Non-hermitian Hamiltonians and the Painlevé IV equation

David Bermudez

Physics department
Cinvestav, Mexico

Non-Hermitian Operators in Quantum Physics
Paris, France
August 28, 2012

Topics in the talk

(1) SUSY QM and PHA

- Factorization method
- Real k-th order SUSY QM
- Polynomial Heisenberg algebras (PHA)
(2) Solutions to $P_{I V}$ with real parameters
- Real solutions of $P_{I V}$ with real parameters
- Complex solutions to $P_{I V}$ with real parameters
- Non-hermitian Hamiltonians
(3) Solutions to PIV with complex parameters
- Complex SUSY QM
- Non-hermitian Hamiltonians

Topics in the talk

(1) SUSY QM and PHA

- Factorization method
- Real k-th order SUSY QM
- Polynomial Heisenberg algebras (PHA)
(2) Solutions to PIV with real parameters
- Real solutions of $P_{I V}$ with real parameters
- Complex solutions to $P_{I V}$ with real parameters
- Non-hermitian Hamiltonians
(3) Solutions to PIV with complex parameters
- Complex SUSY QM
- Non-hermitian Hamiltonians

Introduction

$$
\begin{equation*}
H \psi=E \psi \tag{1}
\end{equation*}
$$

－In quantum mechanics one must solve an eigenvalue problem to describe a stationary system．
－This involves solving a second order differential equation with boundary conditions．

How do we solve it？

One elegant procedure consists in using the factorization method．
One factorizes a Hamiltonian into first－order differential operators A generalization of the method gives rise to new solvable Hamiltonians．

Introduction

$$
\begin{equation*}
H \psi=E \psi \tag{1}
\end{equation*}
$$

- In quantum mechanics one must solve an eigenvalue problem to describe a stationary system.
- This involves solving a second order differential equation with boundary conditions.

How do we solve it?

One elegant procedure consists in using the factorization method.
One factorizes a Hamiltonian into first-order differential operators A generalization of the method gives rise to new solvable Hamiltonians.

Introduction

$$
\begin{equation*}
H \psi=E \psi \tag{1}
\end{equation*}
$$

- In quantum mechanics one must solve an eigenvalue problem to describe a stationary system.
- This involves solving a second order differential equation with boundary conditions.

How do we solve it?

One elegant procedure consists in using the factorization method.
One factorizes a Hamiltonian into first-order differential operators. A generalization of the method gives rise to new solvable Hamiltonians.

Real k-th order SUSY QM

One starts from a given solvable Hamiltonian

$$
\begin{equation*}
H_{0}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+V_{0}(x) \tag{2}
\end{equation*}
$$

and generates a chain of intertwining relations

$$
\begin{align*}
H_{j} A_{j}^{+} & =A_{j}^{+} H_{j-1}, \quad H_{j-1} A_{j}^{-}=A_{j}^{-} H_{j} \tag{3}\\
H_{j} & =-\frac{1}{2} \frac{d^{2}}{d x^{2}}+V_{j}(x) \tag{4}\\
A_{j}^{ \pm} & =\frac{1}{\sqrt{2}}\left[\mp \frac{d}{d x}+\alpha_{j}\left(x, \epsilon_{j}\right)\right], \quad j=1, \ldots, k \tag{5}
\end{align*}
$$

Hence, the following equations must be satisfied

$$
\begin{align*}
& \alpha_{j}^{\prime}\left(x, \epsilon_{j}\right)+\alpha_{j}^{2}\left(x, \epsilon_{j}\right)=2\left[V_{j-1}(x)-\epsilon_{j}\right] \tag{6}\\
& V_{j}(x)=V_{j-1}(x)-\alpha_{j}^{\prime}\left(x, \epsilon_{j}\right) \tag{7}
\end{align*}
$$

Polynomial Heisenberg algebras (PHA)

Second-order PHA

$$
\begin{align*}
{\left[H, L^{ \pm}\right] } & = \pm L^{ \pm} \tag{8}\\
{\left[L^{-}, L^{+}\right] } & \equiv Q_{3}(H+1)-Q_{3}(H)=P_{2}(H) \tag{9}
\end{align*}
$$

Closed chain

We get two different factorizations of the same Hamiltonians plus the closure condition

Polynomial Heisenberg algebras (PHA)

Second-order PHA

$$
\begin{align*}
{\left[H, L^{ \pm}\right] } & = \pm L^{ \pm} \tag{8}\\
{\left[L^{-}, L^{+}\right] } & \equiv Q_{3}(H+1)-Q_{3}(H)=P_{2}(H) \tag{9}
\end{align*}
$$

Closed chain

$$
\begin{align*}
L^{-}= & L_{3}^{-} L_{2}^{-} L_{1}^{-} \tag{10}\\
L_{i}^{-}= & \frac{1}{\sqrt{2}}\left(-\partial-f_{i}\right), \quad i=1,2,3, \tag{11}\\
& H_{i+1} L_{i}^{+}=L_{i}^{+} H_{i}, \tag{12}\\
& H_{i} L_{i}^{-}=L_{i}^{-} H_{i+1}, \tag{13}
\end{align*}
$$

We get two different factorizations of the same Hamiltonians plus the closure condition

$$
\begin{align*}
& H_{i+1}=L_{i}^{+} L_{i}^{-}+\mathcal{E}_{i}=L_{i+1}^{-} L_{i+1}^{+}+\mathcal{E}_{i+1} \cdot \quad i=1,2 \tag{14}\\
& H_{4}=L_{3}^{+} L_{3}^{-}+\mathcal{E}_{3}=H_{1}-1=L_{1}^{-} L_{1}^{+}+\mathcal{E}_{1}-1 \tag{15}
\end{align*}
$$

Closed chain diagram

Figure: Diagram of the two equivalent SUSY transformation. Above, the three step first-order operators; below, the one third-order operator.

Painlevé IV equation ($P_{I V}$)

Solving the system of three differential equations and defining $g \equiv f_{1}-x$ one gets

$$
\begin{equation*}
g g^{\prime \prime}=\frac{1}{2}\left(g^{\prime}\right)^{2}+\frac{3}{2} g^{4}+4 g^{3} x+2 g^{2}\left(x^{2}-a\right)+b, \tag{16}
\end{equation*}
$$

which is the Painlevé IV equation ($P_{I V}$) with parameters

$$
\begin{equation*}
a=\frac{\mathcal{E}_{2}+\mathcal{E}_{3}}{2}-\mathcal{E}_{1}-1, \quad b=-\frac{\left(\mathcal{E}_{3}-\mathcal{E}_{2}\right)^{2}}{2} . \tag{17}
\end{equation*}
$$

In general $g \in \mathbb{C}$. Besides, $\mathcal{E}_{i} \in \mathbb{C}$ which implies that $a, b \in \mathbb{C}$ and so g is a complex solution to $P_{I V}$ associated with the complex parameters a, b. More on this in the third section.

Topics in the talk

(1) SUSY QM and PHA

- Factorization method
- Real k-th order SUSY QM
- Polynomial Heisenberg algebras (PHA)
(2) Solutions to $P_{I V}$ with real parameters
- Real solutions of $P_{I V}$ with real parameters
- Complex solutions to $P_{I V}$ with real parameters
- Non-hermitian Hamiltonians
(3) Solutions to PIV with complex parameters
- Complex SUSY QM
- Non-hermitian Hamiltonians

Real solutions of $P_{I V}$ with real parameters

The first-order SUSY partner of the harmonic oscillator have second-order PHA.

$$
\begin{gather*}
u(x ; \epsilon)=e^{-x^{2} / 2}\left[{ }_{1} F_{1}\left(\frac{1-2 \epsilon}{4}, \frac{1}{2} ; x^{2}\right)+2 x \nu \frac{\Gamma\left(\frac{3-2 \epsilon}{4}\right)}{\Gamma\left(\frac{1-2 \epsilon}{4}\right)}{ }_{1} F_{1}\left(\frac{3-2 \epsilon}{4}, \frac{3}{2} ; x^{2}\right)\right], \\
g\left(x ; \epsilon_{1}\right)=-x-\left\{\ln \left[\psi_{\mathcal{E}_{1}}(x)\right]\right\}^{\prime} . \tag{18}
\end{gather*}
$$

The energies of the extremal states of H_{1} are

Real solutions of $P_{I V}$ with real parameters

The first-order SUSY partner of the harmonic oscillator have second-order PHA.

$$
\begin{gather*}
u(x ; \epsilon)=e^{-x^{2} / 2}\left[{ }_{1} F_{1}\left(\frac{1-2 \epsilon}{4}, \frac{1}{2} ; x^{2}\right)+2 x \nu \frac{\Gamma\left(\frac{3-2 \epsilon}{4}\right)}{\Gamma\left(\frac{1-2 \epsilon}{4}\right)}{ }_{1} F_{1}\left(\frac{3-2 \epsilon}{4}, \frac{3}{2} ; x^{2}\right)\right], \\
g\left(x ; \epsilon_{1}\right)=-x-\left\{\ln \left[\psi_{\mathcal{E}_{1}}(x)\right]\right\}^{\prime} . \tag{18}
\end{gather*}
$$

The energies of the extremal states of H_{1} are

$$
\begin{equation*}
\mathcal{E}_{1}=\epsilon_{1}, \quad \mathcal{E}_{2}=\frac{1}{2}, \quad \mathcal{E}_{3}=\epsilon_{1}+1 \tag{19}
\end{equation*}
$$

Energy spectrum and solution parameter space (a, b)

Solutions to $P_{I V}$ through higher-order SUSY

There is a theorem stating the conditions for the hermitian higher-order SUSY partners of the harmonic oscillator to be reducible to the second-order PHA.
The main requirement is for the transformation functions

where a^{-}is the standard annihilation operator of H_{0} so that the only free seed is u_{1} without roots, associated to a real factorization energy ϵ_{1} such that $\epsilon_{1}<E_{0}=1 / 2$. The energies of the extremal states of H_{k} are

Solutions to $P_{I V}$ through higher-order SUSY

There is a theorem stating the conditions for the hermitian higher-order SUSY partners of the harmonic oscillator to be reducible to the second-order PHA.
The main requirement is for the transformation functions

$$
\begin{align*}
& u_{j}=\left(a^{-}\right)^{j-1} u_{1}, \tag{20}\\
& \epsilon_{j}=\epsilon_{1}-(j-1), \quad j=1, \ldots, k, \tag{21}
\end{align*}
$$

where a^{-}is the standard annihilation operator of H_{0} so that the only free seed is u_{1} without roots, associated to a real factorization energy ϵ_{1} such that $\epsilon_{1}<E_{0}=1 / 2$. The energies of the extremal states of H_{k} are

$$
\begin{equation*}
\mathcal{E}_{1}=\epsilon_{k}=\epsilon_{1}-(k-1), \quad \mathcal{E}_{2}=\frac{1}{2}, \quad \mathcal{E}_{3}=\epsilon_{1}+1 \tag{22}
\end{equation*}
$$

Energy spectra and solution parameter space (a, b)

Cinvestav
ba@

$P_{\text {IV }}$ solution hierarchies

$P_{I V}$ solutions can be classified into three hierarchies according to the functions they depend on as:

- Confluent hypergeometric function $\left({ }_{1} F_{1}\right)$ hierarchy.
- Complementary error function (erf) hierarchy.
- Rational hierarchy (P / Q) hierarchy.

Solution parameter space (a, b)

Real solutions to $P_{I V}$

Complex solution to $P_{I V}$ with real parameters

Now, we intend to overcome the restriction $\epsilon_{1}<E_{0}=1 / 2$, but still obtain non-singular SUSY transformations.

How do we accomplish this?
Using complex SUSY transformations.

And how do we implement them?
The simplest way is with a complex linear combination as

Complex solution to $P_{I V}$ with real parameters

Now, we intend to overcome the restriction $\epsilon_{1}<E_{0}=1 / 2$, but still obtain non-singular SUSY transformations.

How do we accomplish this?
Using complex SUSY transformations.

And how do we implement them?
The simplest way is with a complex linear combination as

Complex solution to $P_{I V}$ with real parameters

Now, we intend to overcome the restriction $\epsilon_{1}<E_{0}=1 / 2$, but still obtain non-singular SUSY transformations.

How do we accomplish this?
Using complex SUSY transformations.

And how do we implement them?
The simplest way is with a complex linear combination as

Complex solution to $P_{I V}$ with real parameters

Now, we intend to overcome the restriction $\epsilon_{1}<E_{0}=1 / 2$, but still obtain non-singular SUSY transformations.

How do we accomplish this?

Using complex SUSY transformations.

And how do we implement them?
The simplest way is with a complex linear combination as

Complex solution to $P_{I V}$ with real parameters

Now, we intend to overcome the restriction $\epsilon_{1}<E_{0}=1 / 2$, but still obtain non-singular SUSY transformations.

How do we accomplish this?

Using complex SUSY transformations.

And how do we implement them?

The simplest way is with a complex linear combination as

$$
u(x ; \epsilon)=e^{-x^{2} / 2}\left[{ }_{1} F_{1}\left(\frac{1-2 \epsilon}{4}, \frac{1}{2} ; x^{2}\right)+x(\lambda+i \kappa)_{1} F_{1}\left(\frac{3-2 \epsilon}{4}, \frac{3}{2} ; x^{2}\right)\right]
$$

Solution parameter space (a, b)

Expanding the solution families

Also note that by making cyclic permutations of the indices of the three energies \mathcal{E} and their extremal states, we expand the solution families to three different sets, defined by

$$
\begin{gather*}
a_{1}=-\epsilon_{1}+2 k-\frac{3}{2}, \quad b_{1}=-2\left(\epsilon_{1}+\frac{1}{2}\right)^{2} \tag{23}\\
a_{2}=2 \epsilon_{1}-k, \quad b_{2}=-2 k^{2} \tag{24}\\
a_{3}=-\epsilon_{1}-k-\frac{3}{2}, \quad b_{3}=-2\left(\epsilon_{1}-k+\frac{1}{2}\right)^{2} \tag{25}
\end{gather*}
$$

SUSY QM and PHA
Solutions to $P_{I V}$ with real parameters
Solutions to $P_{I V}$ with complex parameters

Solution parameter space (a, b)

Complex solutions to $P_{I V}$

Real and imaginary parts

Complex solutions to $P_{I V}$

Parametric plot

Cinvestav

Energy spectrum

Recall that using complex SUSY transformation we have overcomed the restriction $\epsilon_{1}<E_{0}=1 / 2$, then we can have spectra with some or all new levels above the original ground state.

Eigenfunctions

The eigenfunctions of the new non-hermitian Hamiltonian are

$$
\begin{align*}
E_{n}, & \psi_{n}^{(k)} \propto B_{k}^{+} \psi_{n} \tag{26}\\
\epsilon_{j}, & \psi_{\epsilon_{j}}^{(k)} \propto \frac{W\left(u_{1}, \ldots, u_{j-1}, u_{j+1}, \ldots, u_{k}\right)}{W\left(u_{1}, \ldots, u_{k}\right)} \tag{27}
\end{align*}
$$

which are all square-integrable. The extremal states are

$$
\begin{align*}
\psi_{\mathcal{E}_{1}} \propto \frac{W\left(u_{1}, \ldots, u_{k-1}\right)}{W\left(u_{1}, \ldots, u_{k}\right)}, & \mathcal{E}_{1}=\epsilon_{k}=\epsilon_{1}-(k-1) \tag{28}\\
\psi_{\mathcal{E}_{2}} \propto B_{k}^{+} e^{-x^{2} / 2}, & \mathcal{E}_{2}=\frac{1}{2} \tag{29}\\
\psi_{\mathcal{E}_{3}} \propto B_{k}^{+} a^{+} u_{1}, & \mathcal{E}_{3}=\epsilon_{1}+1 \tag{30}
\end{align*}
$$

the first two can be square integrable.

Eigenfunctions

Topics in the talk

(1) SUSY QM and PHA

- Factorization method
- Real k-th order SUSY QM
- Polynomial Heisenberg algebras (PHA)
(2)

Solutions to PIV with real parameters

- Real solutions of PIV with real parameters
- Complex solutions to $P_{I V}$ with real parameters
- Non-hermitian Hamiltonians
(3) Solutions to PIV with complex parameters
- Complex SUSY QM
- Non-hermitian Hamiltonians

More complex solutions to $P_{I V}$

We have already obtained complex solutions to $P_{I V}$ using complex linear combination of the transformation functions. This lead us to complex solutions associated with real parameters of $P_{I V}$.
\square
And how do we implement them?
Through complex SUSY QM.

More complex solutions to $P_{I V}$

We have already obtained complex solutions to $P_{I V}$ using complex linear combination of the transformation functions. This lead us to complex solutions associated with real parameters of $P_{I V}$.

> What if we would like to expand the solution domain to complex parameters a, b of $P_{I N}$?

We can do it using a complex transformation energy ϵ

And how do we implement them?
Through complex SUSY QM

More complex solutions to $P_{I V}$

We have already obtained complex solutions to $P_{I V}$ using complex linear combination of the transformation functions. This lead us to complex solutions associated with real parameters of $P_{I V}$.

> What if we would like to expand the solution domain to complex parameters a, b of $P_{I N}$?

We can do it using a complex transformation energy ϵ.
And how do we implement them?
Through complex SUSY QM

More complex solutions to $P_{I V}$

We have already obtained complex solutions to $P_{I V}$ using complex linear combination of the transformation functions. This lead us to complex solutions associated with real parameters of $P_{I V}$.

> What if we would like to expand the solution domain to complex parameters a, b of PIV?

We can do it using a complex transformation energy ϵ.

And how do we implement them?

Through complex SUSY QM

More complex solutions to $P_{I V}$

We have already obtained complex solutions to $P_{I V}$ using complex linear combination of the transformation functions. This lead us to complex solutions associated with real parameters of $P_{I V}$.

> What if we would like to expand the solution domain to complex parameters a, b of PIV?

We can do it using a complex transformation energy ϵ.

And how do we implement them?

Through complex SUSY QM.

Complex SUSY QM

One starts from a given solvable Hamiltonian

$$
\begin{equation*}
H=-\partial^{2}+V(x) \tag{31}
\end{equation*}
$$

and propose that H is factorizable as

$$
\begin{equation*}
H=A^{-} A^{+}+\epsilon \tag{32}
\end{equation*}
$$

Usually $A^{+} \equiv\left(A^{-}\right)^{\dagger}$ but here we simply ask that

$$
\begin{align*}
& A^{+}=-\partial+\beta(x) \tag{33a}\\
& A^{-}=\partial+\beta(x) \tag{33b}
\end{align*}
$$

Now we introduce a new Hamiltonian $\tilde{H}=-\partial^{2}+\tilde{V}$ with a reversed factorization

$$
\begin{equation*}
\tilde{H}=A^{+} A^{-}+\epsilon, \tag{34}
\end{equation*}
$$

Complex SUSY QM

Hence, the following equations must be satisfied

$$
\begin{align*}
& \beta^{\prime}+\beta^{2}=V(x)-\epsilon \tag{35}\\
& \tilde{V}(x)=V(x)-2 \beta^{\prime}(x) \tag{36}
\end{align*}
$$

and the well known intertwining relationships

$$
\begin{gather*}
\tilde{H} A^{+}=A^{+} H \tag{37}\\
H A^{-}=A^{-} \tilde{H} \tag{38}\\
\tilde{\psi}_{k} \propto A^{+} \psi_{k}(x) \propto \frac{W\left(u, \psi_{k}\right)}{u} \tag{39}\\
\operatorname{Sp}(\tilde{H})=\{\epsilon\} \cup\left\{E_{n}, n=0,1, \ldots\right\} \tag{40}
\end{gather*}
$$

and $\epsilon \in \mathbb{C}$

Examples of complex potentials

Figure: Examples of SUSY partner potentials of the harmonic oscillator using the two complex factorization energies $\epsilon=-1+i$ and $\epsilon=3+i 10^{-3}$. Its real (dashed line) and imaginary (dotted line) parts are compared to the harmonic oscillator (solid line).

Energy spectrum

Figure: The complex energy plane which contains the eigenvalues of \tilde{H}.

Eigenfunctions

The eigenstates $\tilde{\psi}_{k}$ are not automatically normalized as in the real SUSY QM since now

$$
\begin{equation*}
\left\langle A^{+} \psi_{n} \mid A^{+} \psi_{n}\right\rangle=\left\langle\psi_{n} \mid\left(A^{+}\right)^{\dagger} A^{+} \psi_{n}\right\rangle \tag{41}
\end{equation*}
$$

and in this case $\left(A^{+}\right)^{\dagger} A^{+} \neq(H-\epsilon)$. Nevertheless, since they are normalizable we can introduce a normalizing constant C_{n}, chosen for simplicity as $C_{n} \in \mathbb{R}^{+}$, so that

$$
\begin{equation*}
\tilde{\psi}_{n}(x)=C_{n} A^{+} \psi_{n}(x), \quad\left\langle\tilde{\psi}_{n} \mid \tilde{\psi}_{n}\right\rangle=1 \tag{42}
\end{equation*}
$$

Finally, there is a wavefunction that is also eigenfunction of \tilde{H} as $\tilde{H} \tilde{\psi}_{\epsilon}=\epsilon \tilde{\psi}_{\epsilon}$:

$$
\begin{equation*}
\tilde{\psi}_{\epsilon} \propto \frac{1}{u} \tag{43}
\end{equation*}
$$

Eigenfunctions

Figure: Wave functions associated to the new complex eigenvalues given by the factorization energies $\epsilon=-1+i$ and $\epsilon=3+i 10^{-3}$. The red solid line is the real part, the red dashed line is the imaginary part and the blue line is the absolute value.

Conclusions

- Based on PHA and SUSY QM, we have introduced a method to obtain real and complex solutions to $P_{I V}$ with real parameters.
- Furthermore, we have obtained complex solutions to $P_{I V}$ with complex parameters, thus expanding the solution subspace.
- We have studied the algebras, the eigenfunctions and the spectra of the non-hermitian SUSY generated Hamiltonians.

Future work

- We would like to generalize current formalism to include complex higher-order SUSY transformations and to expand the solution complex space of the parameters of $P_{I V}$.
- Investigate connection of $P_{I V}$ with other systems ruled by second order PHA and obtain new solutions. Inverse oscillator.

Merci

dbermudez@fis.cinvestav.mx

http://arxiv.org/abs/1012.0290 http://dx.doi.org/10.3842/SIGMA.2011.025
http://arxiv.org/abs/1104.3599
http://dx.doi.org/10.1016/j.physleta.2011.06.042
http://arxiv.org/abs/1208.1782

