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Introduction

Hψ = Eψ. (1)

In quantum mechanics one must solve an eigenvalue problem
to describe a stationary system.

This involves solving a second order differential equation with
boundary conditions.

How do we solve it?

One elegant procedure consists in using the factorization method.

One factorizes a Hamiltonian into first-order differential operators.
A generalization of the method gives rise to new solvable
Hamiltonians.
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Real k-th order SUSY QM

One starts from a given solvable Hamiltonian

H0 = −1

2

d2

dx2
+ V0(x), (2)

and generates a chain of intertwining relations

HjA
+
j = A+

j Hj−1, Hj−1A
−
j = A−

j Hj , (3)

Hj = −1

2

d2

dx2
+ Vj(x), (4)

A±
j =

1√
2

[

∓ d

dx
+ αj(x , ǫj )

]

, j = 1, . . . , k . (5)

Hence, the following equations must be satisfied

α′
j(x , ǫj ) + α2

j (x , ǫj ) = 2[Vj−1(x)− ǫj ], (6)

Vj(x) = Vj−1(x)− α′
j(x , ǫj ). (7)
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Polynomial Heisenberg algebras (PHA)

Second-order PHA

[H, L±] = ±L±, (8)

[L−, L+] ≡ Q3(H + 1)− Q3(H) = P2(H). (9)

Closed chain

L− = L−3 L
−
2 L

−
1 , (10)

L−i =
1√
2
(−∂ − fi) , i = 1, 2, 3, (11)

Hi+1L
+
i = L+i Hi , (12)

HiL
−
i = L−i Hi+1, (13)

We get two different factorizations of the same Hamiltonians plus
the closure condition

Hi+1 = L+i L
−
i + Ei = L−i+1L

+
i+1 + Ei+1. i = 1, 2. (14)

H4 = L+3 L
−
3 + E3 = H1 − 1 = L−1 L

+
1 + E1 − 1. (15)
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Closed chain diagram

Figure: Diagram of the two equivalent SUSY transformation. Above, the
three step first-order operators; below, the one third-order operator.
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Painlevé IV equation (PIV )

Solving the system of three differential equations and defining
g ≡ f1 − x one gets

gg ′′ =
1

2
(g ′)2 +

3

2
g4 + 4g3x + 2g2

(

x2 − a
)

+ b, (16)

which is the Painlevé IV equation (PIV ) with parameters

a =
E2 + E3

2
− E1 − 1, b = −(E3 − E2)2

2
. (17)

In general g ∈ C. Besides, Ei ∈ C which implies that a, b ∈ C and
so g is a complex solution to PIV associated with the complex
parameters a, b. More on this in the third section.
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Real solutions of PIV with real parameters

The first-order SUSY partner of the harmonic oscillator have
second-order PHA.

u(x ; ǫ) = e−x2/2

[

1F1

(

1− 2ǫ

4
,
1

2
; x2

)

+ 2xν
Γ
(

3−2ǫ
4

)

Γ
(

1−2ǫ
4

) 1F1

(

3− 2ǫ

4
,
3

2
; x2

)

]

,

g(x ; ǫ1) = −x − {ln[ψE1(x)]}′. (18)

The energies of the extremal states of H1 are

E1 = ǫ1, E2 =
1

2
, E3 = ǫ1 + 1. (19)
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Energy spectrum and solution parameter space (a, b)
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Solutions to PIV through higher-order SUSY

There is a theorem stating the conditions for the hermitian
higher-order SUSY partners of the harmonic oscillator to be
reducible to the second-order PHA.
The main requirement is for the transformation functions

uj = (a−)j−1u1, (20)

ǫj = ǫ1 − (j − 1), j = 1, . . . , k , (21)

where a− is the standard annihilation operator of H0 so that the
only free seed is u1 without roots, associated to a real factorization
energy ǫ1 such that ǫ1 < E0 = 1/2. The energies of the extremal
states of Hk are

E1 = ǫk = ǫ1 − (k − 1), E2 =
1

2
, E3 = ǫ1 + 1. (22)
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PIV solution hierarchies

PIV solutions can be classified into three hierarchies according to
the functions they depend on as:

Confluent hypergeometric function (1F1) hierarchy.

Complementary error function (erf) hierarchy.

Rational hierarchy (P/Q) hierarchy.
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Real solutions to PIV
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Complex solution to PIV with real parameters

Now, we intend to overcome the restriction ǫ1 < E0 = 1/2, but
still obtain non-singular SUSY transformations.

How do we accomplish this?

Using complex SUSY transformations.

And how do we implement them?

The simplest way is with a complex linear combination as

u(x ; ǫ) = e−x2/2

[

1F1

(

1− 2ǫ

4
,
1

2
; x2

)

+ x(λ+ iκ) 1F1

(

3− 2ǫ

4
,
3

2
; x2

)]

.
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Expanding the solution families

Also note that by making cyclic permutations of the indices of the
three energies E and their extremal states, we expand the solution
families to three different sets, defined by

a1 = −ǫ1 + 2k − 3

2
, b1 = −2

(

ǫ1 +
1

2

)2

, (23)

a2 = 2ǫ1 − k , b2 = −2k2, (24)

a3 = −ǫ1 − k − 3

2
, b3 = −2

(

ǫ1 − k +
1

2

)2

, (25)
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Complex solutions to PIV
Real and imaginary parts
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Complex solutions to PIV
Parametric plot
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Energy spectrum

Recall that using complex SUSY transformation we have
overcomed the restriction ǫ1 < E0 = 1/2, then we can have spectra
with some or all new levels above the original ground state.
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Eigenfunctions

The eigenfunctions of the new non-hermitian Hamiltonian are

En, ψ
(k)
n ∝ B+

k
ψn, (26)

ǫj , ψ(k)
ǫj

∝ W (u1, . . . , uj−1, uj+1, . . . , uk)

W (u1, . . . , uk)
. (27)

which are all square-integrable. The extremal states are

ψE1 ∝
W (u1, . . . , uk−1)

W (u1, . . . , uk)
, E1 = ǫk = ǫ1 − (k − 1), (28)

ψE2 ∝ B+
k
e−x2/2, E2 =

1

2
, (29)

ψE3 ∝ B+
k a+u1, E3 = ǫ1 + 1. (30)

the first two can be square integrable.
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More complex solutions to PIV

We have already obtained complex solutions to PIV using complex
linear combination of the transformation functions. This lead us to
complex solutions associated with real parameters of PIV .

What if we would like to expand the solution domain to complex
parameters a, b of PIV ?

We can do it using a complex transformation energy ǫ.

And how do we implement them?

Through complex SUSY QM.
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And how do we implement them?

Through complex SUSY QM.
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Complex SUSY QM

One starts from a given solvable Hamiltonian

H = −∂2 + V (x), (31)

and propose that H is factorizable as

H = A−A+ + ǫ. (32)

Usually A+ ≡ (A−)† but here we simply ask that

A+ = −∂ + β(x), (33a)

A− = ∂ + β(x), (33b)

Now we introduce a new Hamiltonian H̃ = −∂2 + Ṽ with a
reversed factorization

H̃ = A+A− + ǫ, (34)
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Complex SUSY QM

Hence, the following equations must be satisfied

β′ + β2 = V (x)− ǫ, (35)

Ṽ (x) = V (x)− 2β′(x). (36)

and the well known intertwining relationships

H̃A+ = A+H, (37)

HA− = A−H̃ , (38)

ψ̃k ∝ A+ψk(x) ∝
W (u, ψk)

u
, (39)

Sp(H̃) = {ǫ} ∪ {En, n = 0, 1, . . . }, (40)

and ǫ ∈ C
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Examples of complex potentials

Figure: Examples of SUSY partner potentials of the harmonic oscillator
using the two complex factorization energies ǫ = −1 + i and
ǫ = 3+ i10−3. Its real (dashed line) and imaginary (dotted line) parts are
compared to the harmonic oscillator (solid line).
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Energy spectrum

Figure: The complex energy plane which contains the eigenvalues of H̃ .
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Eigenfunctions

The eigenstates ψ̃k are not automatically normalized as in the real
SUSY QM since now

〈A+ψn|A+ψn〉 = 〈ψn|(A+)†A+ψn〉, (41)

and in this case (A+)†A+ 6= (H − ǫ). Nevertheless, since they are
normalizable we can introduce a normalizing constant Cn, chosen
for simplicity as Cn ∈ R

+, so that

ψ̃n(x) = CnA
+ψn(x), 〈ψ̃n|ψ̃n〉 = 1. (42)

Finally, there is a wavefunction that is also eigenfunction of H̃ as
H̃ψ̃ǫ = ǫψ̃ǫ:

ψ̃ǫ ∝
1

u
, (43)
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Eigenfunctions
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Figure: Wave functions associated to the new complex eigenvalues given
by the factorization energies ǫ = −1 + i and ǫ = 3+ i10−3. The red solid
line is the real part, the red dashed line is the imaginary part and the blue
line is the absolute value.

David Bermudez Non-hermitian Hamiltonians and the PIV equation 33/ 36



SUSY QM and PHA
Solutions to PIV with real parameters

Solutions to PIV with complex parameters

Complex SUSY QM
Non-hermitian Hamiltonians

Conclusions

Based on PHA and SUSY QM, we have introduced a method
to obtain real and complex solutions to PIV with real
parameters.

Furthermore, we have obtained complex solutions to PIV with
complex parameters, thus expanding the solution subspace.

We have studied the algebras, the eigenfunctions and the
spectra of the non-hermitian SUSY generated Hamiltonians.
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Future work

We would like to generalize current formalism to include
complex higher-order SUSY transformations and to expand
the solution complex space of the parameters of PIV .

Investigate connection of PIV with other systems ruled by
second order PHA and obtain new solutions. Inverse oscillator.
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