# Weak and generalized Weyl form of the commutation relation for unbounded operators 

## Camillo Trapani

Dipartimento di Matematica e Informatica, Università di Palermo, Italy (Joint work with F.Bagarello and A.Inoue)

PHHQP11, Paris, 2012

## Motivations

## Motivations

The commutator algebra of operators representing observables plays an important role in QM

## Motivations

The commutator algebra of operators representing observables plays an important role in QM

These operators are usually unbounded. This fact poses several problems for a correct mathematical formulation of these notions.

## Motivations

The commutator algebra of operators representing observables plays an important role in QM

These operators are usually unbounded. This fact poses several problems for a correct mathematical formulation of these notions.

Let $A, B$ be unbounded operators in Hilbert sp .
$A B=B A$ can be meaningless
. strong commutation for selfadjoint operators

- Nelson's example
. Weak commutation
. Commutators $[A, B]:=A B-B A$ can be meaningless too
. Weyl commutation relations
. Weak form of commutators


## When do $A, B$ commute?

Many possible cases:

- $A, B$ bounded operators in $\mathcal{H}$ : clear
- $A, B$ self-adjoint unbounded : strong commutation
- Commutation of spectral families $\left\{E_{A}(\lambda)\right\},\left\{E_{B}(\mu)\right\}, \lambda, \mu \in \mathbb{R}$
- Commutation of the unitary groups $U_{A}(t):=e^{i A t}, U_{B}(s):=e^{i B s}$
- Commutation of resolvent functions $(A-\lambda I)^{-1} \smile(B-\mu I)^{-1}$, $\lambda \in \rho(A), \mu \in \rho(B)$.

Many possible cases:

- $A, B$ bounded operators in $\mathcal{H}$ : clear
- $A, B$ self-adjoint unbounded: strong commutation
- Commutation of spectral families $\left\{E_{A}(\lambda)\right\},\left\{E_{B}(\mu)\right\}, \lambda, \mu \in \mathbb{R}$
- Commutation of the unitary groups $U_{A}(t):=e^{i A t}, U_{B}(s):=e^{i B s}$
- Commutation of resolvent functions $(A-\lambda I)^{-1} \smile(B-\mu I)^{-1}$, $\lambda \in \rho(A), \mu \in \rho(B)$.
- $A, B \in \mathcal{L}^{\dagger}(\mathcal{D})$

$$
\begin{aligned}
\mathcal{L}^{\dagger}(\mathcal{D}):=\left\{\text { closable } A: A \mathcal{D} \subseteq \mathcal{D} ; A^{*} \mathcal{D} \subseteq \mathcal{D}\right\} \\
\text { *-algebra } \Rightarrow A B=B A \text { well defined. }
\end{aligned}
$$

Many possible cases:

- $A, B$ bounded operators in $\mathcal{H}$ : clear
- $A, B$ self-adjoint unbounded: strong commutation
- Commutation of spectral families $\left\{E_{A}(\lambda)\right\},\left\{E_{B}(\mu)\right\}, \lambda, \mu \in \mathbb{R}$
- Commutation of the unitary groups $U_{A}(t):=e^{i A t}, U_{B}(s):=e^{i B s}$
- Commutation of resolvent functions $(A-\lambda I)^{-1} \smile(B-\mu I)^{-1}$, $\lambda \in \rho(A), \mu \in \rho(B)$.
- $A, B \in \mathcal{L}^{\dagger}(\mathcal{D})$

$$
\mathcal{L}^{\dagger}(\mathcal{D}):=\left\{\text { closable } A: A \mathcal{D} \subseteq \mathcal{D} ; A^{*} \mathcal{D} \subseteq \mathcal{D}\right\}
$$

*-algebra $\Rightarrow A B=B A$ well defined.
But Nelson's example $A, B \in \mathcal{L}^{\dagger}(\mathcal{D})$
$A, B$ essentially selfadjoint (closures are selfadjoint) $A B \xi=B A \xi$ for every $\xi \in \mathcal{D}$
but spectral families do not commute!

In hermitian QM strong commutation is a natural concept

- Probabilistic interpretation of the spectral measure:
$E_{A}(\cdot)$ spectral family of $A$
$\operatorname{Prob}\{(A, \psi) \in \Delta\}=\int_{\Delta} d\left\langle E_{A}(\lambda) \psi \mid \psi\right\rangle$

In hermitian QM strong commutation is a natural concept

- Probabilistic interpretation of the spectral measure:
$E_{A}(\cdot)$ spectral family of $A$
$\operatorname{Prob}\{(A, \psi) \in \Delta\}=\int_{\Delta} d\left\langle E_{A}(\lambda) \psi \mid \psi\right\rangle$
- Existence of joint probability distribution:

If $A, B$ commute strongly
$\Rightarrow E_{A}(\cdot) E_{B}(\cdot)$ spectral measure on the plane
$E_{A}(\cdot) E_{B}(\cdot)$ gives the joint probability distribution ( $A$ and $B$ can be measured simultaneously).

In nonhermitian QM ???

## Case of partial O*-algebras $^{*}$

$A, B \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})=\left\{\right.$ closable $\left.A: D(A)=\mathcal{D}, D\left(A^{*}\right) \supset \mathcal{D}\right\}$ $A^{\dagger}:=A^{*} \upharpoonright \mathcal{D}$.

## Case of partial $0^{*}$-algebras

$$
A, B \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})=\left\{\text { closable } A: D(A)=\mathcal{D}, D\left(A^{*}\right) \supset \mathcal{D}\right\}
$$

$A^{\dagger}:=A^{*} \upharpoonright \mathcal{D}$.
Partial *-algebra w. r. to weak product $\square$ : [Antoine, Karwowski]
$A \square B$ exists iff $\left\{\begin{array}{l}B: \mathcal{D} \rightarrow D\left(A^{\dagger *}\right) \\ A^{\dagger}: \mathcal{D} \rightarrow D\left(B^{*}\right)\end{array}\right.$
and $(A \square B) \xi=A^{\dagger *} B \xi, \quad \forall \xi \in \mathcal{D}$.

## Case of partial $0^{*}$-algebras

$$
A, B \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})=\left\{\text { closable } A: D(A)=\mathcal{D}, D\left(A^{*}\right) \supset \mathcal{D}\right\}
$$

$A^{\dagger}:=A^{*} \upharpoonright \mathcal{D}$.
Partial *-algebra w. r. to weak product $\square$ : [Antoine, Karwowski]
$A \square B$ exists iff $\left\{\begin{array}{l}B: \mathcal{D} \rightarrow D\left(A^{\dagger *}\right) \\ A^{\dagger}: \mathcal{D} \rightarrow D\left(B^{*}\right)\end{array}\right.$
and $(A \square B) \xi=A^{\dagger *} B \xi, \quad \forall \xi \in \mathcal{D}$.
$A \square B=B \square A:$ OK algebraically, same problems as before.
Moreover technically complicated.

## Case of partial O*-algebras

$$
\begin{aligned}
& \qquad A, B \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})=\left\{\text { closable } A: D(A)=\mathcal{D}, D\left(A^{*}\right) \supset \mathcal{D}\right\} \\
& A^{\dagger}:=A^{*} \upharpoonright \mathcal{D} . \\
& \text { Partial *-algebra w. r. to weak product } \square:[\text { Antoine, Karwowski] } \\
& A \square B \text { exists iff }\left\{\begin{array}{c}
B: \mathcal{D} \rightarrow D\left(A^{\dagger *}\right) \\
A^{\dagger}: \mathcal{D} \rightarrow D\left(B^{*}\right)
\end{array}\right. \\
& \text { and }(A \square B) \xi=A^{\dagger *} B \xi, \quad \forall \xi \in \mathcal{D} . \\
& A \square B=B \square A: \text { OK algebraically, same problems as before. } \\
& \text { Moreover technically complicated. }
\end{aligned}
$$

WEAK COMMUTATION: easier to handle

$$
\left\langle B \xi \mid A^{\dagger} \eta\right\rangle=\left\langle A \xi \mid B^{\dagger} \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D}
$$

## Case of partial $0^{*}$-algebras

$$
\begin{aligned}
& \qquad A, B \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})=\left\{\text { closable } A: D(A)=\mathcal{D}, D\left(A^{*}\right) \supset \mathcal{D}\right\} \\
& A^{\dagger}:=A^{*} \upharpoonright \mathcal{D} . \\
& \text { Partial *-algebra w. r. to weak product } \square:[\text { Antoine, Karwowski] } \\
& A \square B \text { exists iff }\left\{\begin{array}{l}
B: \mathcal{D} \rightarrow D\left(A^{\dagger *}\right) \\
A^{\dagger}: \mathcal{D} \rightarrow D\left(B^{*}\right)
\end{array}\right. \\
& \text { and }(A \square B) \xi=A^{\dagger *} B \xi, \quad \forall \xi \in \mathcal{D} . \\
& A \square B=B \square A: \text { OK algebraically, same problems as before. } \\
& \text { Moreover technically complicated. }
\end{aligned}
$$

WEAK COMMUTATION: easier to handle

$$
\left\langle B \xi \mid A^{\dagger} \eta\right\rangle=\left\langle A \xi \mid B^{\dagger} \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D}
$$

See J.-P. Antoine, A. Inoue, C. Trapani, Partial *-algebras and their operator realizations, Kluwer 2002.

## Commutators

## Commutators

In $\mathcal{B}(\mathcal{H}), \quad[A, B]=A B-B A$ well-defined bounded operator.
The map $(A, B) \rightarrow[A, B]$ makes of $B(H)$ a Banach Lie algebra: everything works fine therein!

In $\mathcal{B}(\mathcal{H}), \quad[A, B]=A B-B A$ well-defined bounded operator.
The map $(A, B) \rightarrow[A, B]$ makes of $B(H)$ a Banach Lie algebra: everything works fine therein!

But representations of Lie algebras involve, in general unbounded operators!

In $\mathcal{B}(\mathcal{H}), \quad[A, B]=A B-B A$ well-defined bounded operator.
The map $(A, B) \rightarrow[A, B]$ makes of $B(H)$ a Banach Lie algebra: everything works fine therein!

But representations of Lie algebras involve, in general unbounded operators!

In $\mathcal{L}^{\dagger}(\mathcal{D}),[A, B]$ is well-defined, but $\ldots$
regularity, i.e. integrability is not guaranteed (Schmüdgen).

In $\mathcal{B}(\mathcal{H}), \quad[A, B]=A B-B A$ well-defined bounded operator.
The map $(A, B) \rightarrow[A, B]$ makes of $B(H)$ a Banach Lie algebra: everything works fine therein!

But representations of Lie algebras involve, in general unbounded operators!

In $\mathcal{L}^{\dagger}(\mathcal{D}),[A, B]$ is well-defined, but $\ldots$
regularity, i.e. integrability is not guaranteed (Schmüdgen).
Even worse in $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ !

## Canonical commutation relations (CCR)

Heisenberg Lie Algebra $\mathfrak{h}$ : generated by three elements $a, b, c \in \mathfrak{h}$ whose Lie brackets are defined by

$$
[a, b]=c \quad[a, c]=[b, c]=0
$$

A representation of $\mathfrak{h}$ linear map $\pi: \mathfrak{h} \rightarrow$ operator space such that

$$
[\pi(a), \pi(b)]=\pi(c)=: \mathbb{1} \text { identity operator . }
$$

## Theorem

(Wiener, Wielandt, von Neumann) There exists no bounded representation of the Heisenberg algebra.

## Schrödinger representation

Domain: $\mathcal{S}(\mathbb{R}) \subset L^{2}(\mathbb{R})$. Define operators (annihilation, creation)

$$
A f=\frac{1}{\sqrt{2}}\left(x f+D_{x} f\right) \quad \text { and } A^{\dagger} f=\frac{1}{\sqrt{2}}\left(x f-D_{x} f\right)
$$

Then $A A^{\dagger} f-A^{\dagger} A f=f, \quad \forall f \in \mathcal{S}(\mathbb{R})$
$\sigma\left(A^{\dagger} A\right)=\mathbb{N}$, number operator

## Schrödinger representation

Domain: $\mathcal{S}(\mathbb{R}) \subset L^{2}(\mathbb{R})$. Define operators (annihilation, creation)

$$
A f=\frac{1}{\sqrt{2}}\left(x f+D_{x} f\right) \quad \text { and } A^{\dagger} f=\frac{1}{\sqrt{2}}\left(x f-D_{x} f\right)
$$

Then $A A^{\dagger} f-A^{\dagger} A f=f, \quad \forall f \in \mathcal{S}(\mathbb{R})$
$\sigma\left(A^{\dagger} A\right)=\mathbb{N}$, number operator

## Theorem

(Stone, von Neumann) Any integrable representation $\pi$ of the Heisenberg Lie algebra is unitarily equivalent to the Schrödinger repr.

Integrability: $\exists$ connected and simply connected Lie group $G$ and a unitary representation $U$ of $G$ such that $\pi=d U$.

## Problem

Study of operators $A, B$ such that $B \neq A^{\dagger}$ and $[A, B]=\mathbb{1}$ in some sense (Bagarello, Inoue, CT 2011, 2012)

- Bagarello's pseudo-bosons
- nonintegrable repr. of CCR.
$A, B$ closed operators, dense domains $D(A)$ and $D(B)$ in $\mathcal{H}$.
To give a meaning to $A B-B A=\mathbb{1}$ we suppose $\exists$ a dense subspace $\mathcal{D}$ of $\mathcal{H}$ such that
(D.1) $\mathcal{D} \subset D(A B) \cap D(B A)[D(A B)=\{\xi \in D(B): B \xi \in D(A)\}]$.
(D.2) $A B \xi-B A \xi=\xi, \quad \forall \xi \in \mathcal{D}$.
(D.3) $\mathcal{D} \subset D\left(A^{*}\right) \cap D\left(B^{*}\right)$.

Then $S:=A \upharpoonright \mathcal{D}$ and $T:=B \upharpoonright D$ belong to (partial *-algebra) $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ and satisfy

$$
\left\langle T \xi \mid S^{\dagger} \eta\right\rangle-\left\langle S \xi \mid T^{\dagger} \eta\right\rangle=\langle\xi \mid \eta\rangle, \quad \forall \xi, \eta \in \mathcal{D} .
$$

The study of this commutation relation is our main matter.
Particular cases: $S$ and/or $T$ are generators of some weakly continuous semigroup $V(t)$ of bdd operators.

Then $S:=A \upharpoonright \mathcal{D}$ and $T:=B \upharpoonright D$ belong to (partial *-algebra) $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ and satisfy

$$
\left\langle T \xi \mid S^{\dagger} \eta\right\rangle-\left\langle S \xi \mid T^{\dagger} \eta\right\rangle=\langle\xi \mid \eta\rangle, \quad \forall \xi, \eta \in \mathcal{D}
$$

The study of this commutation relation is our main matter.
Particular cases: $S$ and/or $T$ are generators of some weakly continuous semigroup $V(t)$ of bdd operators.
$X_{0} \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is the $\mathcal{D}$-generator of $V(t)$ if

$$
\lim _{t \rightarrow 0}\left\langle\left.\frac{V(t)-\mathbb{1}}{t} \xi \right\rvert\, \eta\right\rangle=\left\langle X_{0} \xi \mid \eta\right\rangle, \forall \xi, \eta \in \mathcal{D} .
$$

## Various notions

## Definition

Let $S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. We say that the c. $r .[S, T]=\mathbb{1}_{\mathcal{D}}$ holds

## Various notions

## Definition

Let $S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. We say that the c. $r .[S, T]=\mathbb{1}_{\mathcal{D}}$ holds (CR.1) in $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ if, $S \square T$ well-defined $\Rightarrow T \square S$ well-defined too and $S \square T-T \square S=\mathbb{1}_{\mathcal{D}}$;

## Various notions

## Definition

Let $S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. We say that the c. $r .[S, T]=\mathbb{1}_{\mathcal{D}}$ holds (CR.1) in $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ if, $S \square T$ well-defined $\Rightarrow T \square S$ well-defined too and $S \square T-T \square S=\mathbb{1}_{\mathcal{D}} ;$
(CR.2) in weak sense if

$$
\left\langle T \xi \mid S^{\dagger} \eta\right\rangle-\left\langle S \xi \mid T^{\dagger} \eta\right\rangle=\langle\xi \mid \eta\rangle, \quad \forall \xi, \eta \in \mathcal{D}
$$

## Definition

Let $S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. We say that the c. $r .[S, T]=\mathbb{1}_{\mathcal{D}}$ holds
(CR.1) in $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ if, $S \square T$ well-defined $\Rightarrow T \square S$ well-defined too and $S \square T-T \square S=\mathbb{1}_{\mathcal{D}}$;
(CR.2) in weak sense if

$$
\left\langle T \xi \mid S^{\dagger} \eta\right\rangle-\left\langle S \xi \mid T^{\dagger} \eta\right\rangle=\langle\xi \mid \eta\rangle, \quad \forall \xi, \eta \in \mathcal{D} ;
$$

(CR.3) in quasi-strong sense if $S$ is the $\mathcal{D}$-generator of a w-continuous semigr. of bdd operators $V_{S}(\alpha)$ and

$$
\left\langle V_{S}(\alpha) T \xi \mid \eta\right\rangle-\left\langle V_{S}(\alpha) \xi \mid T^{\dagger} \eta\right\rangle=\alpha\left\langle V_{S}(\alpha) \xi \mid \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D}, \forall \alpha \geqslant 0 ;
$$

## Definition

Let $S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$. We say that the c. $r .[S, T]=\mathbb{1}_{\mathcal{D}}$ holds
(CR.1) in $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ if, $S \square T$ well-defined $\Rightarrow T \square S$ well-defined too and
$S \square T-T \square S=\mathbb{1}_{\mathcal{D}}$;
(CR.2) in weak sense if

$$
\left\langle T \xi \mid S^{\dagger} \eta\right\rangle-\left\langle S \xi \mid T^{\dagger} \eta\right\rangle=\langle\xi \mid \eta\rangle, \quad \forall \xi, \eta \in \mathcal{D} ;
$$

(CR.3) in quasi-strong sense if $S$ is the $\mathcal{D}$-generator of a w-continuous semigr. of bdd operators $V_{S}(\alpha)$ and

$$
\left\langle V_{S}(\alpha) T \xi \mid \eta\right\rangle-\left\langle V_{S}(\alpha) \xi \mid T^{\dagger} \eta\right\rangle=\alpha\left\langle V_{S}(\alpha) \xi \mid \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D}, \forall \alpha \geqslant 0 ;
$$

(CR.4) in strong sense if $S$ and $T$ are $\mathcal{D}$-generators of $w$-continuous semigr. of bdd operators $V_{S}(\alpha), V_{T}(\beta)$ satisfying the generalized Weyl c.r.

$$
V_{S}(\alpha) V_{T}(\beta)=e^{\alpha \beta} V_{T}(\beta) V_{S}(\alpha), \quad \forall \alpha, \beta \geqslant 0
$$

(CR.4) $\Rightarrow$ (CR.3) $\Rightarrow$ (CR.2) $\Rightarrow$ (CR.1).
(CR. 4$) \Rightarrow($ CR. 3$) \Rightarrow($ CR. 2$) \Rightarrow($ CR.1).
Implications in the other direction: FALSE:
(CR.4) $\Rightarrow$ (CR.3) $\Rightarrow$ (CR.2) $\Rightarrow$ (CR.1).
Implications in the other direction: FALSE:

## Example

$\exists$ two essentially selfadjoint operators $P, Q$ with common invariant dense domain $\mathcal{D}$ such that $P Q \xi-Q P \xi=-i \xi$, for $\xi \in \mathcal{D}$, but the unitary groups $U_{P}(t), U_{Q}(s)$ generated by $\bar{P}, \bar{Q}$ do not satisfy the Weyl commutation relation $U_{P}(t) U_{Q}(s)=e^{i t s} U_{Q}(s) U_{P}(t), s, t \in \mathbb{R}$. (Fulgede, Schmüdgen).

## Existence of eigenvectors

Parallel to the case $\left[A, A^{\dagger}\right]=\mathbb{1}$ when a vacuum $\xi_{0}$ exists: $A \xi_{0}=0$
$S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, satisfy $[S, T]=\mathbb{1}_{\mathcal{D}}$ in weak sense.

## Existence of eigenvectors

Parallel to the case $\left[A, A^{\dagger}\right]=\mathbb{1}$ when a vacuum $\xi_{0}$ exists: $A \xi_{0}=0$
$S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, satisfy $[S, T]=\mathbb{1}_{\mathcal{D}}$ in weak sense.
Assume:

- $\exists$ a vector $0 \neq \xi_{0} \in \mathcal{D}$ such that $S \xi_{0}=0$.
- $T^{k} \xi_{0} \in \mathcal{D}, k \leqslant n$


## Existence of eigenvectors

Parallel to the case $\left[A, A^{\dagger}\right]=\mathbb{1}$ when a vacuum $\xi_{0}$ exists: $A \xi_{0}=0$
$S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, satisfy $[S, T]=\mathbb{1}_{\mathcal{D}}$ in weak sense.
Assume:

- $\exists$ a vector $0 \neq \xi_{0} \in \mathcal{D}$ such that $S \xi_{0}=0$.
- $T^{k} \xi_{0} \in \mathcal{D}, k \leqslant n$

Consider the operators

$$
N:=T S^{\dagger *}, \quad N^{\sharp}: S^{\dagger *} T .
$$

$N$ acts as number operator on a subspace $\mathcal{N}_{0}$ of $\mathcal{H}$.

## Existence of eigenvectors

Parallel to the case $\left[A, A^{\dagger}\right]=\mathbb{1}$ when a vacuum $\xi_{0}$ exists: $A \xi_{0}=0$
$S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, satisfy $[S, T]=\mathbb{1}_{\mathcal{D}}$ in weak sense.
Assume:

- $\exists$ a vector $0 \neq \xi_{0} \in \mathcal{D}$ such that $S \xi_{0}=0$.
- $T^{k} \xi_{0} \in \mathcal{D}, k \leqslant n$

Consider the operators

$$
N:=T S^{\dagger *}, \quad N^{\sharp}: S^{\dagger^{*}} T .
$$

$N$ acts as number operator on a subspace $\mathcal{N}_{0}$ of $\mathcal{H}$.
(i) $T^{n} \xi_{0}$ is an eigenvector of $N=T S^{+*}$ with eigenvalue $n$;

## Existence of eigenvectors

Parallel to the case $\left[A, A^{\dagger}\right]=\mathbb{1}$ when a vacuum $\xi_{0}$ exists: $A \xi_{0}=0$
$S, T \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$, satisfy $[S, T]=\mathbb{1}_{\mathcal{D}}$ in weak sense.
Assume:

- $\exists$ a vector $0 \neq \xi_{0} \in \mathcal{D}$ such that $S \xi_{0}=0$.
- $T^{k} \xi_{0} \in \mathcal{D}, k \leqslant n$

Consider the operators

$$
N:=T S^{\dagger *}, \quad N^{\sharp}: S^{\dagger^{*}} T .
$$

$N$ acts as number operator on a subspace $\mathcal{N}_{0}$ of $\mathcal{H}$.
(i) $T^{n} \xi_{0}$ is an eigenvector of $N=T S^{+*}$ with eigenvalue $n$;
(ii) $T^{n-1} \xi_{0}$ is eigenvector of $N^{\sharp}=S^{\dagger *} T$ with eigenvalue $n$.

- The largest $n$ for which $T^{n} \xi_{0} \in \mathcal{D}$ may be finite or infinite. $\mathcal{N}_{0}:=\operatorname{Ispan}\left\{\xi_{0}, T \xi_{0}, \ldots T^{n} \xi_{0}\right\}$. $N:=T S^{\dagger *}$ leaves $\mathcal{N}_{0}$ invariant.
- The largest $n$ for which $T^{n} \xi_{0} \in \mathcal{D}$ may be finite or infinite. $\mathcal{N}_{0}:=\operatorname{Ispan}\left\{\xi_{0}, T \xi_{0}, \ldots T^{n} \xi_{0}\right\}$. $N:=T S^{\dagger *}$ leaves $\mathcal{N}_{0}$ invariant.
- point spectrum: $\sigma_{p}\left(N_{0}\right)=\{0,1, \ldots, n\}$ in $\mathcal{N}_{0}, n \in \mathbb{N} \cup\{\infty\}=$ largest natural number s.t. $T \xi_{0}, T^{2} \xi_{0}, \ldots T^{n-1} \xi_{0}$ all belong to $\mathcal{D}$. Each eigenvalue is simple (in $\mathcal{N}_{0}$ ).
- The largest $n$ for which $T^{n} \xi_{0} \in \mathcal{D}$ may be finite or infinite. $\mathcal{N}_{0}:=\operatorname{Ispan}\left\{\xi_{0}, T \xi_{0}, \ldots T^{n} \xi_{0}\right\}$. $N:=T S^{\dagger *}$ leaves $\mathcal{N}_{0}$ invariant.
- point spectrum: $\sigma_{p}\left(N_{0}\right)=\{0,1, \ldots, n\}$ in $\mathcal{N}_{0}, n \in \mathbb{N} \cup\{\infty\}=$ largest natural number s.t. $T \xi_{0}, T^{2} \xi_{0}, \ldots T^{n-1} \xi_{0}$ all belong to $\mathcal{D}$. Each eigenvalue is simple (in $\mathcal{N}_{0}$ ).
- $S T^{k} \xi-\left(T^{\dagger *}\right)^{k} S \xi=k T^{k-1} \xi, \quad k \leqslant n$.


## Examples

Hilbert space $L^{2}(\mathbb{R}, w d x)$; the weight $w \in C^{1}(\mathbb{R}), \quad w>0$, s.t.

- $\lim _{|x| \rightarrow+\infty} w(x)=0$;
- $\int_{\mathbb{R}} w(x) d x<\infty$.


## Examples

Hilbert space $L^{2}(\mathbb{R}, w d x)$; the weight $w \in C^{1}(\mathbb{R}), \quad w>0$, s.t.

- $\lim _{|x| \rightarrow+\infty} w(x)=0$;
- $\int_{\mathbb{R}} w(x) d x<\infty$.

$$
D(\mathrm{p})=\left\{f \in L^{2}(\mathbb{R}, w d x): \exists g \in L^{2}(\mathbb{R}, w d x), f(x)=\int_{-\infty}^{x} g(t) d t\right\}
$$

Shortly, $f^{\prime}(x):=g(x)$, for $f \in D(p)$.

## Examples

Hilbert space $L^{2}(\mathbb{R}, w d x)$; the weight $w \in C^{1}(\mathbb{R}), \quad w>0$, s.t.

- $\lim _{|x| \rightarrow+\infty} w(x)=0$;
- $\int_{\mathbb{R}} w(x) d x<\infty$.

$$
D(\mathrm{p})=\left\{f \in L^{2}(\mathbb{R}, w d x): \exists g \in L^{2}(\mathbb{R}, w d x), f(x)=\int_{-\infty}^{x} g(t) d t\right\}
$$

Shortly, $f^{\prime}(x):=g(x)$, for $f \in D(p)$.

$$
D(q)=\left\{f \in L^{2}(\mathbb{R}, w d x): x f(x) \in L^{2}(\mathbb{R}, w d x)\right\} .
$$

## Examples

Hilbert space $L^{2}(\mathbb{R}, w d x)$; the weight $w \in C^{1}(\mathbb{R}), \quad w>0$, s.t.

- $\lim _{|x| \rightarrow+\infty} w(x)=0$;
- $\int_{\mathbb{R}} w(x) d x<\infty$.

$$
D(\mathrm{p})=\left\{f \in L^{2}(\mathbb{R}, w d x): \exists g \in L^{2}(\mathbb{R}, w d x), f(x)=\int_{-\infty}^{x} g(t) d t\right\}
$$

Shortly, $f^{\prime}(x):=g(x)$, for $f \in D(p)$.

$$
D(\mathrm{q})=\left\{f \in L^{2}(\mathbb{R}, w d x): x f(x) \in L^{2}(\mathbb{R}, w d x)\right\} .
$$

$\mathcal{D}:=D(\mathrm{q}) \cap D(\mathrm{p})$. Define

$$
(S f)(x)=f^{\prime}(x), \quad(T f)(x)=x f(x), \quad f \in \mathcal{D}
$$

Both map $\mathcal{D}$ into $L^{2}(\mathbb{R}, w d x) . T$ is symmetric in $\mathcal{D}$. Formally

$$
\left(S^{*} g\right)(x)=-g^{\prime}(x)-g(x) \frac{w^{\prime}(x)}{w(x)}
$$

If $w^{\prime} / w \in L^{\infty}(\mathbb{R}), S \in \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ and $[S, T]=\mathbb{1}_{\mathcal{D}}$ (weak sense).
Make some particular choices for $w$

$$
\begin{gathered}
w(x)=w_{\alpha}(x)=\left(1+x^{4}\right)^{-\alpha}, \alpha>\frac{3}{4} u_{0}(x)=1, \text { is in } L^{2}\left(\mathbb{R}, w_{\alpha} d x\right) \text { for } \\
\alpha>\frac{3}{4} \text {. It satisfies } S u_{0}=0
\end{gathered}
$$

The largest $n$ for which $T^{n} u_{0}$ belongs to $\mathcal{D}$ satisfies $n<2 \alpha-\frac{3}{2} . \Rightarrow \operatorname{dim} \mathcal{N}_{0}$ is $\left[2 \alpha-\frac{3}{2}\right]+1$.

$$
w(x)=w_{\alpha}(x)=\left(1+x^{4}\right)^{-\alpha}, \alpha>\frac{3}{4} \quad u_{0}(x)=1, \text { is in } L^{2}\left(\mathbb{R}, w_{\alpha} d x\right) \text { for }
$$

$\alpha>\frac{3}{4}$. It satisfies $S u_{0}=0$
The largest $n$ for which $T^{n} u_{0}$ belongs to $\mathcal{D}$ satisfies
$n<2 \alpha-\frac{3}{2} . \Rightarrow \operatorname{dim} \mathcal{N}_{0}$ is $\left[2 \alpha-\frac{3}{2}\right]+1$.
$w(x)=e^{-x^{2} / 2} \mathcal{D}=$ all polynomials in $x$.
The functions $u_{k}(x)=x^{k}, k=1,2, \ldots$, belong to $\mathcal{D}$ and $T S^{\dagger *} u_{k}=k u_{k}$ for every $k \in \mathbb{N}$.
The subspace $\mathcal{N}_{0}$ coincides in this case with $\mathcal{D}$.
Every complex number $\lambda$ with $\Re \lambda>-\frac{1}{2}$ is an eigenvalue of $N=T S^{\dagger *}$; but the corresponding eigenvector is in $\mathcal{D}$ if and only if $\Re \lambda$ is a natural number.

The subspace $\mathcal{N}_{0}$ spanned by $\left\{T^{k} \xi_{0}, k \in \mathbb{N}\right\}$ can be finite dimensional.

The subspace $\mathcal{N}_{0}$ spanned by $\left\{T^{k} \xi_{0}, k \in \mathbb{N}\right\}$ can be finite dimensional. Thus $N:=\left(T S^{\dagger *}\right)_{0}$ is a bounded symmetric operator on $\mathcal{N}_{0} \cong \mathbb{C}^{n}$, having the numbers $0,1, \ldots, n$ as eigenvalues.

The subspace $\mathcal{N}_{0}$ spanned by $\left\{T^{k} \xi_{0}, k \in \mathbb{N}\right\}$ can be finite dimensional. Thus $N:=\left(T S^{\dagger *}\right)_{0}$ is a bounded symmetric operator on $\mathcal{N}_{0} \cong \mathbb{C}^{n}$, having the numbers $0,1, \ldots, n$ as eigenvalues.

Hence $N$ is positive and thus $\exists$ an operator $C \in \mathcal{B}(\mathcal{N})$ such that $N=C^{\dagger} C$. None of the possible solutions of this operator equation can, however, satisfy the commutation relation $\left[C, C^{\dagger}\right]=\mathbb{1}$, due to Wiener -Wielandt - von Neumann theorem.

The subspace $\mathcal{N}_{0}$ spanned by $\left\{T^{k} \xi_{0}, k \in \mathbb{N}\right\}$ can be finite dimensional. Thus $N:=\left(T S^{\dagger *}\right)_{0}$ is a bounded symmetric operator on $\mathcal{N}_{0} \cong \mathbb{C}^{n}$, having the numbers $0,1, \ldots, n$ as eigenvalues.

Hence $N$ is positive and thus $\exists$ an operator $C \in \mathcal{B}(\mathcal{N})$ such that $N=C^{\dagger} C$. None of the possible solutions of this operator equation can, however, satisfy the commutation relation $\left[C, C^{\dagger}\right]=\mathbb{1}$, due to Wiener -Wielandt - von Neumann theorem.

If $\mathcal{N}_{0}$ is infinite dimensional then $N$ may fail to be symmetric, as the last example shows.

## Intertwining operators

$[S, T]=\mathbb{1}_{\mathcal{D}}$ (weak sense) $\Rightarrow\left[T^{\dagger}, S^{\dagger}\right]=\mathbb{1}_{\mathcal{D}}$ (weak sense).
Assume $\exists$ also $0 \neq \eta_{0} \in \mathcal{D}$ s. t. $T^{\dagger} \eta_{0}=0$ $S^{\dagger} \eta_{0},\left(S^{\dagger}\right)^{2} \eta_{0}, \ldots\left(S^{\dagger}\right)^{m-1} \eta_{0}$ all belong to $\mathcal{D}$.

## Intertwining operators

$[S, T]=\mathbb{1}_{\mathcal{D}}$ (weak sense) $\Rightarrow\left[T^{\dagger}, S^{\dagger}\right]=\mathbb{1}_{\mathcal{D}}$ (weak sense).
Assume $\exists$ also $0 \neq \eta_{0} \in \mathcal{D}$ s. t. $T^{\dagger} \eta_{0}=0$ $S^{\dagger} \eta_{0},\left(S^{\dagger}\right)^{2} \eta_{0}, \ldots\left(S^{\dagger}\right)^{m-1} \eta_{0}$ all belong to $\mathcal{D}$. Consider

$$
M:=S^{\dagger} T^{*}, \quad M^{\sharp}:=T^{*} S^{\dagger} .
$$

$M$ is a number operator on some subspace $\mathcal{M}_{0}$

## Intertwining operators

$[S, T]=\mathbb{1}_{\mathcal{D}}$ (weak sense) $\Rightarrow\left[T^{\dagger}, S^{\dagger}\right]=\mathbb{1}_{\mathcal{D}}$ (weak sense).
Assume $\exists$ also $0 \neq \eta_{0} \in \mathcal{D}$ s. t. $T^{\dagger} \eta_{0}=0$ $S^{\dagger} \eta_{0},\left(S^{\dagger}\right)^{2} \eta_{0}, \ldots\left(S^{\dagger}\right)^{m-1} \eta_{0}$ all belong to $\mathcal{D}$. Consider

$$
M:=S^{\dagger} T^{*}, \quad M^{\sharp}:=T^{*} S^{\dagger} .
$$

$M$ is a number operator on some subspace $\mathcal{M}_{0}$
$m \in \mathbb{N} \cup\{\infty\}:=$ largest number satisfying assumptions

## Intertwining operators

$[S, T]=\mathbb{1}_{\mathcal{D}}$ (weak sense) $\Rightarrow\left[T^{\dagger}, S^{\dagger}\right]=\mathbb{1}_{\mathcal{D}}$ (weak sense).
Assume $\exists$ also $0 \neq \eta_{0} \in \mathcal{D}$ s. t. $T^{\dagger} \eta_{0}=0$ $S^{\dagger} \eta_{0},\left(S^{\dagger}\right)^{2} \eta_{0}, \ldots\left(S^{\dagger}\right)^{m-1} \eta_{0}$ all belong to $\mathcal{D}$. Consider

$$
M:=S^{\dagger} T^{*}, \quad M^{\sharp}:=T^{*} S^{\dagger} .
$$

$M$ is a number operator on some subspace $\mathcal{M}_{0}$
$m \in \mathbb{N} \cup\{\infty\}:=$ largest number satisfying assumptions
$\sigma_{p}(M)=\{0,1, \ldots, m\}$

## Intertwining operators

$[S, T]=\mathbb{1}_{\mathcal{D}}$ (weak sense) $\Rightarrow\left[T^{\dagger}, S^{\dagger}\right]=\mathbb{1}_{\mathcal{D}}$ (weak sense).
Assume $\exists$ also $0 \neq \eta_{0} \in \mathcal{D}$ s. t. $T^{\dagger} \eta_{0}=0$ $S^{\dagger} \eta_{0},\left(S^{\dagger}\right)^{2} \eta_{0}, \ldots\left(S^{\dagger}\right)^{m-1} \eta_{0}$ all belong to $\mathcal{D}$. Consider

$$
M:=S^{\dagger} T^{*}, \quad M^{\sharp}:=T^{*} S^{\dagger} .
$$

$M$ is a number operator on some subspace $\mathcal{M}_{0}$
$m \in \mathbb{N} \cup\{\infty\}:=$ largest number satisfying assumptions
$\sigma_{p}(M)=\{0,1, \ldots, m\}$
Any relation between $n$ and $m$ ? No, in general.
Indeed, the operators $S, T$ considered in the second case of the Example one finds $n=\infty$ and $m=0$.

Assume $n=m=\infty$.
$\xi_{k}:=\frac{1}{\sqrt{k!}} T^{k} \xi_{0}, k=1, \ldots, n \quad \eta_{r}:=\frac{1}{\sqrt{r!}}\left(S^{\dagger}\right)^{r} \eta_{0}, r=1, \ldots, m$.
Choose normalization of $\xi_{0}$ and $\eta_{0}$ s.t. $\left\langle\xi_{0} \mid \eta_{0}\right\rangle=1$.
$\mathcal{F}_{\xi}:=\left\{\xi_{k}\right\}$ and $\mathcal{F}_{\eta}:=\left\{\eta_{r}\right\}$ are biorthogonal: $\left\langle\xi_{i} \mid \eta_{j}\right\rangle=\delta_{i, j}, \quad \forall i, j \in \mathbb{N}$.

Assume $n=m=\infty$.
$\xi_{k}:=\frac{1}{\sqrt{k!}} T^{k} \xi_{0}, k=1, \ldots, n \quad \eta_{r}:=\frac{1}{\sqrt{r!}}\left(S^{\dagger}\right)^{r} \eta_{0}, r=1, \ldots, m$.
Choose normalization of $\xi_{0}$ and $\eta_{0}$ s.t. $\left\langle\xi_{0} \mid \eta_{0}\right\rangle=1$.
$\mathcal{F}_{\xi}:=\left\{\xi_{k}\right\}$ and $\mathcal{F}_{\eta}:=\left\{\eta_{r}\right\}$ are biorthogonal: $\left\langle\xi_{i} \mid \eta_{j}\right\rangle=\delta_{i, j}, \quad \forall i, j \in \mathbb{N}$.
Define intertwining operators:
$K_{\xi}\left(\eta_{j}\right)=\xi_{j}, j \in \mathbb{N} \quad K_{\eta}\left(\xi_{j}\right)=\eta_{j}, j \in \mathbb{N}$.
$K_{\eta}=K_{\xi}^{-1}$, both unbounded in general; they obey intertwining relations:

$$
\begin{aligned}
& K_{\eta} N \phi=M K_{\eta} \phi, \forall \phi \in \mathcal{M}_{0} ; \\
& K_{\xi} M \psi=N K_{\xi} \psi, \forall \psi \in \mathcal{N}_{0} .
\end{aligned}
$$

Assume $n=m=\infty$.
$\xi_{k}:=\frac{1}{\sqrt{k!}} T^{k} \xi_{0}, k=1, \ldots, n \quad \eta_{r}:=\frac{1}{\sqrt{r!}}\left(S^{\dagger}\right)^{r} \eta_{0}, r=1, \ldots, m$.
Choose normalization of $\xi_{0}$ and $\eta_{0}$ s.t. $\left\langle\xi_{0} \mid \eta_{0}\right\rangle=1$.
$\mathcal{F}_{\xi}:=\left\{\xi_{k}\right\}$ and $\mathcal{F}_{\eta}:=\left\{\eta_{r}\right\}$ are biorthogonal: $\left\langle\xi_{i} \mid \eta_{j}\right\rangle=\delta_{i, j}, \quad \forall i, j \in \mathbb{N}$.
Define intertwining operators:
$K_{\xi}\left(\eta_{j}\right)=\xi_{j}, j \in \mathbb{N} \quad K_{\eta}\left(\xi_{j}\right)=\eta_{j}, j \in \mathbb{N}$.
$K_{\eta}=K_{\xi}^{-1}$, both unbounded in general; they obey intertwining relations:

$$
\begin{aligned}
& K_{\eta} N \phi=M K_{\eta} \phi, \forall \phi \in \mathcal{M}_{0} ; \\
& K_{\xi} M \psi=N K_{\xi} \psi, \forall \psi \in \mathcal{N}_{0} .
\end{aligned}
$$

If $\mathcal{N}_{0}=\mathcal{M}_{0}=\mathcal{H}$ and $K_{\xi}, K_{\eta}$ bounded, then $\mathcal{F}_{\xi}$ and $\mathcal{F}_{\eta}$ are Riesz bases of $\mathcal{H}$ : $\exists c, C>0$ such that

$$
c \sum_{j}\left|a_{j}\right|^{2} \leqslant\left\|\sum_{j} a_{j} \xi_{j}\right\|^{2} \leqslant C \sum_{j}\left|a_{j}\right|^{2}, \forall\left\{a_{n}\right\} \in \ell^{2}
$$

and they span $\mathcal{H}$.

Assume $n=m=\infty$.
$\xi_{k}:=\frac{1}{\sqrt{k!}} T^{k} \xi_{0}, k=1, \ldots, n \quad \eta_{r}:=\frac{1}{\sqrt{r!}}\left(S^{\dagger}\right)^{r} \eta_{0}, r=1, \ldots, m$.
Choose normalization of $\xi_{0}$ and $\eta_{0}$ s.t. $\left\langle\xi_{0} \mid \eta_{0}\right\rangle=1$.
$\mathcal{F}_{\xi}:=\left\{\xi_{k}\right\}$ and $\mathcal{F}_{\eta}:=\left\{\eta_{r}\right\}$ are biorthogonal: $\left\langle\xi_{i} \mid \eta_{j}\right\rangle=\delta_{i, j}, \quad \forall i, j \in \mathbb{N}$.
Define intertwining operators:
$K_{\xi}\left(\eta_{j}\right)=\xi_{j}, j \in \mathbb{N} \quad K_{\eta}\left(\xi_{j}\right)=\eta_{j}, j \in \mathbb{N}$.
$K_{\eta}=K_{\xi}^{-1}$, both unbounded in general; they obey intertwining relations:

$$
\begin{aligned}
& K_{\eta} N \phi=M K_{\eta} \phi, \forall \phi \in \mathcal{M}_{0} \\
& K_{\xi} M \psi=N K_{\xi} \psi, \forall \psi \in \mathcal{N}_{0}
\end{aligned}
$$

If $\mathcal{N}_{0}=\mathcal{M}_{0}=\mathcal{H}$ and $K_{\xi}, K_{\eta}$ bounded, then $\mathcal{F}_{\xi}$ and $\mathcal{F}_{\eta}$ are Riesz bases of $\mathcal{H}$ :
$\exists c, C>0$ such that

$$
c \sum_{j}\left|a_{j}\right|^{2} \leqslant\left\|\sum_{j} a_{j} \xi_{j}\right\|^{2} \leqslant C \sum_{j}\left|a_{j}\right|^{2}, \forall\left\{a_{n}\right\} \in \ell^{2}
$$

and they span $\mathcal{H}$.
An orthonormal basis $\mathcal{E}=\left\{e_{j}\right\}$ can be defined by, for instance, $e_{j}=K_{\eta}^{1 / 2} \xi_{j}$.

## Some consequences of (CR.3)

Assume $[S, T]=\mathbb{1}_{\mathcal{D}}$ in quasi-strong sense; i.e.

$$
\left\langle V_{S}(\alpha) T \xi \mid \eta\right\rangle-\left\langle V_{S}(\alpha) \xi \mid T^{\dagger} \eta\right\rangle=\alpha\left\langle V_{S}(\alpha) \xi \mid \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D} ; \alpha \geqslant 0
$$

Apply the Cauchy-Schwarz inequality $(\xi=\eta) \Rightarrow \forall z \in \mathbb{C}, \alpha \geqslant 0$,

$$
\begin{equation*}
\alpha\left|\left\langle V_{S}(\alpha) \xi \mid \xi\right\rangle\right| \leqslant 2 \max \left\{\|(T-z) \xi\|,\left\|\left(T^{\dagger}-\bar{z}\right) \xi\right\|\right\} \max \left\{\left\|V_{S}(\alpha) \xi\right\|,\left\|V_{S}(\alpha)^{*} \xi\right\|\right\} . \tag{1}
\end{equation*}
$$

## Some consequences of (CR.3)

Assume $[S, T]=\mathbb{1}_{\mathcal{D}}$ in quasi-strong sense; i.e.

$$
\left\langle V_{S}(\alpha) T \xi \mid \eta\right\rangle-\left\langle V_{S}(\alpha) \xi \mid T^{\dagger} \eta\right\rangle=\alpha\left\langle V_{S}(\alpha) \xi \mid \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D} ; \alpha \geqslant 0
$$

Apply the Cauchy-Schwarz inequality $(\xi=\eta) \Rightarrow \forall z \in \mathbb{C}, \alpha \geqslant 0$,

$$
\begin{equation*}
\alpha\left|\left\langle V_{S}(\alpha) \xi \mid \xi\right\rangle\right| \leqslant 2 \max \left\{\|(T-z) \xi\|,\left\|\left(T^{\dagger}-\bar{z}\right) \xi\right\|\right\} \max \left\{\left\|V_{S}(\alpha) \xi\right\|,\left\|V_{S}(\alpha)^{*} \xi\right\|\right\} . \tag{1}
\end{equation*}
$$

Consequences:

## Some consequences of (CR.3)

Assume $[S, T]=\mathbb{1}_{\mathcal{D}}$ in quasi-strong sense; i.e.

$$
\left\langle V_{S}(\alpha) T \xi \mid \eta\right\rangle-\left\langle V_{S}(\alpha) \xi \mid T^{\dagger} \eta\right\rangle=\alpha\left\langle V_{S}(\alpha) \xi \mid \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D} ; \alpha \geqslant 0
$$

Apply the Cauchy-Schwarz inequality $(\xi=\eta) \Rightarrow \forall z \in \mathbb{C}, \alpha \geqslant 0$,

$$
\begin{equation*}
\alpha\left|\left\langle V_{S}(\alpha) \xi \mid \xi\right\rangle\right| \leqslant 2 \max \left\{\|(T-z) \xi\|,\left\|\left(T^{\dagger}-\bar{z}\right) \xi\right\|\right\} \max \left\{\left\|V_{S}(\alpha) \xi\right\|,\left\|V_{S}(\alpha)^{*} \xi\right\|\right\} . \tag{1}
\end{equation*}
$$

Consequences:

- if $T=T^{\dagger} \Rightarrow \sigma_{p}(T)=\emptyset$.


## Some consequences of (CR.3)

Assume $[S, T]=\mathbb{1}_{\mathcal{D}}$ in quasi-strong sense; i.e.

$$
\left\langle V_{S}(\alpha) T \xi \mid \eta\right\rangle-\left\langle V_{S}(\alpha) \xi \mid T^{\dagger} \eta\right\rangle=\alpha\left\langle V_{S}(\alpha) \xi \mid \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D} ; \alpha \geqslant 0
$$

Apply the Cauchy-Schwarz inequality $(\xi=\eta) \Rightarrow \forall z \in \mathbb{C}, \alpha \geqslant 0$,

$$
\begin{equation*}
\alpha\left|\left\langle V_{S}(\alpha) \xi \mid \xi\right\rangle\right| \leqslant 2 \max \left\{\|(T-z) \xi\|,\left\|\left(T^{\dagger}-\bar{z}\right) \xi\right\|\right\} \max \left\{\left\|V_{S}(\alpha) \xi\right\|,\left\|V_{S}(\alpha)^{*} \xi\right\|\right\} \tag{1}
\end{equation*}
$$

Consequences:

- if $T=T^{\dagger} \Rightarrow \sigma_{p}(T)=\emptyset$.
- If $V_{S}$ uniformly bounded, i.e. $\left\|V_{S}(\alpha)\right\| \leqslant M, \forall \alpha \geqslant 0$, (e.g. $V_{S}$ isometries or contractions), by (1) $\lim _{\alpha \rightarrow \infty}\left|\left\langle V_{S}(\alpha) \xi \mid \xi\right\rangle\right|=0, \quad \forall \xi \in \mathcal{H}$.


## Some consequences of (CR.3)

Assume $[S, T]=\mathbb{1}_{\mathcal{D}}$ in quasi-strong sense; i.e.

$$
\left\langle V_{S}(\alpha) T \xi \mid \eta\right\rangle-\left\langle V_{S}(\alpha) \xi \mid T^{\dagger} \eta\right\rangle=\alpha\left\langle V_{S}(\alpha) \xi \mid \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D} ; \alpha \geqslant 0
$$

Apply the Cauchy-Schwarz inequality $(\xi=\eta) \Rightarrow \forall z \in \mathbb{C}, \alpha \geqslant 0$,

$$
\begin{equation*}
\alpha\left|\left\langle V_{S}(\alpha) \xi \mid \xi\right\rangle\right| \leqslant 2 \max \left\{\|(T-z) \xi\|,\left\|\left(T^{\dagger}-\bar{z}\right) \xi\right\|\right\} \max \left\{\left\|V_{S}(\alpha) \xi\right\|,\left\|V_{S}(\alpha)^{*} \xi\right\|\right\} \tag{1}
\end{equation*}
$$

Consequences:

- if $T=T^{\dagger} \Rightarrow \sigma_{p}(T)=\emptyset$.
- If $V_{S}$ uniformly bounded, i.e. $\left\|V_{S}(\alpha)\right\| \leqslant M, \forall \alpha \geqslant 0$, (e.g. $V_{S}$ isometries or contractions), by (1) $\lim _{\alpha \rightarrow \infty}\left|\left\langle V_{S}(\alpha) \xi \mid \xi\right\rangle\right|=0, \quad \forall \xi \in \mathcal{H}$.
- $V_{S}$ semigroup of contractions (i.e., $\left.\left\|V_{S}(\alpha)\right\| \leqslant 1\right), \forall \alpha \geqslant 0 \Rightarrow$ every eigenvalue of $S$ has negative real part.


## Some consequences of (CR.3)

Assume $[S, T]=\mathbb{1}_{\mathcal{D}}$ in quasi-strong sense; i.e.

$$
\left\langle V_{S}(\alpha) T \xi \mid \eta\right\rangle-\left\langle V_{S}(\alpha) \xi \mid T^{\dagger} \eta\right\rangle=\alpha\left\langle V_{S}(\alpha) \xi \mid \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D} ; \alpha \geqslant 0
$$

Apply the Cauchy-Schwarz inequality $(\xi=\eta) \Rightarrow \forall z \in \mathbb{C}, \alpha \geqslant 0$,

$$
\begin{equation*}
\alpha\left|\left\langle V_{S}(\alpha) \xi \mid \xi\right\rangle\right| \leqslant 2 \max \left\{\|(T-z) \xi\|,\left\|\left(T^{\dagger}-\bar{z}\right) \xi\right\|\right\} \max \left\{\left\|V_{S}(\alpha) \xi\right\|,\left\|V_{S}(\alpha)^{*} \xi\right\|\right\} \tag{1}
\end{equation*}
$$

Consequences:

- if $T=T^{\dagger} \Rightarrow \sigma_{p}(T)=\emptyset$.
- If $V_{S}$ uniformly bounded, i.e. $\left\|V_{S}(\alpha)\right\| \leqslant M, \forall \alpha \geqslant 0$, (e.g. $V_{S}$ isometries or contractions), by (1) $\lim _{\alpha \rightarrow \infty}\left|\left\langle V_{S}(\alpha) \xi \mid \xi\right\rangle\right|=0, \quad \forall \xi \in \mathcal{H}$.
- $V_{S}$ semigroup of contractions (i.e., $\left.\left\|V_{S}(\alpha)\right\| \leqslant 1\right), \forall \alpha \geqslant 0 \Rightarrow$ every eigenvalue of $S$ has negative real part.

Corollary (Miyamoto's result) If the generator $X$ of $V_{S}$ has the form $X=i H$ where $H$ is a self-adjoint operator, then $\sigma_{p}(H)=\emptyset$.

## Time operators

Schmüdgen studied pairs of operators $(T, H)$
$T$ symmetric, $H$ self-adjoint s.t.

- $e^{-i t H} D(T) \subseteq D(T)$;
- $T e^{-i t H} \xi=e^{-i t H}(T+t) \xi$
$T, H$ regarded as members of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ with $\mathcal{D}=D(T) \cap D(S)$.
This is equivalent to the operators $T, S:=i H$ satisfy $[S, T]=\mathbb{1}$ in quasi-strong sense


## Definition

$T$ is time operator for $H$ if $(T, H)$ satisfies the two conditions above.

Schmüdgen studied pairs of operators $(T, H)$ $T$ symmetric, $H$ self-adjoint s.t.

- $e^{-i t H} D(T) \subseteq D(T)$;
- $T e^{-i t H} \xi=e^{-i t H}(T+t) \xi$
$T, H$ regarded as members of $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ with $\mathcal{D}=D(T) \cap D(S)$.
This is equivalent to the operators $T, S:=i H$ satisfy $[S, T]=\mathbb{1}$ in quasi-strong sense


## Definition

$T$ is time operator for $H$ if $(T, H)$ satisfies the two conditions above.
In many examples, mostly taken from Physics, $H$ is a semibounded operator ( $H$ the Hamiltionian of some physical system).

# Theorem 

(Arai) $H=H^{*}, H$ semibounded. Then no time operator $T$ of $H$ can be essentially self-adjoint.

Indeed, the spectrum $\sigma(T)$ is one of the following sets

## Theorem

(Arai) $H=H^{*}, H$ semibounded. Then no time operator $T$ of $H$ can be essentially self-adjoint.

Indeed, the spectrum $\sigma(T)$ is one of the following sets

- $\mathbb{C}$, if $H$ is bounded


## Theorem

(Arai) $H=H^{*}, H$ semibounded. Then no time operator $T$ of $H$ can be essentially self-adjoint.

Indeed, the spectrum $\sigma(T)$ is one of the following sets

- $\mathbb{C}$, if $H$ is bounded
- $\mathbb{C}$ or $\overline{\Pi_{+}}=\{z \in \mathbb{C}: \Im z \geqslant 0\}$ if $H$ is bounded below


## Theorem

(Arai) $H=H^{*}, H$ semibounded. Then no time operator $T$ of $H$ can be essentially self-adjoint.

Indeed, the spectrum $\sigma(T)$ is one of the following sets

- $\mathbb{C}$, if $H$ is bounded
- $\mathbb{C}$ or $\overline{\Pi_{+}}=\{z \in \mathbb{C}: \Im z \geqslant 0\}$ if $H$ is bounded below
- $\mathbb{C}$ or $\overline{\Pi_{-}}=\{z \in \mathbb{C}: \Im z \leqslant 0\}$ if $H$ is bounded above.


## Theorem

(Arai) $H=H^{*}, H$ semibounded. Then no time operator $T$ of $H$ can be essentially self-adjoint.

Indeed, the spectrum $\sigma(T)$ is one of the following sets

- $\mathbb{C}$, if $H$ is bounded
- $\mathbb{C}$ or $\bar{\Pi}_{+}=\{z \in \mathbb{C}: \Im z \geqslant 0\}$ if $H$ is bounded below
- $\mathbb{C}$ or $\overline{\Pi_{-}}=\{z \in \mathbb{C}: \Im z \leqslant 0\}$ if $H$ is bounded above.

Question: Which one is realized, depending on properties of $H$ ?

## Examples

$I$ interval of the real line. Denote by $q$ the multiplication operator on $L^{2}(I)$ by the variable $x \in I$
$q$ is selfadjoint.

## Examples

$I$ interval of the real line. Denote by $q$ the multiplication operator on $L^{2}(I)$ by the variable $x \in I$
$q$ is selfadjoint.
Let $p$ be the operator on $L^{2}(I)$ defined as follows:
$D(p):=C_{c}^{\infty}(I)$
$(p g)(x):=-i g^{\prime}(x), \quad g \in D(p)$

## Examples

$I$ interval of the real line. Denote by $q$ the multiplication operator on
$L^{2}(I)$ by the variable $x \in I$
$q$ is selfadjoint.
Let $p$ be the operator on $L^{2}(I)$ defined as follows:
$D(p):=C_{c}^{\infty}(I)$
$(p g)(x):=-i g^{\prime}(x), \quad g \in D(p)$
CASE 1: $I=[0, \infty) q$ is positive; $-p$ is time operator of $q$ and $\sigma(-p)=\bar{\Pi}_{+}$.

## Examples

$I$ interval of the real line. Denote by $q$ the multiplication operator on
$L^{2}(I)$ by the variable $x \in I$
$q$ is selfadjoint.
Let $p$ be the operator on $L^{2}(I)$ defined as follows:
$D(p):=C_{c}^{\infty}(I)$
$(p g)(x):=-i g^{\prime}(x), \quad g \in D(p)$
CASE 1: $I=[0, \infty) q$ is positive; $-p$ is time operator of $q$ and $\sigma(-p)=\overline{\Pi_{+}}$.

CASE 2: $I=(-L / 2, L / 2), L>0$
$q$ is a bounded self-adjoint operator.
$-p$ is a time operator of $q$ and $\sigma(-p)=\mathbb{C}$.

## Relaxing assumptions

The assumption $e^{-i t H} D(T) \subseteq D(T)$ is quite strong.
Try to relax it! (Bagarello, Inoue, CT, 2012)

## Definition

$\{S, T\} \subset \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) ; S=S^{\dagger} ; T=T^{\dagger}$
$\{S, T\}$ satisfy weak Weyl commutation relation if $\exists H$ self-adjoint extension of $S$ such that

## Relaxing assumptions

The assumption $e^{-i t H} D(T) \subseteq D(T)$ is quite strong.
Try to relax it! (Bagarello, Inoue, CT, 2012)

## Definition

$\{S, T\} \subset \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) ; S=S^{\dagger} ; T=T^{\dagger}$
$\{S, T\}$ satisfy weak Weyl commutation relation if $\exists H$ self-adjoint extension of $S$ such that

- $D(\bar{T}) \subset D(H)$


## Relaxing assumptions

The assumption $e^{-i t H} D(T) \subseteq D(T)$ is quite strong.
Try to relax it! (Bagarello, Inoue, CT, 2012)

## Definition

$\{S, T\} \subset \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) ; S=S^{\dagger} ; T=T^{\dagger}$
$\{S, T\}$ satisfy weak Weyl commutation relation if $\exists H$ self-adjoint extension of $S$ such that

- $D(\bar{T}) \subset D(H)$
- $\left\langle e^{-i t H} \xi \mid T \eta\right\rangle=\left\langle(T+t) \xi \mid e^{i t H} \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D}, \forall t \in \mathbb{R}$.
$H$ := weak Weyl extension of $S$.


## Relaxing assumptions

The assumption $e^{-i t H} D(T) \subseteq D(T)$ is quite strong.
Try to relax it! (Bagarello, Inoue, CT, 2012)

## Definition

$\{S, T\} \subset \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) ; S=S^{\dagger} ; T=T^{\dagger}$
$\{S, T\}$ satisfy weak Weyl commutation relation if $\exists H$ self-adjoint extension of $S$ such that

- $D(\bar{T}) \subset D(H)$
- $\left\langle e^{-i t H} \xi \mid T \eta\right\rangle=\left\langle(T+t) \xi \mid e^{i t H} \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D}, \forall t \in \mathbb{R}$.
$H:=$ weak Weyl extension of $S$. Results:


## Relaxing assumptions

The assumption $e^{-i t H} D(T) \subseteq D(T)$ is quite strong.
Try to relax it! (Bagarello, Inoue, CT, 2012)

## Definition

$\{S, T\} \subset \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) ; S=S^{\dagger} ; T=T^{\dagger}$
$\{S, T\}$ satisfy weak Weyl commutation relation if $\exists H$ self-adjoint extension of $S$ such that

- $D(\bar{T}) \subset D(H)$
- $\left\langle e^{-i t H} \xi \mid T \eta\right\rangle=\left\langle(T+t) \xi \mid e^{i t H} \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D}, \forall t \in \mathbb{R}$.
$H:=$ weak Weyl extension of $S$. Results:
- Suppose $T$ essentially self-adj. Then $\{H, \bar{T}\}$ satisfy the Weyl commutation relations

$$
e^{i t H} e^{-i s \bar{T}}=e^{i s t} e^{-i s \bar{T}} e^{i t H}, \quad \forall s, t \in \mathbb{R}
$$

## Relaxing assumptions

The assumption $e^{-i t H} D(T) \subseteq D(T)$ is quite strong.
Try to relax it! (Bagarello, Inoue, CT, 2012)

## Definition

$\{S, T\} \subset \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) ; S=S^{\dagger} ; T=T^{\dagger}$
$\{S, T\}$ satisfy weak Weyl commutation relation if $\exists H$ self-adjoint extension of $S$ such that

- $D(\bar{T}) \subset D(H)$
- $\left\langle e^{-i t H} \xi \mid T \eta\right\rangle=\left\langle(T+t) \xi \mid e^{i t H} \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D}, \forall t \in \mathbb{R}$.
$H$ := weak Weyl extension of $S$. Results:
- Suppose $T$ essentially self-adj. Then $\{H, \bar{T}\}$ satisfy the Weyl commutation relations

$$
e^{i t H} e^{-i s \bar{T}}=e^{i s t} e^{-i s \bar{T}} e^{i t H}, \quad \forall s, t \in \mathbb{R}
$$

- If $H$ is semibounded then $T$ is not essentially selfadj.


## Relaxing assumptions

The assumption $e^{-i t H} D(T) \subseteq D(T)$ is quite strong.
Try to relax it! (Bagarello, Inoue, CT, 2012)

## Definition

$\{S, T\} \subset \mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H}) ; S=S^{\dagger} ; T=T^{\dagger}$
$\{S, T\}$ satisfy weak Weyl commutation relation if $\exists H$ self-adjoint extension of $S$ such that

- $D(\bar{T}) \subset D(H)$
- $\left\langle e^{-i t H} \xi \mid T \eta\right\rangle=\left\langle(T+t) \xi \mid e^{i t H} \eta\right\rangle, \quad \forall \xi, \eta \in \mathcal{D}, \forall t \in \mathbb{R}$.
$H$ := weak Weyl extension of $S$. Results:
- Suppose $T$ essentially self-adj. Then $\{H, \bar{T}\}$ satisfy the Weyl commutation relations

$$
e^{i t H} e^{-i s \bar{T}}=e^{i s t} e^{-i s \bar{T}} e^{i t H}, \quad \forall s, t \in \mathbb{R}
$$

- If $H$ is semibounded then $T$ is not essentially selfadj.
- $H$ semibounded, $\mathcal{D}^{\infty}\left(T^{*}\right) \subset D(\bar{T})$. Then $\sigma(T)=\mathbb{C}$.


## Nonlinear extension

Generalization of condition (CR2)
$\left\{\varphi_{n}\right\},\left\{\psi_{n}\right\}$ two biorthogonal bases contained in $\mathcal{D}$ and

$$
X=\sum_{k=0}^{\infty} \alpha_{k}\left(\psi_{k} \otimes \overline{\varphi_{k}}\right)
$$

$\left\{\alpha_{n}\right\}$ a sequence of positive real numbers.
Assume $\mathcal{D} \subset D(X)$.

Generalization of condition (CR2)
$\left\{\varphi_{n}\right\},\left\{\psi_{n}\right\}$ two biorthogonal bases contained in $\mathcal{D}$ and

$$
X=\sum_{k=0}^{\infty} \alpha_{k}\left(\psi_{k} \otimes \overline{\varphi_{k}}\right)
$$

$\left\{\alpha_{n}\right\}$ a sequence of positive real numbers.
Assume $\mathcal{D} \subset D(X)$.
$S$ and $T$ satisfy the nonlinear CR .2 if, $\forall \xi, \eta \in \mathcal{D}$,

$$
\begin{equation*}
\left\langle T \xi \mid S^{\dagger} \eta\right\rangle-\left\langle S \xi \mid T^{\dagger} \eta\right\rangle=\langle\xi \mid X \eta\rangle \tag{2}
\end{equation*}
$$

$S$ and $T^{\dagger}$ act as raising operators on bases vectors; $S^{\dagger}$ and $T$ as lowering operators, but squares of eigenvalues do not depend linearly on $n$
An analysis similar to the case $X=\mathbb{1}_{\mathcal{D}}$ can be done; some results extend (with more constraints) to this nonlinear situation.

