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1.Introduction

Methods of Schrédinger's equation
calculation associated to a given physical
system

Techniques based on exact

Most cases |3 | calculation proved to be unsuited

to solve problems where potentials
are complicated.

[

We use generally realistic
techniques to approach the studied
system.




Realistic
techniques

Variational methods




1.Introduction

Hamiltonian
with a known

Perturbation Hamiltonian of ¥ wave functions

methods the system
“* perturbation

the variational
» method is more
suitable

Perturbing term
become important

When all of these
methods become
difficult to apply

Treat Schrodinger's
"~ equation numerically.
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An integral formulation of quantum mechanics
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First applications

> Simple cases have been exactly calculated:

* Free particle.

= Harmonic oscillator.

= Physical systems described by quadratic
Lagrangians.

» New techniques like a coordinates transformation
x—f(q) followed by temporal transformation t—s
have been developed in order to extend the
formalism to less simple cases.



Feynman formalism

Var'ia'rional me'l'hod some formal similarities

called Feynman- - Ritz method
Kleinert method

Ee—

oy =

| Kleinert has Variational
| introduced some "> perturbation method
improvements in the
F-K method

>based on the density matrix development on the
basis of the harmonic oscillator wave functions, and
leads to acceptable results in the case of,
anharmonical potentials.



IT. Brief overview on Feynman-Kleinert variational method

The partition function calculation is reduced to that of
effective classical partition function using a trial
harmonic potential of pulsation £2. In this approach, the
partition function of particle moving into a potential
V(x) is given by:  +x

/\/> Th?3) \[-

Where Vi 4 is the effective classical potential which
takes into account all quantum effects, and xo is the
average position occupied by the particle in the
temperature interval [0,p].

(o)

where p=1/k,T, kg is the Boltzmann constant.




IT. Brief overview on Feynman-Kleinert variational method

+0o0
. lx o \ Alx
Z can be written Z = / \/_) ‘ 70, , /’D{_;vj (T — xo) exp |:— ' ]]

2mh23 /M A

Where A[x] is the Euclidean action of the studied system.
By identifying : A;r]]_’

h

i P 1. o _‘
| ef f.cl (Zo) = - 11'1( 9( x)olx — To)exXp | —
»

It is possible to determine analytically V ¢ o4 only for a
very limited number of cases. So, we have to
approximate the potential V g ,(x0) by the best
potential Wy(x0) obtained by a variational treatment.
The Nth order approximation of the partition function

is given by: .
,—;"1"_\"(1‘0)
/ V2m7h23 /M
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IT. Brief overview on Feynman-Kleinert variational method

The potential V ¢ . is developed around the position xo.
The obtained series will be truncated at the order N and
optimized versus 2, in order to obtain the best
approximated Wy

To apply this technique to the density matrix
Alz] = A% [z] + Aint[2]




IT. Brief overview on Feynman-Kleinert variational method

The interaction is given by

R

Az’nt [I: — / Vint [«T ( i_)]di—

0

W

. o » M |
Wlfh Vinelz) = Viz) — TQ{- T — Tm }2

Let consider the density matrix defined as:

_, 1 o Alz]
(Zp. To) = — D(x) exp | ——
P\TLp, Lq, 7 / l[ 5 }

(2e,0)~ (2. 53)

developing it in series of A,

1 1 : 0.2
Py I .\ --Q..’L‘m { .\ _ ! P -Q-.Im___ < 12 [ \.""1'7 .
0y, 20) = P ™ (xp, 2a)[1 : (Aimtl2]) o 373 Asq 2] Jer
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IT. Brief overview on Feynman-Kleinert variational method

The different terms appearing in the last equation have
been already calculated by Kleinert, and they are given by

n

AT T . Q. xmm _ l I I 1 — . r . . \ 1
<A?7lt _J_,] >lfg, e _ Q_‘l’.h: ) y | (l I _] (Z Z { \ 2'7-':t l .;! _|— ‘7_» m ,)_
(Ta) 72

Po

n

1 ( 1 —2 |
X exp(——= E ZpQry 21)
\/{_‘.2,7)"—1 det a? 2 Pl

where a? is a symmetric square matrix of order (n+1).
Its elements are obtained from the periodic Green
functions of the harmonic oscillator:

O R
a2(r.7) = f GP(r 1) = h_cosh(Q(|r — 7| — h5/2))
" ‘ M " 2MQ sinh(A350/2)

The density matrix can be written as a truncated series
of order N, in terms of the cumulant functions

~ (—1)"
n!Am"

< .471 'v.l,">Qtl‘rn ]
it 1/ xp  Xa.,C-

PN (Th. Ta ) = ;Z)o (Zo, Ta) €XP| E
n=
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IT. Brief overview on Feynman-Kleinert variational method

Using the analogy with the classical statistical physics

7/ .

Classical statistical physics| Quantum statistical physics

v v

0,(x) = (20" 3 /M2 exp [ 3V (z) 02y, 2,) = (20R° 3/ M) exp ,_‘j‘e_f_f_c!‘-ir.},

The N order approximation of the potential V , can be
obtained from the expression of the last equation.
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IT. Brief overview on Feynman-Kleinert variational method

1 sinh(A5Q) MQ
O . P~ \ == LVLesl ;9 -9 ‘ . - -
Wy ™(xy, 2q) = —=Inl . ) + ————————— 1(Z; + T, ) coth(ABQ) — 27,7
N 23 " RBQ ' 2mBsinh(RBQ) & + ) | | o
N o,
1 (—1)" i
Y E t <A2nt { ]>r Zq.C
5 n!h" .

Optimization with respect to Q2 and x,, leads to
the resolution of the set of equations:

W™ (x4, 2,4) | AW =™ (2. 224 |
—— = 0 and =0
a0 C)J m

The optimal values of 2° and x,, obtained allow
us to achieve the best approximation to V¢
and hence the energy of the ground state of the
studied physical system.
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ITI. Application

The corrected F-K method has been already successfully
applied to some forms of potentials as the Coulomb
potential and the Double well potential.

‘M. Bachman, H. Kleinert and A. Pelster, Phys. Rev, A
V60 N°5 (1999) 3429.

* H. Kleinert , Path integrals in Quantum Mechanics,
Statistics and Polymer Physics ( World scientific,
Singapore, 2009).

‘W. Janke, H. Kleinert, Phys. Rev. Lett. 75 (1995)

2787.  est:
Application est its performances

complex -PT potentials

—

. . o ) ]
‘ ':.. XL .' — -_l 2&2-’.‘ -+ 2 -_1 1 L — 1 4-\3 ‘7.’3 T .-"‘ __1,3_34
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ITI. Application

By setting 71=M=1, the previous technique leads, for the
studied potential, to a second order approximation of the
classical effective potential

i . 1 sinh(REQ) . Q R A
[ 5%m (x,) = — In| " -) + _ —x“ tanh(35Q/2)
2 e 03 ' mBQ ' Bsinh(mBQ) ¢ U
l - Q .I. 2 O
+§ <Aznt [;l?_>;rc Ta T E <A nt L~ ]>rc Zga.C
where P o .
<A;nt & >ra T <"427t >rc o ((Asne| L]> za)
with e 1 /9 s
(Ainelz]),, ». = Blgo+ (1./2.)Cs01Hy(x) + (1./8.)gaHa(x )(..3

—‘—(,,l.,,f'Jfb;._)ggHg(_‘z.’)C. + (1./384.)gs Hy(2)Cg
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ITI. Application

Where H, (x) is the hermite polynomial of degree n, and
the g; parameters are given by:

+ TAy2,, + 31 Agzagy + T As + 3A4ag, + 64422 ag,

4
Jo Agaigy + A,
4 2 4

1y Y . . ‘ 2 . 2
g = -;I\/‘E(lgo.’l:} T l.‘-\/:aoo-"l_-lxm -+ 2\/5(100.‘12:(’773 + I\/-'-s(loo."ll
‘ ‘ 2 2 ‘ 2 3
T 3]\/3&00 43 ‘l’n, ‘I‘ ‘1'\/;((00 '\47,’",

g4 = 96.“4(18)0
N
] 1 — _,sinh( 30(/2 —k))
(j"j = 3 ny Y Z ( k
| 2" cosh™(5Q/2) (BQn/2 —k))
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ITI. Application

h3 hB
<A?m[li>i% = /drl/drz{.42{fze('r1.'rz)—Izriﬁﬁ)lz(rz):—-4?2111(#‘1.72)—11{71)11(:*2):
0 0

— A3 [Ig3(7y, ,,,;—13 71)I5(79)] + A2[Iy(71,79) — L(71)I4(To))
—2A1 A3 L13(71, 79) [1(11 3(Ta)] + 21 AA3|Ia3(71. m)—[o(u)f:slm)}
2T A A Dg(71, 79) — L7 )[4 To)] + 2A A4 Iog (71, 72) — La(71)4(T9)]
+2IAg Ay Iss(T1, 70) — Is(71)La(Ta)] 4+ 2T A AlL1a(T1, T2) — L1(T1)I2(T2)]
the quantity "= (=2) allows us to get successively, the particles

density, the partition function and the ground state energy via the
relations :

1
~ N >
po(xa) = 5—75 exp [ SV (la)]
Lo — /(Zxab?('xa'}
1
FEr — llln {—gln Za)
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IV. Building a complex - PT potential from the Q.E.S
method

To test the performance we need to an exact
of the method ground state energy

v
The Quasi Exactly Solved

Let us choose a test function .~ potentials method

v
U, () = 2" exp(—az?® +i8z%)
Derivation leads to
1 n(l—n) 9

P oAt N .2 2 A .3 2 4 [
—3\11 ) =] +(2na+a)=3i8(14+n)rx—2a "z "+6ia b2 —33 2|, (2)

Q2
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IV. Building a complex - PT potential from the Q.E.S

method

Comparison with

gives
E, = 2n+1)a

9
92 o2 - 2
A = 38 Ay =2a° A3 = —6a and Ay = —

The energy spectrum is real and positive.

——U" (z)=|EF —Vi(z)¥,(x)
o) L\ v L <L) )
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IV. Results and discussions:

The general form Viz) = Asz® + 1Az +iA32° + Ay®
A Aj As Ay Emethod EoEs

3.4848 0.3 -0.792 -0.045 1.319 1.32
8 3 -12 -4.5 1.956 2
0.02 0.03 -0.006 -0.00045 0.099 0.1
0.5 0.003  -0.003  -0.45.107° 0.4995 0.5
50 9 -90 -45.5 4.973 5
200 3 -60 4.5 9.999 10
5.1072 0.3 -0.03 -0.045 -0.856 0.05
800 15 -600 -112.5 19.999 20
2 15 -30 -112.5 -658.602 1
2.10% 6 -1200 -18 99.999 100
2.10¢ 150 -3.10° -11250 999.999 1000

E,.ctnoa Our calculations

Eors The Quasi Exactly Solved potentials method

22




The first special case :A:i=A+=0

P o .
Vi(z) = Asx® +1A32°
b 2 3

“'\2 “'\3 Eme.thod Enu m

0.5 0.03125 0.50276 0.50263
0.5 0.06250 0.50621 0.50998
0.5 0.1250 0.51964 0.53393
0.5 0.25 0.58522 0.59492
0.5 0.5 0.73773 0.71294

E, ethoa Our calculations

E,um C. M. Bender, 6. Dunne, Phys. Rev.A, V40 N°10 (1999)
4616.




The second special case :A:=A4=0

PR ) )
Vi) = Agz® + 1A 12

“42 A 1 E method E exact
0.1 0.01 0.2234017 0.2238567
0.5 0.01 0.4995548 0.5000050
1. 0.1 0.7091212 0.7096067
. 0.1 1.5849085 1.5816388
10. L. 2.2607512 2.2610679
100. L. 7.0976602 7.0705678

E,.cthos Our calculations
Eeroct Exact treatment
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The third special case :As;=A:=0.

rr 0 ,
Viz) = Agx® + Ayax®

"’12 "'14 E method Eexact

0.5 0.025 0.545205 0.559146
0.5 0.05 0.589395 0.602405
0.5 0.075 0.607374 0.637992
0.5 0.1 0.612889 0.66877:
0.5 0.125 0.607404 0.696176
0.5 0.15 0.599178 0.721039
0.5 0175 0.380685 0.743904

Emetnoa Qur calculations

Eeoe H. Kleinert, Phys. Lett. A 173 (1993) 332.
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Conclusion

> Calculation by the corrected Feynman-Kleinert
variational method, of the energy ground state of the
PT-symmetric complex potential by considering various
sets of potential parameters.

> The results are compared later to those calculated
exactly by the QES potential method.

» Our results compare favorably with exact results.
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Conclusion

> We noticed that for very large values of p to those
of a, the gap is not insignificant and the method leads

to unsatisfactory results. This is explained by the fact
that in such cases, the wave function describes a
double well potential that deviates from the harmonic

oscillator.

»>We also considered three special cases of the studied
potential.
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Per: tives

Extend the corrected Feynman-Kleinert
approximation method to calculate the ground
state energy of a PT-symmetric complex potential
of order 6.

The family of potentials contains various orders of
anharmonicity, which allows him to include several
families of phenomenological potential used in
physics.
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your attention



