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Methods of 
calculation 

1.Introduction 

Schrödinger's equation 
associated to a given physical 

system 
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Techniques based on exact 
calculation proved to be unsuited 
to solve problems where potentials 

are complicated. 

Most cases 

We use generally realistic 
techniques to approach the studied 

system. 
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Realistic 
techniques 

Perturbation methods Numerical methods 

Variational methods 
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1.Introduction 
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Feynman formalism  

An integral formulation of quantum mechanics  



 Simple cases have been exactly calculated: 

  Free particle. 
  Harmonic oscillator. 
  Physical systems described by quadratic 

Lagrangians. 
"  New techniques like a coordinates transformation 

x→f(q) followed by temporal transformation t→s 
have been developed in order to extend the 
formalism to less simple cases. 

 First applications 
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 Feynman formalism  

some formal similarities 

 Ritz method 

Variational 
perturbation method 
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 II. Brief overview on Feynman-Kleinert variational method 
The partition function calculation is reduced to that of 
effective classical partition function using a trial 
harmonic potential of pulsation Ω. In this approach, the 
partition function of particle moving into a potential 
V(x) is given by: 
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 II. Brief overview on Feynman-Kleinert variational method 

Where A[x] is the Euclidean action of the studied system. 
By identifying : 



11 11 

 II. Brief overview on Feynman-Kleinert variational method 

To apply this technique to the density matrix 

the interaction the trial action 
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 II. Brief overview on Feynman-Kleinert variational method 

The interaction is given by 

with 

Let consider the density matrix defined as: 

developing it in series of Aint  
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 II. Brief overview on Feynman-Kleinert variational method 

where a² is a symmetric square matrix of order (n+1). 
Its elements are obtained from the periodic Green 
functions of the harmonic oscillator: 

The density matrix can be written as a truncated series 
of order N, in terms of the cumulant functions  
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 II. Brief overview on Feynman-Kleinert variational method 

 Using the analogy with the classical statistical physics 

Classical statistical physics Quantum statistical physics 

The N order approximation of the potential Veff,cl can be 
obtained from the expression of the last equation. 
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 II. Brief overview on Feynman-Kleinert variational method 

Optimization with respect to Ω² and xm leads to 
the resolution of the set of equations: 

The optimal values   of Ω² and xm obtained allow 
us to achieve the best approximation to Veff,cl 
and hence the energy of the ground state of the 
studied physical system.  
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 III. Application 

The corrected F-K method has been already successfully 
applied to some forms of potentials as the Coulomb 
potential and the Double well potential. 

• M. Bachman, H. Kleinert and A. Pelster, Phys. Rev, A 
V60 N°5 (1999) 3429.  
•  H. Kleinert ,  Path integrals in Quantum Mechanics, 
Statistics and Polymer Physics ( World scientific, 
Singapore, 2009).  
• W. Janke, H. Kleinert, Phys. Rev. Lett. 75 (1995) 
2787. 

Application complex -PT potentials 
Test its performances 
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By setting  ℏ=M=1, the previous technique leads, for the 
studied potential, to a second order approximation of the 
classical effective potential 

 III. Application 

where 

with 
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 III. Application 

Where Hn (x) is the hermite polynomial of degree n, and 
the gi parameters are given by: 
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 III. Application 

the   quantity           allows us to get successively, the particles 
density, the partition function and the ground state energy via the 
relations : 
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To test the performance 
of the method  

we need to an exact 
ground state energy 

The Quasi Exactly Solved 
potentials method Let us choose a test function  

Derivation leads to 
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Comparison with 

gives 

The energy spectrum is real and positive. 
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The general form  

Our calculations 

The Quasi Exactly Solved potentials method 



The first special case :A₁=A₄=0 
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C. M. Bender, G. Dunne, Phys. Rev.A, V40 N°10  (1999) 
4616. 

Our calculations 
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The second special case :A₃=A₄=0 

Exact treatment 
Our calculations 
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The third special case :A₃=A₁=0. 

H. Kleinert, Phys. Lett. A 173 (1993) 332. 
Our calculations 



  Calculation by the corrected Feynman-Kleinert 
variational method, of the energy ground state of the 
PT-symmetric complex potential by considering various 
sets of potential parameters. 

  The results are compared later to those calculated 
exactly by the QES potential method.  

  Our results compare favorably with exact results. 
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Conclusion 
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  We noticed that for very large values of β to those 
of α, the gap is not insignificant and the method leads 
to unsatisfactory results. This is explained by the fact 
that in such cases, the wave function describes a 
double well potential that deviates from the harmonic 
oscillator. 

 We also considered three special cases of the studied 
potential.  
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Conclusion 



  Extend the corrected Feynman-Kleinert 
approximation method to calculate the ground 
state energy of a PT-symmetric complex potential 
of order 6.  

  The family of potentials contains various orders of 
anharmonicity, which allows him to include several 
families of phenomenological potential used in 
physics. 
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Thank you for 
your attention 
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