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1 Unitary time evolution for non-Hermitian Hamiltonians

i
d

dt
|Ri(t)〉 = H|Ri(t)〉, − i d

dt
〈Ri(t)| = 〈Ri(t)|H† (1)

〈Ri(t)|eiH
†te−iHt|Ri(t)〉 6= 〈Ri(0)|Ri(0)〉. (2)

Dirac norm not preserved in time if H 6= H†. Does not mean that theories cannot preserve norm if U =

e−iHt 6= U †. It only means cannot use Dirac norm. Since i(d/dt)|Ri(t)〉 = H|Ri(t)〉 only involves ket, the

choice of bra is not fixed. Thus there is freedom in choosing scalar product. So what is appropriate choice?

〈Rj(t)|V |Ri(t)〉 = e−i(E
R
i −ER

j )t+(EI
i +E

I
j )t〈Rj(t = 0)|V |Ri(t = 0)〉. (3)

V -norm is time independent if

ER
i − ER

j = 0, EI
i + EI

j = 0, or 〈Rj(t = 0)|V |Ri(t = 0)〉 = 0. (4)

In general

i
d

dt
〈Rj(t)|V |Ri(t)〉 = 〈Rj(t)|(V H −H†V )|Ri(t)〉. (5)

If states |Ri(t)〉 are complete, then necessary and sufficient condition for time independence is

V H −H†V = 0, V HV −1 = H†. (6)

− i d
dt
〈Ri(t)|V = 〈Ri(t)|V H, 〈Li(t)| = 〈Ri(t)|V, − i d

dt
〈Li(t)| = 〈Li(t)|H. (7)

Thus general rule is to use overlap of left- and right-eigenvectors:

〈Li(t)|Ri(t)〉 = 〈Li(0)|Ri(0)〉 (8)
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Generalize unitarity condition to (Mostafazadeh 2004):

U †(t) = eiH
†t = V eiHtV −1 = V U−1(t)V −1. (9)

With
→
H= i∂/∂t,

←
H= −i∂/∂t (since [t,H] = −i), for wave functions have:

i∂t
[∫
dxψL

i (x, t)ψ
R
j (x, t)

]
=

∫
dx

[
ψL
i (x, t)

→
H ψR

j (x, t)− ψL
i (x, t)

←
H ψR

j (x, t)
]
. (10)

If wave functions are well-behaved at infinity, then asymptotic surface term vanishes and V -norm is both time

independent and finite. So normalize to

∫
dxψL

i (x, t)ψ
R
j (x, t) = ηiδi,j. (11)

However, in general V -norm need not be positive. So define up to ηi = ±1.
Normalize phases to ψR

j (x, t) = 〈x|Rj(t)〉, ψL
i (x, t) = ηi〈Li(t)|x〉:

∫
dxψL

i (x, t)ψ
R
j (x, t) =

∫
dx〈Li(t)|x〉ηi〈x|Rj(t)〉 = ηi〈Li(t)|Rj(t)〉. (12)

If we can introduce an operator C that obeys [C,H] = 0, C2 = I , we can then identify ηi = Ci, and recognize

V -norm as ∫
dxψL

i (x, t)Ciψ
R
j (x, t) = 〈Li(t)|Rj(t)〉 = 〈Ri(t)|V |Rj(t)〉, (13)

viz. precisely the C-norm of PT theories. Moreover, if energy spectrum is both real and complete, we can

bring H to a Hermitian form H̃ by a similarity transformation, with 〈Li(t)|Rj(t)〉 then being positive, just as

required of a probability. If on the other hand some of the energy eigenvalues of H appear in complex pairs,

then V -norm is now a transition matrix element and need not be positive. Also, eigenstates of H do not have

to be complete.
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2 PT symmetry and the V HV −1 = H† condition

If V HV −1 = H†, then H andH† have same energy eigenvalues, and those eigenvalues are either real or appear

in complex conjugate pairs.

If eigenvalues of H are either real or appear in complex conjugate pairs, then H and H† have same energy

eigenvalues, and there must thus exist a V that effects V HV −1 = H†.

If f(λ) = |H−λI| is a real function of λ, then eigenvalues of H are real or appear in complex conjugate pairs.

If eigenvalues of H are either real or appear in complex conjugate pairs, then f(λ) is a real function of λ.

Bender, Berry and Mandilara (2002): If [H,PT ] = 0, then f(λ) = |H − λI| is a real function of λ.

Bender and Mannheim (2010): If f(λ) = |H − λI| is a real function of λ, then [H,PT ] = 0.

PT symmetry is equivalent to V HV −1 = H†, and thus PT symmetry is both necessary and

sufficient for unitary time evolution. Thus even if cannot construct V explicitly, which is

usually the case, can test for unitarity by use of a symmetry alone. PT symmetry is thus

the general diagnostic for unitarity.

Bender and Mannheim (2010): If [H,PT ] = 0 and energy eigenspectrum of H is complete, then C operator

that obeys [C,H] = 0, C2 = I necessarily exists.

Three cases of interest when [H,PT ] = 0:

(1) Eigenvalues of H real and complete.

(2) Eigenvalues of H complete but include one or more complex conjugate pairs.

(3) Eigenvalues of H are incomplete (Jordan-block, exceptional point case).

Bender and Mannheim (2010): If (1), then [C, PT ] = 0. If (2), then [C, PT ] 6= 0. If (3), then C does not

exist.
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3 Unitarity when energies are all real and complete

BHB−1 = Ĥ = Ĥ† (14)

B†BHB−1(B†)−1 = H†. (15)

Identify V = B†B. V is a positive operator (often written V = e−Q), so set V = B†B = G2. G also a positive

operator that obeys G = G† and yields a Hamiltonian H̃ = GHG−1 that is Hermitian (Mostafazadeh 2002).

Obtain (GB−1)† = BG−2G = BG−1 = (GB−1)−1. Thus GB−1 is unitary, as it must be.

Choice of V not unique. Can set B†BCHCB−1(B†)−1 = H† and thus use V ′ = V C = B†BC. If can

set V = PC then V ′ = V C = P and PHP = H†. The utility of this choice is that if we continue to an

exceptional point, then C, V andG all become singular and undefined (cannot diagonalize a non-diagonalizable

Hamiltonian), but can still relate H and H† (since |H − λI| remains real in the limit). Thus must be able to

relate H and H† by a non-singular operator that is continuous in the limit. Hence P . Thus V ′ is non-singular
in the limit, even though V is singular.

Set H|ni〉 = Ei|ni〉, H̃|ñi〉 = Ei|ñi〉 = EiGHG
−1|ñi〉.

|ñi〉 = G|ni〉, 〈ñi| = 〈ni|G† = 〈ni|G.

〈nj|V |ni〉 = 〈nj|G2|ni〉 = 〈ñj|ñi〉 = δi,j.

I =
∑
i|ñi〉〈ñi| =

∑
iG|ni〉〈ni|G.

∑
i|ni〉〈ni|G2 =

∑
i|ni〉〈ni|V = I .

G effects transformation from a skew basis |ni〉 to an orthogonal basis |ñi〉, and thus cannot be unitary. Since

H is a Hermitian Hamiltonian H̃ in disguise when all energies are real, it must be unitary in disguise too.
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In H̃ basis set S̃ =
∑
i|ñin〉〈ñout|. Then S̃S̃† = I . In H basis define S =

∑
i|nin〉〈nout|G2. Then by mapping

we have S̃ = GSG−1, and thus

SG−2S†G2 = I, G2SG−2S† = I, SV −1S†V = I, V SV −1S† = I. (16)

This is the unitarity relation when energies are all real and eigenvectors are complete.

Can also derive directly in V -norm basis where

〈niin|V |njin〉 = 〈njin|V †|niin〉 = δi,j, 〈niout|V |njout〉 = 〈njout|V †|niout〉 = δi,j,
∑
i|niin〉〈niin|V =

∑
iV
†|niin〉〈niin| = I,

∑
i|niout〉〈niout|V =

∑
iV
†|niout〉〈niout| = I. (17)

Now define S =
∑
i|nin〉〈nout|V , to obtain

SV −1S†V =
∑
i|niin〉〈niout|V V −1

∑
jV
†|njout〉〈njin|V =

∑
i|niin〉〈niin|V = I. (18)

SV −1S†V = I, V SV −1S† = I. (19)

Since no reference to H̃ , now holds even if energies are not all real (but still complete). Utility is that even if

cannot prepare unstable in states, still need them for completeness, and thus can generate unstable out states

in a unitarity preserving manner, even if have modes that grow in time.

Bender and Mannheim (2008): When energy eigenvectors not complete, find that instead solutions to time-

dependent Schrödinger equation are complete. Then can construct wave packets out of them that preserve

norms of wave packets in time.
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3.1 A simple example

H = r cos θσ0 + ir sin θσ3 + sσ1 =


 r cos θ + ir sin θ s

s r cos θ − ir sin θ


 . (20)

H is PT symmetric under P = σ1, T = K. PHP = H†.

Energies E± = r cos θ ± (s2 − r2 sin θ2)1/2.
If s2 − r2 sin θ2 is positive, energies are real.
Define sinα = (s2 − r2 sin θ2)1/2/s, cosα = r sin θ/s.

G±1 =


1 + sinα

2 sinα



1/2

σ0 ± σ2


1− sinα

2 sinα



1/2

, G±2 = V ±1 =
1

sinα
σ0 ± σ2

cosα

sinα
, (21)

V HV −1 = H†, H̃ = GHG−1 = r cos θσ0 + σ1(s
2 − r2 sin2 θ)1/2. (22)

Eigenvalues of G are [(1 ± sinα)/2 sinα)]1/2. Eigenvalues of G2 = V are (1 ± cosα)/ sinα. All eigenvalues

are real and positive.

C =
1

sinα
(σ1 + i cosασ3) , [C, PT ] = 0. (23)

u+ =
e−i(r cos θ+µ)teiπ/4

(2 sinα)1/2


 e−iα/2

−ieiα/2

 , u− =

e−i(r cos θ−µ)teiπ/4

(2 sinα)1/2


 ie

iα/2

e−iα/2


 , µ = (s2 − r2 sin θ2)1/2. (24)

u†±V u± = +1, u†±V u∓ = 0, u+u
†
+V + u−u

†
−V = I. (25)

Basis is V -othornormal. All of V , G, and C become undefined at α = 0, the exceptional point at which E+ and

E− become equal, u+ and u− become equal, and H becomes a non-diagonalizable Jordan-block Hamiltonian.

However at this point P is still non-singular and PHP = H† still holds.
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4 Unitarity when energies are not all real but complete

Define ν = (r2 sin θ2 − s2)1/2, E± = r cos θ ± iν, sinh β = (r2 sin θ2 − s2)1/2/s, cosh β = r sin θ/s.

G±1 =


1 + i sinh β

2i sinhβ



1/2

σ0 ± σ2


1− i sinhβ
2i sinh β



1/2

6= (G±1)†, G±2 = V ±1 =
1

i sinh β
σ0 ± σ2

cosh β

i sinh β
. (26)

G 6= G†, V 6= V †, V HV −1 = H†, H̃ = GHG−1 = r cos θσ0 + iσ1(r
2 sin2 θ − s2)1/2 6= H̃†. (27)

C = V −1P =
1

i sinh β
(σ1 + i coshβσ3) , [C, PT ] 6= 0. (28)

u+ =
e−ir cos θt+νt

(2 sinh β)1/2


 eβ/2

−ie−β/2

 , u− =

e−ir cos θt−νt

(2 sinhβ)1/2


 ie

−β/2

eβ/2


 . (29)

u†±V u± = 0, u†−V u+ = +1, u†+V u− = −1, u+u
†
−V − u−u†+V = I. (30)

D(E) =
u†−V u+

E − (ER − iEI)
+

u†+V u−
E − (ER + iEI)

, (31)

D(E) =
1

E − (ER − iEI)
− 1

E − (ER + iEI)
=

−2iEI

(E − ER)2 + E2
I

. (32)

Imaginary part has same sign as standard Breit-Wigner, where one assumes Im(E) < 0, to thus justify its use:

DBW(E) =
1

E − (ER − iEI)
=

E − ER − iEI

(E − ER)2 + E2
I

. (33)

Thus role of minus sign in u†+V u− = −1 is to restore unitarity, not violate it. Compare with Lee-Wick.
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5 Unitarity when energies are all real but incomplete

M =


 a 1

0 a


 . (34)


 a 1

0 a




 1

0


 = a


 1

0


 , a ( 0 1 ) = ( 0 1 )


 a 1

0 a


 . (35)

6 Constructing the non-diagonalizable case as a limit of a diagonalizable one

σ1Hσ1 = σ1(r cos θσ0 + ir sin θσ3 + sσ1)σ1 = r cos θσ0 − ir sin θσ3 + sσ1 = H†, (36)

B†BCHCB−1(B†)−1 = H†, (37)

V ′ = V C = P, (38)

PHP = H†. (39)
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7 Symplectic symmetry and Stokes wedges in classical mechanics

{u, v} = ∑
i



∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi


 . (40)

η =


 qi
pi


 J =


 0 I

−I 0


 . If use (q1, p1, q2,−p2), then J = C =


−iσ2 0

0 iσ2


 , CγµC

−1 = −γ̃µ. (41)

{u, v} =
˜∂u

∂η
J
∂v

∂η
. (42)

Mij =
∂ξi
∂ηj

,
∂v

∂η
= M̃

∂v

∂ξ
,

˜∂u

∂η
=

˜∂u

∂ξ
M. (43)

{u, v} =
˜∂u

∂ξ
MJM̃

∂v

∂ξ
. (44)

{u, v} =
˜∂u

∂ξ
J
∂v

∂ξ
if MJM̃ = J, symplectic symmetry. (45)

M = eiωiGi, eiωiGiJeiωiG̃i = J, GiJ + JG̃i = 0, G̃i = −J−1GiJ = JGiJ. (46)

solve via GiJ − JGi = 0 and G̃i = −Gi, or GiJ + JGi = 0 and G̃i = Gi. (47)

In N dimensions have N antisymmetric and N(N − 1)/2 symmetric generators. Algebra closes on Sp(N)

with N(N + 1)/2 generators. In classical mechanics can make all Gi be pure imaginary, so that with real ωi
all M are real. However, invariance under canonical transformations persists if ωi are complex. Continuing

to complex ωi only has content if we encounter a Stokes line in a complex qi, pi phase space. In each Stokes

wedge we can construct a canonical quantization (Poisson brackets become commutators) with an associated

correspondence principle (classical coordinates are eigenvalues of quantum operators).
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8 Comparing PT symmetry and Hermiticity

1. Hermiticity is sufficient to yield real energy eigenvalues, but not necessary. PT symmetry is necessary to

produce real eigenvalues but not sufficient. [H,PT ] = 0 and [C, PT ] = 0 combined is both necessary and

sufficient to yield real eigenvalues. PT symmetry is necessary and sufficient to yield a real f(λ) = |H−λI|.
2. Hermiticity is sufficient to yield unitary time evolution, but not necessary. PT symmetry is both necessary

and sufficient to yield unitary time evolution.

3. Hermiticity cannot describe unstable states or non-diagonalizable Hamiltonians. PT symmetry can de-

scribe both unstable states (loss-gain systems) and non-diagonalizable Hamiltonians (conformal gravity).

4. [PT,H] = 0 commutator is preserved by a similarity transformation. The relation Hij = H∗ji is basis
dependent and not preserved by a similarity transformation. If H = H† and H ′ = SHS−1, then
H ′† = S−1†H†S† = S−1†HS† = S−1†S−1H ′SS† = (SS†)−1H ′SS†. If S† 6= S−1, H ′† 6= H ′.

5. General basis-independent definition of Hermitian: eigenvalues are real and eigenstates are complete.

General basis-independent definition of PT symmetry: secular determinant f(λ) = |H − λI| is real.
6. Bender (2007): PT is physical. Hermiticity is mathematical.

7. Bender andMannheim (2011): PT has a natural connection to Lorentz invariance: P x̄P = −x̄, TtT = −t,
PTxµTP = −xµ (equivalent to Lorentz boost though complex iπ).

8. For a Hermitian operator Dirac norm can be assigned a priori. It is dynamics independent, and is just like

a flat space Euclidean or Minkowski metric ds2 = ηµνdx
µdxν . For the PT case, the V-norm cannot be

preassigned. It is dynamics dependent, and is just like general relativity line element ds2 = gµν(x)dx
µdxν,

where gµν(x) is determined by gravitational equations of motion.
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9. PT can be defined at the c-number level. Hermiticity can only be defined as a q-number property of the

quantum Hilbert space.

10. PT can be defined as a symmetry on both stationary and non-stationary paths in the Feynman path

integral
∫
D[x]eiSCL(x,x

′). No reference is made to Hermiticity or Hilbert space in path integral, a purely

classical c-number approach to quantization, and no notion of Hermiticity can be attached to any of the

classical paths, be they stationary or non-stationary.

11. Thus where does Hermiticity come from, and how did it come into physics? And how

can we tell from a c-number path integral whether or not the associated q-number

theory is Hermitian, PT , or neither? I.e. knowing only the c-number propagator

G(x′, t′; x, t), how do we determine what quantum matrix element it is to represent,

〈ΩR|T (φ(x)φ(x′)|ΩR〉, or 〈ΩL|T (φ(x)φ(x′)|ΩR〉 = 〈ΩR|V T (φ(x)φ(x′)|ΩR〉, or something else?

8.1 PT symmetry and path integration

Define θ(t′ − t)ψ(x′, t′) = i
∫
dxG(x′, t′; x, t)ψ(x, t). If i∂tψ(x, t) = H(x, t)ψ(x, t), then propagator obeys

[i∂t′ −H(x′,−i∂x′, t′)]G(x′, t′; x, t) = δ(x− x′)δ(t− t′). (48)

If H is Hermitian, three ways to represent the propagator:

(1) H is generator of time translations: G(x′, t′; x, t) = −iθ(t′ − t)〈x, t|x′, t′〉 = −iθ(t′ − t)〈x|e−iH(t′−t)|x′〉.
(2) Completeness of energy eigenfunctions: G(x′, t′; x, t) = −iθ(t′ − t)∑iu

∗
i (x
′)ui(x)e−iEi(t

′−t).

(3) Completeness of eigenstates of x̂ and p̂ operators that obey [x̂, p̂] = i to get Feynman path integral:

13



G(x′, t + ǫ; x, t) = −iθ(ǫ)〈x|

1− iǫ p̂

2

2m
− iǫV (x̂)


 |x′〉

= −iθ(ǫ)

δ(x′ − x)[1− iǫV̄ (x, x′)]− iǫ

∫ dp

2π

p2

2m
eip(x

′−x)



= −iθ(ǫ)
∫ dp

2π
eip(x

′−x)

1− iǫ p

2

2m
− iǫV̄ (x′x)




= −iθ(ǫ)
∫ dp

2π
exp


ip(x′ − x)− iǫ p

2

2m
− iǫV̄ (x′x)




= −iθ(ǫ)
( m

2πiǫ

)1/2
exp



im(x′ − x)2

2ǫ
− iǫV̄ (x′x)


 . (49)

G(x′, t + ǫ; x, t) = −iθ(ǫ)
( m

2πiǫ

)1/2
eiSCL(x

′,x). (50)

If H is not Hermitian but PT symmetric:

(1) is same.

(2) is replaced by G(x′, t′; x, t) = −iθ(t′ − t)∑iψ
R
i (x)Ciψ

L
i (x)e

−iEi(t
′−t).

(3) still uses completeness of momentum and position eigenstates, except realize [x̂, p̂] = i as [eiθx,−ie−iθ∂x] = i

in appropriate Stokes wedge in complex coordinate plane.

If start with c-number path integral representation G(x′, t′; x, t) = −iθ(t′ − t)
∫
D[x]eiSCL(x,x

′), then

(1) If path integral exists with real measure, quantum H is Hermitian.

(2) If path integral only exists with complex measure, quantum H is not Hermitian.

(3) If path integral only exists with complex measure, and Euclidean time continuation is real, quantum H is

PT symmetric.
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8.2 PT symmetry and the Pais-Uhlenbeck fourth-order oscillator

IPU =
γ

2

∫
dt

[
z̈2 −

(
ω2
1 + ω2

2

)
ż2 + ω2

1ω
2
2z

2
]
,

d4z

dt4
+ (ω2

1 + ω2
2)
d2z

dt2
+ ω2

1ω
2
2z = 0. (51)

x = ż, HPU =
p2x
2γ

+ pzx +
γ

2

(
ω2
1 + ω2

2

)
x2 − γ

2
ω2
1ω

2
2z

2, G(E) =
1

ω2
1 − ω2

2




1

E2 − ω2
1

− 1

E2 − ω2
2


 . (52)

ωi = (k̄2 +M 2
i )

1/2, IS = −
1

2

∫
d4x

[
∂µ∂νφ∂

µ∂νφ + (M 2
1 +M 2

2 )∂µφ∂
µφ +M 2

1M
2
2φ

2
]
, (53)

(−∂2t + ∇̄2 −M 2
1 )(−∂2t + ∇̄2 −M 2

2 )φ(x) = 0, (54)

D(k,M1,M2) =
1

(M 2
2 −M 2

1 )




1

k2 +M 2
1

− 1

k2 +M 2
2


 , (55)

T00(M1,M2) = π0φ̇ +
1

2

[
π200 + (M 2

1 +M 2
2 )(φ̇

2 − ∂iφ∂iφ)−M 2
1M

2
2φ

2 − πijπij
]
, (56)

πµ =
∂L

∂φ,µ
− ∂λ



∂L

∂φ,µ,λ


 = −(M 2

1 +M 2
2 )∂

µφ + ∂λ∂
µ∂λφ, πµλ =

∂L

∂φ,µ,λ
= −∂µ∂λφ,

[φ(x̄, t), π0(x̄
′, t)] = ih̄δ3(x̄− x̄′), [∂0φ(x̄, t), π

0
0(x̄
′, t)] = ih̄δ3(x̄− x̄′). (57)

Second-order Klein-Gordon wave equation has both positive and negative frequency solutions. But Hamiltonian

is positive definite, so no transitions to negative frequency. Fourth-order wave equation also has both positive

and negative frequency solutions. If Hamiltonian is Hermitian, Hamiltonian is unbounded from below. However,

if Hamiltonian is PT symmetric and φ or z is anti-Hermitian, Hamiltonian then is bounded from below, and

there are no transitions to negative frequency. Also no states of negative norm (Bender and Mannheim 2008).
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A Distinguishing Ĥ and H̃ and the lack of uniqueness of V

Ĥ = a0σ0 + a1σ1 + a2σ2 + a3σ3, (A1)

B =
1

i
√
3
(σ0 + 2σ1), B−1 =

1

i
√
3
(σ0 − 2σ1). (A2)

H = a0σ0 + a1σ1 −
σ2
3
(5a2 + 4ia3)−

σ3
3
(5a3 − 4ia2). (A3)

V =
1

3
(5 + 4σ1), V −1 =

1

3
(5− 4σ1), (A4)

V HV −1 = a0σ0 + a1σ1 −
σ2
3
(5a2 − 4ia3)−

σ3
3
(5a3 + 4ia2), (A5)

G =
1√
3
(2σ0 + σ1), G−1 =

1√
3
(2σ0 − σ1) (A6)

GHG−1 = H̃ = a0σ0 + a1σ1 − a2σ2 − a3σ3, (A7)

BG−1H̃GB−1 = Ĥ (A8)

is unitary, just as required.

H = h0σ0 + σ · h (A9)

P =
σ · hR

(hR · hR)1/2
, T = K

σ2σ · hR × hI

(hR × hI · hR × hI)1/2
, C =

σ · h
(h · h)1/2 , (A10)
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PHP = H†, PCHCP = H†. (A11)

PC =
(hR · hR − σ · hR × hI)

(hR · hR)1/2(h · h)1/2
. (A12)

Tr[PC] =
2hR · hR

(hR · hR)1/2(h · h)1/2
, Det[PC] = I, (A13)

hR =


a1,−

5a2
3
,−5a3

3


 , hI =


0,−4a3

3
,
4a2
3


 , (A14)

PV =
1

3(hR · hR)1/2
(4hR1 + 5σ · h), (A15)

a = −5bh · h
4hR1

= −5b(a
2
1 + a22 + a23)

4a1
,

b =
12hR1 (hR · hR)

1/2

[16(hR1 )2 − 25h · h](h · h)1/2 = −
4a1

[9a21 + 25(a22 + a23)]1/2(a
2
1 + a22 + a23)1/2

, (A16)
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