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Warning: Use covariant (basis-independent) description of
operators:

- Operator = Matrix
- HT* is meaningless for an operator H.

- Define HT covariantly.



Inner-Product & Hilbert Spaces:

e (V,(-]-)): An inner product space

o || v|=+/(v|v): Norm of v

e {v,}. Convergent sequence if dJv e V, | v, — v ||= 0.

lim
T— 0

e {v,}: Cauchy sequence if Ilim || v, — v, |=0.
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o 7 = (V,(:]-)): Hilbert space if every Cauchy seq. converges.



Inner-Product & Hilbert Spaces:

e (V. {:|-)): An inner product space

o || v|= +/(v|v): Norm of v

o {vn}: Convergent sequence if Jv €V, lim [ v, — v [|=0.

e {v,}: Cauchy sequence if Ilim || v, — v, |=0.

M N— 00
o 7 = (V,(:]-)): Hilbert space if every Cauchy seq. converges.

e AC V is a dense subset, if Yo € V', 3 a sequence {v,} in A
such that v, — v.

e (' C V is a closed subset, if the limit of every convergent
sequence in C' belongs to C.

e Every inner product space V can be uniquely extended to
a Hilbert space 2# such that V is dense in 2. .2# is called
the Cauchy completion of V.
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e 7. A separable Hilbert space (It has a countable dense
subset.)

o [ . ¥ — 7 be a linear operator with a dense domain ¥ &

9 = {1_ € M| € H N E D, (W|Ld) = <g|f,_.-—;>}.
The adjoint of L is the function L' : 3# — 2 with domain
2' that satisfies: Vi € ' & Vo € 7, (V|Lo) = (L),

e L is symmetric operator if Vb, € &, (d|L) = (Lo|).

e L is self-adjoint or Hermitian, if it is symmetric and ¥’ = 9,
e, LT=1L.



o .. 1 — 5 is bounded, if
Je € RT, Yoo € D, (Lp|L)o < (|1,

e [, is continuous, if for every sequence {£,)} in & and € € &,
&, — € implies LE, — LE.
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o .. 1 — 5 is bounded, if
3e € RY, Vi € D, (Lyp|Lyp)a < e(ih|h)1.

e [, is continuous, if for every sequence {£,)} in & and € € &,
&, — € implies LE, — LE.

e Boundedness = continuity

e Every bounded operator with domain ¥ ¢ ¢ can be
extended to a bounded operator with domain 7.

e Hermiticity & ¥ = 7 imply boundedness (Hellinger-Toeplitz).

e For an unbounded Hermitian operator, ¥ ¢ J¢.



o U .54 — 4 is an isometry, if Dom(U) = 74 and

Vo1, 91,77, (P1|v1)1 = (U1 |Uv1)o.

o U : 4 — 7% is a unitary operator, if it is an onto isometry.
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o U .54 — 4 is an isometry, if Dom(U) = 74 and

Vb1, 1, 71, (P1

1)1 = (U1 |Uq)o.
o U : 4 — 7% is a unitary operator, if it is an onto isometry.
o A ¥ — ¢ is an automorphism, if it is a one-to-one and

onto linear operator A : % — 2 with domain 2 (a linear
bijection).

o [ 2 —  is a positive operator, if it is a Hermitian
operator such that Vv € 2, (¥|Lvy) > 0. It is positive-definite,
it (xp|L+) = 0 only for ¢» = 0.

e bounded metric operator := positive-definite automorphism

Hellinger-Toeplitz = Hermitian automorphisms are bounded.



o H : ¥ — 2 is pseudo-Hermitian if there is a Hermitian
automorphism n : J# — 2 such that H' = nHn 1 or
nH = H'n.

e For diagonalizable linear operators with a discrete spectrum,

Pseudo-Hermiticity & Antilinear Symmetries



o H : ¥ — 2 is pseudo-Hermitian if there is a Hermitian
automorphism n : J# — 2 such that H' = nHn 1 or
nH = H'n.

e For diagonalizable linear operators with a discrete spectrum,

Pseudo-Hermiticity & Antilinear Symmetries

o I : 7 — 7 is quasi-Hermitian if there is a positive-definite
automorphism n, : 2 — 2 such that H! = ny H -'r]_l__l or

nyH = H'T“r]_l_.
e For a linear operator with a discrete spectrum,

Quasi-Hermiticity & Diagonalizablity + Reality of Spectrum



Pseudo-Hermiticity versus PT-Symmetry, JMP 43 (2002)
205, math-ph/0107001.

Pseudo-Hermiticity versus PT-Symmetry II, JMP 43 (2002)
2814, math-ph/0110016.

Pseudo-Hermiticity versus PT-Symmetry III, JMP 43 (2002)
3944, math-ph/0203005.

Consequences:
- Role of antilinear symmetries such as P7-symmetry
- Construction of metric operators (non-uniqueness)

Applications:

- RQM: Probabilistic Interpretation of KG fields (2003) &
Proca fields (2009)

- Hilbert-space problem in quantum cosmology (2003-2004)

- Electrodynamics: Permeability tensor as a metric
operator (2008-2010)

- Physics of Spectral Singularities (2009): Threshold
Lasing & Antilasing



Pseudo-Hermitian QM: Given a quasi-Hermitian operator
H . 2 — 2 and a corresponding (bounded) metric
operator 7, one can redefine the inner-product of the Hilbert

space, (p|p) — (1, -'z;i:>n_|_ = (Pn, ),
such that H : 7 — 7 is Hermitian.
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Pseudo-Hermitian QM: Given a quasi-Hermitian operator
H . 2 — 2 and a corresponding (bounded) metric
operator 7, one can redefine the inner-product of the Hilbert
U) — < ”1 "Z?."i?>n + = <@|77 + U>

such that H : 7 — 7 is Hermitian.

space, (¢

e 77 and }2”+ are the same as sets and topological vector
spaces, but different as inner-product spaces.

e p = /1M : f%i — ¢ IS a unitary operator.

o h:=pHp ' :# — 2 is Hermitian.



pi= h:=pHpl

H:72 — h . —

(A, , H) and (', h) are unitary-equivalent.

T hey describe the same physical system.



Pseudo-Hermitian Representation of the system:
e Physical Hilbert space: J7
e Observables: Hermitian operators O : .77, — J,

e Hamiltonian: H : 7 — J

Hermitian Representation of the system:
e Physical Hilbert space:
e Observables: Hermitian operators o : 77 —

e Hamiltonian: h i =pHp ' # — H (p:= J/7.)



T he central ingredient of pseudo-Hermitian QM
Is the metric operator. Its choice is restricted
by the Hamiltonian via the pseudo-Hermiticity
relation H' = -'}]_|_H-';f]jrl, but it is not unique.

Different choices of 7 _ determine different
quantum systems with the same Hamiltonian
H but different Hilbert space 77 .



o-Function Potential with Complex Coupling

p2

H i1s not P7-symmetric.



o-Function Potential with Complex Coupling

.
H=2 4¢5(x), c¢eC, %) >0

2m

H 1s not P7-symmetric.

We can obtain a perturbative expansion for a metric operator
n, that gives:
P

2
S+ RO 8(@) +3(O)? ha + O(3(O))

h =

h is a nonlocal operator.

JPA 39 (2006) 13495, quant-ph/0606198



P7T-Symmetric Anharmonic Oscillator:
[Bender & Boettcher, PRL 80 (1998) 5243]

2 2
p_l_ﬂf) 3

H = X° +1€x
2m



P7T-Symmetric Anharmonic Oscillator:
[Bender & Boettcher, PRL 80 (1998) 5243]

Using perturbation theory we find a particular n, that gives:

2] 3 | 2h 2 e Qp? ,
h‘=’t—+—f1 X2+ (—{MIJHH 14+—)‘52+ (I3_ : (%, pY)
/

2m 2 2u* \m 3m 12 m?
51 T 817?12 6972 14 ,

-2 p}——’r WO g = ) et O
Sm 4 2m= 2m

h i1s a nonlocal operator.
[JPA 38 (2005) 6557]



Problem: The metric operators we could construct for this
and almost all other quasi-Hermitian Hamiltonian operators
that act in an co-dim. Hilbert space are unbounded operators!

= dom(n,) G H#
= q € A, n,y does not exist.

= n, does not define an inner product on 7.



Problem: The metric operators we could construct for this
and almost all other quasi-Hermitian Hamiltonian operators
that act in an co-dim. Hilbert space are unbounded operators!

= dom(n,) G H#
= q € A, n,y does not exist.

= n, does not define an inner product on 7.

Impractical solutions:
e Kretschmer & Szymanowski, PLA 325, 112 (2004).
e Mostafazadeh & Batal, JPA 37, 11645 (2004).

e Mostafazadeh, IJIGMMP 7, 1191 (2010); arXiv:0810.5643.
Construction of 7 & h 7



e Unbounded metric operator := unbounded positive-definite
operator

e I is 1, -pseudo-Hermitian operator, if HTTM_ — 'T]_|_H.
e Both H and 5, act in J and have dense domains.

o, >0=Vyedom(n,), »# 0= (Y|ny) eRT,



e Unbounded metric operator := unbounded positive-definite
operator

e I is 1, -pseudo-Hermitian operator, if H]Lm_ =n H.
e Both H and 5, act in J and have dense domains.
o1, >0=Vyecdom(n,), ¥# 0= (Y|n.yp) € RT.

® pI= /1" 0 — ° is also positive-definite.

e 7, = p> = dom(n,) C dom(p) C .

e 1. and p are both invertible.

e 7. and p are both Hermitian =

Vo, € dom(n, ), (dln,v) = (d|p*) = (pdlp)
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1) H has a real and discrete spectrum with eigenvectors v,
whose span

N
S = { Z C-n.’uff"n.-
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is an oo-dim. subspace of 7.
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Because p is one-to-one, p(S) is an co-dim. subspace of 7.



Assumptions:

1) H has a real and discrete spectrum with eigenvectors v,
whose span

N
S = { Z C-n..’%[f’-n..

NEN, cn € (C} C A
n=0

is an oo-dim. subspace of 7.
2) In, >0, Hin, =n H.
3) ¥, € dom(n.) = S Cdom(n,) C dom(p)

N
p(S) L= { Z C-np'k/)-n

N - N? Cn € C}
n=>0

Because p is one-to-one, p(S) is an co-dim. subspace of 7.

Aim: To construct analogs of ﬁi’f]+ and h, and use them to
define a quantum system.



Construction of 77, & h:
Step 1) Let (-,-)) be the inner-product on § defined by

Vo, €S, (@,9) = (@np ) = (polpy).

Then & is an inner-product space.
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Construction of 77, & h:

Step 1) Let (-,-)) be the inner-product on § defined by

Vo, €S, (@,9) = (pIn ) = {pp|py).

Then & is an inner-product space.

Step 2) jzﬂm = Cauchy completion of &

L
Cam Z ///i =
P

// \\ // / \\\
/ '\\ / / / \

\ \ ! j
\ / \ / il /
\ / \ / \\\
\\—/ \\,,,// \\%/ &

(|- {(~, ) Cauchy-Completed S



Step 3) Restrict H : 2# — 2% to §&. This defines an operator
with domain & which is dense in 32%+. We also denote it by

H. Because H'n, =n, H, Vo,v € S,

(&, Hi) = (@I, HY) = (¢|H'n, o) = (Hp|n, o) = (Ho, ).

= H %, — , is a symmetric operator.
Iy 1y
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eigenvectors of H.



Step 3) Restrict H : 2# — 2% to §&. This defines an operator
with domain & which is dense in 32%+. We also denote it by

H. Because H'n, =n, H, Vo,v € S,
(&, Hi) = (@I, HY) = (¢|H'n, o) = (Hp|n, o) = (Ho, ).

= H %, — , is a symmetric operator.
Iy 1y

We can construct an orthonormal basis {v,} of J, using
eigenvectors of H.

H @2, — 7, is symmetric but not Hermitian.

Must find a Hermitian (self-adjoint) extension of H.



Step 4) Recall Hy,, = E,v,. Let

>0 0
Y = E anWn E EE\G.H\Q < 00 p,

n=0 n=—0

and define H : ¢, — 2 with domain Z by

_|_
o0 20
H E anln | ‘= E Enan Un.
n=—0 n=0

H is the unique Hermitian extension of H.
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Step 4) Recall Hy,, = E,v,. Let

>0 0
Y = E anWn E EE\G.H\Q < 00 p,

n=0 n=—0

and define H : ¢, — 2 with domain Z by

_|_

o0 >0
H E (1 7 1?..} T — E E T a T ?'-’1 T

n—=—0 n=—0

H is the unique Hermitian extension of H.

(%+,ﬁ) defines a unitary quantum system.

¢, and A are different even as sets.



Step 5) Restrict p: % — 57 to S&. This gives an operator
ps o, — 2 with domain &.




Step 5) Restrict p: % — 57 to S&. This gives an operator
ps o, — 2 with domain &.

p . — ps . Iy, — I

S is dense in J), & Vo, v € S, (&,¥) = (pd|py) = (p:d|ps).

ps IS a bounded operator that can be extended to 0,

This defines an isometry p: 77, — 7.



Can show that range(p) = p(7,) is a closed subspace of 7.

.

= It is a Hilbert space 7.




Can show that range(p) = p(7,) is a closed subspace of 7.

.

= It is a Hilbert space 7.

Let p: 7, — 7 be defined by g := g for all ¥ € T,




Can show that range(p) = p(7,) is a closed subspace of 7.

.

= It is a Hilbert space 7.

Let p: 7, — 2 be defined by pi) 1= pip for all o € ;.
e p is a unitary operator.
o h:=pHp ' 4 — o is a Hermitian operator.

e (7, h) defines the same quantum system as (jﬁ;+,ﬁ).




The pseudo-Hermitian quantum system that is defineg by H
and 7, can be represented by either of (7, , H) or (J h).

hi=pHp !

arXiv: 1203.6241 (Phil. Trans. Roy. Soc. A, to appear)
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Example:

1

# = [2(R), H:= S(p - io)® 4V (x)
L2l
n, = E_iQru.r' Viz) = W&

Un(a) = NaHn(V@a)e s
(0, ¥n)(2) = Ny Hy (v x)e 5 o0

77+L/f’n e H = (DS dom(Th)



Example:

1

A = L*(R), H:= 5(p_;,;(,-,‘,)z LV (2)
42l

n. = E{Qr}.r V(SL‘) _ weax

Vp(z) 1= Nan(\/Em)e_%_M
(n, ¥n)(x) = NpH, (Vewx)e =107

n.n € & = 1, € dom(n,)

, SN 1
(6.0) = [ o)y v@de h= @ +w)

— 00

(2, , H) or (#,h) both define a simple harmonic oscillator.



Conclusion: The problem of dealing with
unbounded metric operators has been a subject of
on-going discussion till the inception of pseudo-
Hermitian QM in 2003. We have given a complete
resolution of this problem.

Applications of the construction we developed for
this purpose awaits further study.
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Applications of the construction we developed for
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T hank you for your attention.
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“Important Scientific discoveries go through three
phases: first they are completely ignored, then they
are violently attacked, and finally they are brushed
aside as well-known.”

Konrad Lorenz
Animal behaviourist
Nobel laureate



