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Outline:

Open quantum systems (OQS) — prototype model

Topic I — Exceptional Points in OQS (Markovian dynamics)

> Prototype model — discrete spectrum
> Generalized Puiseux expansion at the exceptional points (EPs)
Spontaneous appearance of time irreversibility at real-value




Outline:
Topic II — Bound state influence on long-time
dynamics 1n OQS (Non-Markovian)

Deviations from exponential decay in quantum mechanics:
> Short time scales — quantum Zeno and anti-Zeno effects
> Long time scales — connection with continuum threshold

Survival Probability Formalism and Physical Motivation:
> Relevant studies in the literature

Prototype model — linear case:
> Bound state transition to anti-bound state (virtual state)
> Long time dynamics: long-time near zone P(t) ~ t
» Long-time far zone P(t) ~ t3
> Timescale set by A — gap between bound state and threshold

Side-coupled impurity model:
» Bound state trapping below threshold




Open Quantum Systems

Open quantum system consists of:
» Discrete system H
» Embedded in a larger system (continuum) H

> Coupled via Hp

Prototype Model: semi-infinite chain with end-point impurity




Open Quantum Systems: Prototype model

Prototype:

—-1/2




Topic I: Exceptional Points in OQS

Formalism for Exceptional Points in finite Hamiltonians:

Tosio Kato, Perturbation Theory for Linear Operators, Springer-Verlag,
Berlin (1980), pp. 62-66.

Exceptional points (EPs) in open quantum systems:

> Associated with the discrete sector of the OQS spectrum

anch points of a cut in parameter space shared by tw
iscrete eigenvalues




Prototype model: discrete spectrum

take continuum limit and introduce half-chain Fourier series:
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Prototype: Discrete eigenvalues and discriminant

Quadratic dispersion yields:
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Discrete spectrum:

eigenvalue expansion at EP
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QPT analogy for the real-valued EPs

decay rate y
appears at the EPs: |8d| <l-2g
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QPT analogy: decay rate = order parameter

(PT spontaneous symmetry breaking)

ized/anti-localized states




Number of Exceptional Points
in a finite, closed system

Recall, for simple closed system:
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Effective finite-dimensional Hamiltonian
for open quantum systems

For open quantum systems, such as:

N2 -2 -1 0 1 2 ... N2
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We may obtain an (&-dependent) effective Hamiltonian:




Number of Exceptional Points in OQS - 1

Obtain the finite spectrum as solutions:

H (e)W=eW

eff

Results in a 4™ order equation for the present




Number of Exceptional Points in OQS - 2

Easy to extrapolate for dispersion in the leads &, = -cos k:

e 1 solution for each site N, in discrete sector
* 1 solution for each distinct, non-degenerate chain N

» multiply by 2 for each non-degenerate chain

2M(N - +N ) —th order polynomial



Proposed Question:

ow many exceptional points are there in
ric open quantum sys




Topic II: Bound state influence on long-time
power law decay

For decades it has been known that deviations from exponential decay exist
in quantum systems at least on very short and very long time scales.

C. B. Chiu, B. Misra, and E. C. G. Sudarshan, Phys. Rev. D 16, 520 (1977).
J. Martorell, J. G. Muga, and D. W. L. Spring, Lect. Notes. Phys. 789, 239 (2009).

Short time scales typically give rise to parabolic decay: P(t) ~

» Quantum Zeno effect =» repeated measurements result in
decelerated decay

» quantum anti-Zeno effect =» accelerated decay

> Experimental confirmation — ultra-cold sodium atoms initially
trapped in accelerating optical potential:

S. R. Wilkinson, C. F. Bharucha, M. C. Fischer, K. W. Madison, P. R. Morrow,
Q. Niu, B. Sunduram, and M. G. Raizen, Nature (London) 387, 575 (1997).

M. C. Fischer, B. Gutiérrez-Medina, and M. G. Raizen, Phys. Rev. Lett. 87, 040402
(2001).



Long-time deviations from exponential decay

Long time deviations intimately connected with the continuum threshold.

> Mathematically proven for quantum systems:

L. A. Khalfin, Soc. Phys. JETP 6, 1053 (1958).
M. N. Hack, Phys. Lett. A 90, 220 (1982).

> Typically gives rise to inverse power law decay

ical asymptotic decay law: P(t) ~ t-3



Formalism: survival probability for an
initially prepared state
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Survival probability:  P(t) = |A(l‘)
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Physical motivations: bound state at threshold

question: what happens as bound

state approaches continuum threshold?
11 Z

Answer: the long-time non-exponential decay effects will be amplified as
bound state approaches the threshold.

Note that bound state transitions to anti-bound state (219 sheet) after
reaching threshold




Relevant studies 1n the literature

T. Jittoh, S. Matsumoto, J. Sato, Y. Sako, and K. Takeda, Phys. Rev. A 71, 012109
(2005).

Radial potential: for s-wave component, as energy of initially prepared
state approaches threshold, exponential decay suppressed completely.

(However, they do not consider bound states).

Victor Dinu, Arne Jensen, and Gheorge Nenciu, J. Math. Phys. 50, 013516 (2009).

ical physics perspective, authors study a




Special case of prototype model:
linear dispersion

Return to prototype:

choose special |_—" B

case g = 1/\2
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Yields a simplified linear dispersion with solution:

Re z;, 1
2%
lr ,ﬁ——-z//
|
| |
\\\\\\\ Il I I I I T I I I Il I I I I | I I €
0 - 05 1.0 d

we have purely
decay for |g4 < 1



Long-time dynamics for prototype model

Imz
Focus on the purely non-exponential case: 21

vicinity of lower threshold




Long-time dynamics: near zone and far zone
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Consider the timescale: 1 <<t << (AQ)_1 (Long-time ‘near zone”’)




Long-time dynamics: numerical results for

prototype model
10° .
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Long-time dynamics for general open quantum
systems

Similar effect observed in the following works:
S. Longhi, Phys. Rev. Lett. 97, 110402 (2006).
S. Garmon, Ph.D. thesis, University of Texas at Austin (2007).

Axel D. Dente, Raul A. Bustos-Martn, and Horacio M. Pastawski, Phys. Rev. A 78,
062116 (2008).

Straight-forward to demonstrate: time scale separating near and far
zones should always be inversely related to A, in OQS




Further demonstration: bound state trapped
below threshold

Side-coupled impurity model (or T-model):

N2 -2 -1 0 1 2 ... N2

We again find dispersion from
solvent method:




Long-time dynamics for bound state trapped
below threshold

Bound state eigenvalue expansion:

} y 1
7 =—1-A +0(¢°) with A = i

n the near zone:




Long-time dynamics: numerical results for
side-coupled impurity model
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Due to bound states, resonance, difficult to see much




Conclusions

Topic | — EPs in OQS

> Generalization of Kato’s expression for eigenvalue expansion
in the vicinity of EPs

» QPT analogy at real-valued EPs:
> Decay rate as order parameter
correlations and dynamical critica




Conclusions

Topic Il — Bound state influence on long time dynamics in OQS
> Bound state transition to anti-bound state at continuum threshold

> Purely non-exponential dynamics when only anti-bound states
are present

> Long time dynamics for prototype model:
» Long-time near zone: P(t) ~ t!
ime far zone: P(t) ~ t3




