounded below
0} if H is bounded above.

NV

Question: Which one is realized, depending on properties of H?
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| interval of the real line. Denote by g the multiplication operator on
L2(1) by the variable x € /
q is selfadjoint.
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| interval of the real line. Denote by g the multiplication operator on
L2(1) by the variable x € /
q is selfadjoint.

Let p be the operator on L2(/) defined as follows:
D(p) = C2=(1)
(pg)(x) = —ig'(x), &< D(p)

CASE 1: I =0, oo)i is positive; —p is time operator of g and
o(—p) =4
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| interval of the real line. Denote by g the multiplication operator on
L2(1) by the variable x € /
q is selfadjoint.

Let p be the operator on L2(/) defined as follows:
D(p) = (1)
(Pg)(x) := —ig'(x), &< D(p)
CASE 1: | =[0,00) q is positive; —p is time operator of g and

o(—p) =M.

CASE 2: | =(=L/2,L/2), L>0
g is a bounded self-adjoint operator.
—p is a time operator of g and o(—p) = C.
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Relaxing assumptions

The assumption e ™ D(T) C D(T) is quite strong.
Try to relax it!  (Bagarello, Inoue, CT, 2012)

Definition

{S$, T} LYD,H);, S=SI, T=Tt
{S, T} satisfy weak Weyl commutation relation if 3 H self-adjoint
extension of S such that
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The assumption e ™ D(T) C D(T) is quite strong.
Try to relax it!  (Bagarello, Inoue, CT, 2012)

Definition

{S$, T} LYD,H);, S=SI, T=Tt
{S, T} satisfy weak Weyl commutation relation if 3 H self-adjoint
extension of S such that

o D(T) C D(H)
o (e=™e|Ty) = (T + t)éle™n), VEneD, VieR.

H := weak Weyl extension of S. Results:

@ Suppose T essentially self-adj. Then {H, T} satisfy the Weyl
commutation relations

eltHeflsT — elsteflsTeltH’ VS, teR

o If H is semibounded then T is not essentially selfad].

e H semibounded, D>°(T*) C D(T). Then o(T) =C.
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Nonlinear extension

Generalization of condition (CR2)
{©n}, {¥n} two biorthogonal bases contained in D and

X = Z(Xk('(/)k ® Px),

k=0

{an} a sequence of positive real numbers.
Assume D C D(X).
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Nonlinear extension

Generalization of condition (CR2)
{©n}, {¥n} two biorthogonal bases contained in D and

X =3 v ®Bx),

k=0

{an} a sequence of positive real numbers.
Assume D C D(X).

S and T satisfy the nonlinear CR.2 if, V&, n € D,
(TEISTn) = (SEITT ) = (€|Xn), (2)

S and TT act as raising operators on bases vectors; ST and T as lowering
operators, but squares of eigenvalues do not depend linearly on n

An analysis similar to the case X = llp can be done; some results extend
(with more constraints) to this nonlinear situation.
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