Imperial College London

Breakdown of adiabatic transfer schemes in the presence of decay or absorption

Eva-Maria Graefe

Department of Mathematics, Imperial College London, UK

joint work with Nimrod Moiseyev and Alexei Mailybaev

Technion, Haifa, Isreal Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil

> PHHQP XI, APC, Paris Diderot University, Paris, France August 2012

Quantum Population transfer

★ Task: Population transfer between two quantum states (e.g. in atomic system)

★ Coupling of the two states (e.g. via laser field of appropriate frequency)

 $H = \left(\begin{array}{cc} \varepsilon & v \\ v & -\varepsilon \end{array}\right)$ t ★ Adiabatic state transfer: Slower, but efficient and robust

Adiabatic quantum evolution

Adiabatic theorem: System prepared in eigenstate stays in corresponding instantaneous eigenstate for infinitely slow parameter variation

★ Adiabatic state transfer: Slow parameter variation such that initial and target states are connected via instantaneous states

Adiabatic population transfer in three level systems - STIRAP

★ Population transfer in atomic systems between two states without direct transition

★ Population transfer in atomic systems between two states without direct transition

★ Via additional state

★ Population transfer in atomic systems between two states without direct transition

★ Via additional state

★ Population transfer in atomic systems between two states without direct transition

★ Via additional state

★ Intuitive scheme: First switch on v, then w. Nearly total transfer via state $|p\rangle$ ossible (precise parameter control required)

★ Population transfer in atomic systems between two states without direct transition

★ Via additional state

★ STIRAP: adiabatic nearly total population transfer from state |1to state $|3\rangle$ without significant population of state at any time $2\rangle$

Eigenvalues and eigenstates

$$H(t) = \begin{pmatrix} 0 & v(t) & 0 \\ v(t) & 0 & w(t) \\ 0 & w(t) & 0 \end{pmatrix} |1\rangle \xrightarrow[]{2} & |3\rangle$$

$$E_0 = 0$$

$$E_{\pm} = \pm \sqrt{v^2 + w^2}$$

$$|0\rangle = \begin{pmatrix} \cos(\theta) \\ 0 \\ -\sin(\theta) \end{pmatrix}, \quad |\pm\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \sin(\theta) \\ \pm 1 \\ \cos(\theta) \end{pmatrix}$$

Adiabatic rotation from $|td\rangle ||3\rangle$

$$\tan(\theta) = \frac{v}{w}$$

Bergmann, Theurer, and Shore Reviews of Modern Physics, Vol. 70 (1998) 1003

STIRAP type scheme in optical waveguides

Lahini, Pozzi, Sorel, Morandotti, Christodoulides and Silberberg, Phys. Rev. Lett. 101 (2008) 193901

STIRAP type scheme in optical waveguides

Lahini, Pozzi, Sorel, Morandotti, Christodoulides and Silberberg, Phys. Rev. Lett. 101 (2008) 193901

Additional decay/absorption

Independent of γ_2

Transfer efficiency: absorption in final state

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$
Breakdown of STIRAP long before EP!
$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$
Breakdown of STIRAP long before EP!
$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$

Adiabatic quantum evolution

Adiabatic theorem: System prepared in eigenstate stays in corresponding instantaneous eigenstate for infinitely slow parameter variation

★ Adiabatic state transfer: Slow parameter variation such that initial and target states are connected via instantaneous states

★ Parameter variation in finite time: Small non-adiabatic corrections

★ Typical non-adiabatic corrections: Landau-Zener

Landau Zener model

$$\mathbf{i}\frac{\mathbf{d}}{\mathbf{d}t}\begin{pmatrix}\psi_{1}\\\psi_{2}\end{pmatrix} = \begin{pmatrix}\alpha t & v\\v & -\alpha t\end{pmatrix}$$

$$t \in (-\infty,\infty)$$

$$P_{\mathrm{LZ}} = \frac{|\Psi_{1}(t \to +\infty)|^{2}}{|\Psi_{1}(t \to -\infty)|^{2}}$$

$$P_{LZ} = e^{-2\mathrm{Im}\int_{0}^{t_{0}}(E_{+} - E_{-})dt}$$

Landau Zener model

Adiabaticity: $P_{LZ} = 0$ or $\alpha \rightarrow 0$

Transfer efficiency: absorption in final state

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$
Breakdown of STIRAP long before EP!

$$P = \frac{|\langle 1|\psi(L)\rangle|^2}{\sum_{n=1}^3 |\langle n|\psi(L)\rangle|^2} \quad |\psi(0)\rangle = |\varphi^0(0)\rangle \approx -|3\rangle$$

★ Adiabatic and non-adiabatic contribution:

$$|\psi(z)\rangle = \psi_{ad}(z)|\varphi^0(z)\rangle + \sum_{j=\pm}\psi_{nonad}(z)|\varphi^j(z)\rangle$$

$$P = \frac{|\psi_{ad}(L)|^2}{|\psi_{ad}(L)|^2 + 2|\psi_{nonad}(L)|^2}$$

★ Estimate (non-)adiabatic contributions!

$$P = \frac{|\psi_{ad}(L)|^2}{|\psi_{ad}(L)|^2 + 2|\psi_{nonad}(L)|^2}$$

$$\star |\psi_{nonad}(L)| \approx \sqrt{P_{nonad}}$$

 $\star |\psi_{ad}(L)| \approx \sqrt{1 - 2P_{nonad}} \,\mathrm{e}^{-\gamma L/2}$

$$P \approx \frac{1}{2} \Rightarrow \gamma \approx \ln\left(\frac{1}{2P_{nonad}} - 1\right)/L$$

★ Landau-Zener type approximation for $\gamma \neq 0$

$$P_{nonad} \approx \exp\left(-\frac{2}{a\sqrt{\pi}}\Gamma^2\left(\frac{3}{4}\right)L\right)$$

$$\gamma \approx \ln\left(\frac{1}{2P_{nonad}} - 1\right)/L$$

$$\begin{split} P_{nonad} &\approx \exp\left(-\frac{2}{a\sqrt{\pi}}\Gamma^2\left(\frac{3}{4}\right)L\right) \circ \\ & 0.2 \\ \gamma_{cr}^{LZ} &\approx \frac{2}{a\sqrt{\pi}}\Gamma^2\left(\frac{3}{4}\right) - \frac{\ln(2)}{L} \\ & \circ 0.4 \\ & \circ 0.6 \\ & \bullet \text{ Deviation due to } \text{LZ} \\ \text{approximation and } \gamma \neq 0 \\ & \circ 0.8 \\ & \star \text{ Use numerically} \\ \text{obtained } P_{nonad} \end{split} \qquad \begin{array}{c} 0.4 \\ & \circ 0.6 \\ & 1 \\ & 5 \\ & 0.6 \\ & 0.$$

$$\gamma \approx \ln\left(\frac{1}{2P_{nonad}} - 1\right)/L$$

$$P_{nonad} \approx \exp\left(-\frac{2}{a\sqrt{\pi}}\Gamma^2\left(\frac{3}{4}\right)L\right)\mathbf{0}$$

$$\gamma_{cr}^{LZ} \approx \frac{2}{a\sqrt{\pi}} \Gamma^2\left(\frac{3}{4}\right) - \frac{\ln(2)}{L}$$

★ Use numerically obtained P_{nonad}

Summary

★ Robust population transfer via adiabatic parameter variation

★ Example: STIRAP in optical waveguide structures

★ Even small absorption can destroy adiabaticity due to competition with non-adiabtic corrections

Summary

★ Robust population transfer via adiabatic parameter variation

Thank you for your attention!

 Even small absorption can destroy adiabaticity due to competition with non-adiabtic corrections

