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What do we mean by an anholonomy

. . . a discrepancy between the initial and final “objects” of a cycle.
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Berry’s phase anholonomy (1984)

The phase of an eigenstate can exhibits an anholonomy for a periodic
change of a environmental parameter. This anholonomy has an established
interpretation terms of differential geometry so that we may call it the
phase holonomy (Simon 1983).
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Eigenspace and eigenvalue anholonomies (Cheon 1998)

About ten years after Berry’s work, it was shown that the anholonomies of
eigenspaces as well as eigenenergies of bound states (a.k.a. exotic
quantum holonomies) can occur.

from Cheon, PLA 248 (1998)
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Aim of this talk

An interplay of Cheon’s eigenspace and eigenvalue anholonomies of
bound states and exceptional points will be explained.

Contents

1. Abundance of the anholonomies in unitary operators
(AT and M. Miyamoto (Waseda))

2. A gauge theory for the phase and eigenspace anholonomies
(T. Cheon (Kochi) and AT)

3. Hidden exceptional points underlying the anholonomies
(S.W. Kim (Pusan), T. Cheon and AT)
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Part I: Eigenvalue and eigenspace anholonomies
in unitary operators

M. Miyamoto and AT, PRA 76, 042115 (2007)

Cheon’s anholonomies in Floquet operators
AT and M. Miyamoto, PRL 98, 160407 (2007)

Quasienergy anholonomy and its application to

adiabatic quantum state manipulation
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The minimal model: a kicked spin-12
Let us examine a periodically driven spin-12 :

H(t) = µ
1+σz

2
+ λ

1+σx

2

∞

∑
n=−∞

δ (t−n),

where
I µ is the energy gap of the unperturbed system (λ = 0)
I λ is the adiabatic parameter (the perturbation strength).
I The whole energy is also periodically changed.
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Floquet operator of the kicked spin

The Floquet operator for the unit time interval −1
2 ≤ t ≤ 1

2 is

U(λ ) = e−iµPz/2e−iλPx e−iµPz/2, where Pz ,x ≡
1+σz ,x

2
.

For U(λ ), the path C ≡
{

λ
∣∣ 0≤ λ ≤ 2π

}
is a closed cycle.

Note that Px is a projection (i.e., P2
x = Px). Hence we have

e−iλPx = (1−Px)+ e−iλ Px ,

which implies that U(λ ) is 2π-periodic in λ .
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Eigenvalue problem of U(λ )

The eigenvalue equation (n = 0,1):

U(λ )|n(λ )〉= e−iEn(λ) |n(λ )〉, where En(λ ) is a quasienergy.

The solution for the case µ = π:

En(λ ) = nπ +
λ
2
, or, zn(λ )

(
≡ e−iEn(λ)

)
= (−1)ne−iλ/2,

|0(λ )〉= cos
λ
4
|0〉+sin

λ
4
|1〉, |1(λ )〉=−sin

λ
4
|0〉+cos

λ
4
|1〉.

cf. U(λ +2π) = U(λ ).
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Eigenvalue and eigenspace anholonomies

The eigenvalue zn(λ ) = (−1)ne−iλ/2 is not 2π-periodic, although U(λ ) as
well as the spectrum set {z0(λ ),z1(λ )} has a period 2π.

z = e
-iE

z0HΛ=0Lz1HΛ=0L

-1.0 -0.5 0.5 1.0
Re z

-1.0

-0.5

0.5

1.0

Im z

After the completion of the cycle C , the interchange of eigenvalues occurs.
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Π 2 Π
0

Π

2 Π

Λ

E

The quasienergies has Möbius strip-like structure.
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Eigenvalue and eigenspace anholonomies

The eigenvalue zn(λ ) = (−1)ne−iλ/2 is not 2π-periodic, although U(λ ) as
well as the spectrum set {z0(λ ),z1(λ )} has a period 2π.

¤¯\

¤\

¤\

¤¯\

Π 2 Π
0

Π

2 Π

Λ

E

The adiabatic cycle C also induces another anholonomy in the eigenspace:
e.g., |0(λ = 2π)〉= |1(λ = 0)〉 ( ⊥ |0(λ = 0)〉 ).
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A generalization to multiple-level systems

The eigenvalue and eigenspace anholonomies occur in a unitary operator

U(λ ) = U0 exp(−iλ |v〉〈v |) ,

for generic U0 and |v〉.

2π

π

0
2ππ0

(a)

λ

E

(cf. Combescure 1990, Milek and Seba 1990)
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Summary of Part I

Examples of the anholonomies in eigenvalues and eigenspaces in unitary
matrices are shown.

z = e
-iE

z0HΛ=0Lz1HΛ=0L

-1.0 -0.5 0.5 1.0
Re z

-1.0

-0.5

0.5

1.0

Im z

¤¯\

¤\

¤\

¤¯\

Π 2 Π
0

Π

2 Π

Λ

E
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Part II: A gauge theory for the phase and
eigenspace anholonomies

T. Cheon and AT, EPL 85, 20001 (2009)

New anatomy of quantum holonomy
AT and T. Cheon, Ann. Phys. 324, 1340 (2009)

A Unified Theory of Quantum Holonomies
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How we characterize the anholonomy in eigenspace?

How do we characterize the discrepancy between the initial eigenstate |n〉
at λ = 0 and the final state |n(C )〉 obtained by the adiabatic time
evolution along a closed path C?
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M-matrix

We characterize |n(C )〉 by the initial basis vectors {|m〉}m:

Mmn(C )∼ 〈m|n(C )〉

which is called M-matrix (or holonomy matrix).
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M-matrix: the gauge covariant expression

M(C ) = exp
→

(
−i

∫
C
A(λ )dλ

)
exp

(
i
∫
C
AD(λ )dλ

)
,

where

Amn(λ )≡ i〈m(λ )|∂ |n(λ )〉
∂λ

, a non-Abelian gauge connection

and

AD
mn(λ )≡ δmnAnn(λ ) the diagonal part of A.

Remark.
This is an extension of Fujikawa’s formulation on the phase anholonomy

[Ann. Phys. 322, 1500 (2007)].
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The right factor: adiabatic time evolution of |n〉

The adiabatic time evolution along C (λ = 0 to 2π) delivers the initial
eigenstate |n(λ = 0)〉 to

|n(C )〉 ≡ |n(λ = 2π)〉exp
(
i
∫
C
Ann(λ )dλ

)
exp

(
−i

∫ t

0
En(λτ)dτ

)
whose phase factor is governed by Mead-Truhlar-Berry’s Abelian gauge
connection

Ann(λ ) = i〈n(λ )|∂ |n(λ )〉
∂λ

and the eigenenergy En(λ ).
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The left factor: the multi-valuedness of |n(λ )〉
To examine the multi-valuedness in the cycle C , the whole basis vectors

f (λ )≡
[
|0(λ )〉, |1(λ )〉, . . . , |n(λ )〉, . . .

]
must be taken into account at a time.

The parametric evolution of f (λ ) is determined by the non-Abelian gauge
connection A(λ ) (cf. Filip and Sjöqvist 2003):

i
∂

∂λ
f (λ ) = f (λ )A(λ ), where Amn(λ )≡ i〈m(λ )|∂ |n(λ )〉

∂λ

Hence we obtain

f (C ) = f (λ = 0)exp
→

(
−i

∫
C
A(λ )dλ

)
,

where the second factor is not identity under the presence of the
eigenspace anholonomy.
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Summary of Part II

Both phase and eigenspace anholonomies along and adiabatic cycle C are
described by the holonomy matrix M(C ), whose gauge covariant
expression is

M(C ) = exp
→

(
−i

∫
C
A(λ )dλ

)
exp

(
i
∫
C
AD(λ )dλ

)
,

where

Amn(λ )≡ i〈m(λ )|∂ |n(λ )〉
∂λ

,

is the non-Abelian gauge connection, and AD
mn(λ ) = δmnAnn(λ ) is its

diagonal part.
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Part III: Hidden exceptional points behind
anholonomies of bound states

S. W. Kim, T. Cheon and AT, PLA 374, 1958 (2010)

Exotic quantum holonomy induced by degeneracy

hidden in complex parameter space
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Cf. degeneracy behind the phase anholonomy

H = B ·σ (Berry 1984)

[Geometric phase]

∝ [Solid angle subtended by C at the degeneracy point]
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Any similar idea for the exotic anholonomies?

Let us remember our minimal model (we assume 0< µ < 2π):

H(t) = µPz + λPx

∞

∑
n=−∞

δ (t−n), where Pz ,x ≡
1+σz ,x

2
.



Part III: Hidden exceptional points behind anholonomies 21 / 26

The gap of quasienergies ∆(λ )

∆(λ ) = 2cos−1
[
cos

(
λ
2

)/
cos

(
iβ
2

)]
,

where β ≡ 2tanh−1
(
sin µ

2

)
is strictly positive

(∵ we assume 0< µ < 2π).

The spectral degeneracy occurs only when λ
is complexified:

λ =±iβ +2πk, k ∈ Z,

or, equivalently,

e−iλ = e±β .

e
-iΛ

1

1

O
Re

Im

Fig. Configuration of

the EPs in e−iλ -plane.

The degeneracy points are
√

-type branch points of ∆(λ ).



Part III: Hidden exceptional points behind anholonomies 21 / 26

The gap of quasienergies ∆(λ )

∆(λ ) = 2cos−1
[
cos

(
λ
2

)/
cos

(
iβ
2

)]
,

where β ≡ 2tanh−1
(
sin µ

2

)
is strictly positive

(∵ we assume 0< µ < 2π).

The spectral degeneracy occurs only when λ
is complexified:

λ =±iβ +2πk, k ∈ Z,

or, equivalently,

e−iλ = e±β .

e
-iΛ

1

1

O
Re

Im

Fig. Configuration of

the EPs in e−iλ -plane.

The degeneracy points are
√

-type branch points of ∆(λ ).



Part III: Hidden exceptional points behind anholonomies 22 / 26

The eigenvalue anholonomy in terms of EP

e
-iΛ

1

1

O
Re

Im

Fig. Configuration of EP, unitary cycle
C , and non-Hermitian cycle C ′ in

e−iλ -plane.

z = e
-iE

z0HΛ=0Lz1HΛ=0L

-1.0 -0.5 0.5 1.0
Re z

-1.0

-0.5

0.5

1.0

Im z

Fig. Parametric evolutions of the

eigenvalues along C (dashed) and

C ′ (solid).
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The eigenvalue anholonomy in terms of EP

e
-iΛ

1

1

O
Re

Im

Fig. Configuration of EP, unitary cycle
C , and non-Hermitian cycle C ′ in

e−iλ -plane.

z = e
-iE

z0HΛ=0Lz1HΛ=0L

-1.0 -0.5 0.5 1.0
Re z

-1.0

-0.5

0.5

1.0

Im z

Fig. Parametric evolutions of the

eigenvalues along C (dashed) and

C ′ (solid).
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Evaluation of M(C ) by complex integration

The gauge connection of our example is

A(λ ) =
1

2

[
0 −i
i 0

]
∂Θ
∂λ

,

which satisfies the parallel transport condition Ann(λ ) = 0 in each
eigenspace.
Hence, we obtain

M(C ) = exp

{
−i

[
0 −i
i 0

]
η(C )

}
, where η(C )≡

∮
C

1

2

∂Θ
∂λ

dλ .
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EP provides the pole of the non-Abelian gauge
connection

A(λ ) =
1

2

[
0 −i
i 0

]
∂Θ
∂λ

where

∂Θ
∂λ

=
sinhβ

4sin λ+iβ
2 sin λ−iβ

2

.

e
-iΛ

1

1

O
Re

Im

From the Cauchy theorem, we obtain

η(C ) =
∮
C

1

2

∂Θ
∂λ

dλ =
π
2

sgn(β ).

Hence,

M(C ) = exp

{
−i

[
0 −i
i 0

]
η(C )

}
= sgn(β )

[
0 −1
1 0

]
.
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Summary of Part III

I Through the complexification of the adiabatic parameter λ , we
identified EPs that govern Cheon’s eigenvalue and eigenspace
anholonomies.

I As for the eigenvalues, an EP provides a
√

-type branch point.

I As for the eigenspaces, an EP provides a pole of the non-Abelian
gauge connection.

I As an application,

M(C ) = exp
→

(
−i

∫
C
A(λ )dλ

)
exp
←

(
i
∫
C
AD(λ )dλ

)
is evaluated by Cauchy’s residue theorem.
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Summary

I Examples of Cheon’s anholonomies in eigenvalues and eigenspaces are
shown.

II The phase and eigenspace anholonomies are unified in the holonomy
matrix

M(C ) = exp
→

(
−i

∫
C
A(λ )dλ

)
exp
←

(
i
∫
C
AD(λ )dλ

)
.

III Hidden degeneracies behind Cheon’s anholonomies is revealed. The
residue of the gauge potential A(λ ) at the hidden degeneracy point
determines M(C ).
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