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Exceptional Points
The eigenstates of a Hamilton operator,

or any matrix depending on a parameter,

exhibit level repulsion when sweeping

over that parameter



The analytic continuation of the spectrum into the 

complex -plane yields nearby a square root singularity 

of the energies: 

the two repelling levels are analytically connected

at the

Exceptional Points
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The eigenfunction also coalesce, 

they have a vanishing norm.

Consequence: in vicinity of an EP pattern is 

determined by the 2-dim sub-problem:

when approaching an EP, 

where level n coalesce with level n+1,

the vanishing denominator outweighs all other terms:
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you‟re left with a 2-dim space



For hermitian operators they occur  at complex 

values of such parameters 

(rendering the operator non-hermitian at the EP). 

For non-hermitian operators (open systems) they 

also can occur at real parameter values.

At an EP the matrix cannot be diagonalised: only the 

Jordan-Normal-Form is obtainable by a similarity 

transformation, i.e.
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 Individual EPs have been established 

experimentally in the Lab at Darmstadt

 They signal the instability points like in RPA,

e.g. transition „spherical  => deformed‟ in NuclPhys.

or the onset of condensation in particular BE-systems,

or the transition from normal to superconductor,

or ………..

 They are “in the way” in approximation schemes

(e.g. intruder states in Nuclear Physics).

 They play a crucial role in quantum phase transitions

- both in Fermi and in Bose systems -

and also in the occurrence of chaotic behaviour



 They signal the symmetry breaking point

in  PT-symmetric problems

On this aspect there are many

presentations at this conference, also 

about beautiful experiments in optics,

wave guides and others

Here situations should be mentioned with

models/arrangements of sources and sinks of, 

say, atoms where EPs can feature  prominently.



 They can produce dramatic effects in scattering

and time behaviour

Again, during this conference we hear 

examples, of a general type, and 

from atomic and molecular physics

 Special effects can arise in nonlinear problems:

e.g  the coalescence of three levels (EP3)

NB:

in linear problems it needs

at least five parameters to produce an EP3



The physical reality of the Riemann sheet 

structure has been confirmed experimentally 

more than ten years ago in Darmstadt by

Christian Dembowski

(PhD under Achim Richter)

where EPs have been encircled using a 

microwave cavity

nota bene
an EP can be accessed in the

laboratory only in a dissipative (open) system









We conclude

(1) One loop around EP interchanges energy levels

(2) the state vectors have a 4th root branch point; 

when looping one way (say counterclockwise):

1 2 1 2 1

and accordingly when looping the other way

(say clockwise):

1 2 1 2 1

some kind of chirality



Moreover,

the eigenfunctions at the EP also coalesce

and have the form

which is a truly chiral wave function

1 2 or
1 1

    
i i

phase difference of /2 confirmed 

experimentally in Darmstadt

Note:

no parameters,

it is cast in stone



Having discussed some aspects of individual

Exceptional Points we now turn to their role which 

they can play collectively.

This applies in particular to many body problems

in connection with phase transitions and the

onset of chaos.



As an illustration, the Lipkin model:

N Fermions occupying 2 degenerate levels,

degeneracy at least N-fold.

Interaction lifts or lowers a Fermion pair
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as a consequence:

model is reducible into even or odd N



model shows phase transition at  1

including symmetry breaking in that for

>1 a ‘deformed’ phase occurs 

where even and odd N become degenerate

spectrum

with respect 

to ground 

state



energy gap at the transition point,

for large but finite N
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NB:   the non-uniform behaviour for 1



in fact, magnification

along the line

2E/N= –1 looks like

1

phase transition for all >1 at

2E/N= –1

level repulsion – watch EP!

Spectrum 2E/N as function of 



EPs in complex  - plane for various N

N=8 (blue), =16(red), =32(black), =96(pink)



The inner circle

remains free of 

singularities

| | 1

In contrast, for increasing N, the EPs 

accumulate along the real - axis for >1 

1

But: the model yields them nicely ordered.

The slightest perturbation whirls them around.

The effect upon the spectrum:

Chaotic!



Trajectories

of the EPs

in the 

complex

-plane for 

N=6 for the

perturbation

2 2 † 2 2( )J J U J J U
with U a random unitary matrix using random angles

from the interval {0, max};

max<<1, i.e. U is close to unity.



The larger N the smaller max can be chosen to

produce typical signatures of chaotic behaviour of

spectrum and eigenfcts.
Further increase of max leaves the statistics at crit unchanged.

1.The symmetry wrt the

imaginary axis is 

destroyed.

2. Two trajectories emerge

from each EP (except on

the imaginary axis), i.e.the

symmetry around E=0 is

also destroyed.



While the level statistics is that

of the harmonic oscillator for the

unperturbed case, we now obtain

the typical Wigner surmise for                  

= crit



It is significant that this chaotic behaviour does 

not occur when is sufficiently distant from

crit   = 1;    this fact is the more pronounced 

the larger N.

The contribution – linear in the angles of U –

from the perturbation can be obtained 

analytically and it turns out that 

only at around crit there is an 

appreciable effect while outside the transitional

region the perturbation leaves

energy and state vectors virtually unchanged.



2. Transitional regions are the most sensitive

against small random perturbation owing to the

high density of Exceptional Points.

1. Due to the absence of Exceptional Points the

normal phase remains virtually unaffected under

small perturbation; so does the deformed region.

3. Within the transitional region the pattern of the EPs

looks like

and – for full chaos - the distribution of EPs becomes 

independent of the  direction  in the -plane, is centred 

around crit and given by   /| 2| .



4. The sensitivity and immediate onset of chaos

is reminiscent of the classical situation at the

crossing point of a separatrix.

5. These findings – high density of EPs-

explain the inherent difficulties of many body 

calculations in transitional regions.

A few considerations about 

the large N limit:



1) an ‘obvious’ self-adjoint limit

‘obvious’: not at all or not unique.

A self-adjoint op cannot have an EP on 

the real line.
2) the dense population of EPs seems to 

forbid analytic connectedness;
recall: for finite N, all levels are analytically connected.

A dense set of singularities on a line/curve

constitutes a natural boundary of analytic domain

If the EPs retain their character in the 

thermodynamic limit 

the Hamilton-op cannot have

N



Even in Nuclear Physics – where parameter

variation is restricted – they certainly feature

in approximation schemes, but probably also

directly at the border line of the continuum such

as along the drip line.

Summary:

The ubiquitous Exceptional Points occur

generically in all eigenvalue problems that

have some parameter dependence.

They can produce dramatic effects in a great

variety of physical problems, individually as 

well as collectively.



The End

Thank you for your attention



depending on which side you pass the EP the two

levels repel and the widths cross or

the levels cross and the widths repel

moving between real axis and EP (blue/pink)

Trajectories in complex 

energy plane when 

moves from left to right 

parallel to real axis,

moving on the other side of EP (black/green)

from the Riemann sheet structure we understand:



Singularities and Zero Energy Bound states

A  bound state at E=0 (l > 0) is ‘between’ 

a resonance (potential less attractive)

and a weakly bound state with E>0 

(potential more attractive)

Being a ‘hybrid’, it is a singularity and 

thus behaves physically in a conspicuous way

think of shallow nuclei and nuclei on the drip line

Yet, for a real potential it cannot be an EP

even though it ‘looks like’ an EP



the eigenvalue at zero is brought about

by coalescence under variation 

of the potential strength

yet it is NOT an EP because

In fact, the leading term of the change in energy shows 

- under variation of the potential 

- the typical square root  behaviour (recall l > 0)
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In contrast to a genuine EP

 the wave function remains normalisable

(yet there is only one: no degeneracy!)

 the scattering (Green’s) function has no pole at all,

even though the E=0 state is a bound state

 reason: the spectroscopic factors vanish,

‘instead’ of going to infinity, 

causing ‘usually’ a double pole in G

After all:

we deal here with a genuine self adjoint problem

which does not admit an EP



Yet there are nice observable effects:

The cross section for

E=0 (zero energy b.s.)

=0

E<0 (genuine b.s.)

>0

E complex (resonance)

<0

recall
0 0V V



furthermore recall:
a zero energy bound state wave function falls off

only with a power (it is loosely bound),

while – for l > 0 – it is concentrated  on the surface,

the more so the larger l



Even in Nuclear Physics – where parameter

variation is restricted – they certainly feature

in approximation schemes, but probably also

directly at the border line of the continuum such

as along the drip line.

Summary:

The ubiquitous Exceptional Points occur

generically in all eigenvalue problems that

have some parameter dependence.

They can produce dramatic effects in a great

variety of physical problems.



The End

Thank you for your attention


