Crypto-Hermitian theory of quantum catastrophes

Miloslav Znojil NPI ASCR Řež
PHHQP XI: Non-Hermitian Operators in Quantum Physics
APC, Paris, France

August 28, 2012

contents

I. Classical catastrophes

II. The abstract concept of a quantum catastrophe
III. The benchmark quantum catastrophe: generalized cusp

IIII. BB quantum catastrophe in adiabatic approximation

IIIII. Coriolis-admitting theory and Inflation Period

IIIIII. Discussion

I. Introduction: classical catastrophes

formulated by

René Frédéric Thom

September 2, 1923 - October 25, 2002

classical theory in five paragraphs:

a. context
b. the simplest catastrophe - the fold
c. the most useful classical catastrophe - the cusp
d. symmetric cusp
e. the abstract classical theory

a. context

E. C. Zeeman, Catastrophe Theory
 Scientific American, April 1976; pp. 65-70, 75-83

a. context

E. C. Zeeman, Catastrophe Theory
 Scientific American, April 1976; pp. 65-70, 75-83

i. in geometry
$=$ see singularity theory

a. context

E. C. Zeeman, Catastrophe Theory

Scientific American, April 1976; pp. 65-70, 75-83
i. in geometry
$=$ see singularity theory
ii. in nonlinear differential equations
$=$ see bifurcation theory

a. context

E. C. Zeeman, Catastrophe Theory

Scientific American, April 1976; pp. 65-70, 75-83
i. in geometry
$=$ see singularity theory
ii. in nonlinear differential equations
$=$ see bifurcation theory
iii. in physics:
$=$ see the theory of dynamical systems
see also the Salvador Dalí's last painting (May 1983):

"The Swallow's Tail - Series on Catastrophes"

oil on canvas, $73 \mathrm{~cm} \times 92.2 \mathrm{~cm}$, Dalí Theatre and Museum, Figueres

b. the simplest catastrophe - the fold

$=$ Lyapunov function $V(x, a)=x^{3}+a x$

"fold bifurcation":

$$
\text { for } a<0 \text {, and }
$$

$$
\text { for } a>0
$$

c. the most useful classical catastrophe - the cusp

Lyapunov function $V(x, a, b)=x^{4}+a x^{2}+b x$

sign-change of $b \quad \Leftrightarrow \quad$ shape-reflection of V

boundary = "cusp"

d. symmetric cusp $(b=0)$

$V(x, a, 0)=x^{4}+a x^{2}$
a collapse in $x-a$ plane

example: use time $t=-a>0$

$V^{\prime}(x,-t, 0)=3 x^{3}-2 t x=0$ mimics space-time equilibria

e. the abstract classical theory

e. the abstract classical theory

$=$ definition:
 - catastrophe $=$ a sudden and dramatic shift in behavior caused by a small change of a "circumstance" parameter $\vec{\lambda} \in \mathcal{D}$

e. the abstract classical theory

= definition:

- catastrophe $=$ a sudden and dramatic shift in behavior caused by a small change of a "circumstance" parameter $\vec{\lambda} \in \mathcal{D}$

$=$ method:

- equilibria $=$ minima of Lyapunov function $V(\vec{\xi}, \vec{\lambda})$

e. the abstract classical theory

$=$ definition:

- catastrophe $=$ a sudden and dramatic shift in behavior caused by a small change of a "circumstance" parameter $\vec{\lambda} \in \mathcal{D}$

$=$ method:

- equilibria $=$ minima of Lyapunov function $V(\vec{\xi}, \vec{\lambda})$
$=$ purpose: non-equivalent scenarios of time-evolution
- subdomains of parameters
- their boundaries $\partial \mathcal{D}_{s}$
II. The abstract concept of a quantum catastrophe

starting point: classical - quantum parallels:

starting point: classical - quantum parallels:

classical motion:

- a point in phase space, $q(t) \in \mathcal{M}$;
- the qualitative theory \equiv GEOMETRY

starting point: classical - quantum parallels:

classical motion:

- a point in phase space, $q(t) \in \mathcal{M}$;
- the qualitative theory \equiv GEOMETRY
\bigcirc quantum motion has four aspects:
- time-dependent eigenvalues $q_{n}(t)$ and EP at $t=0$
- time-dependent wave functions in Hilbert space, $|\psi(t)\rangle \in \mathcal{H}$;
- multiple observables $F(\vec{\lambda}(t)), G(\vec{\lambda}(t)), H(\vec{\lambda}(t)), \ldots$
- ambiguous Hilbert-space metrics $\Theta(\vec{\lambda}(t), \vec{\kappa}(t))$.

obstructions

1. ambiguity:

- many eligible Θ and non-equivalent $\mathcal{H}=\mathcal{H}(\Theta)$

obstructions

1. ambiguity :

- many eligible Θ and non-equivalent $\mathcal{H}=\mathcal{H}(\Theta)$

2. unfriendliness:

- the friendly "Dirac's" $\Theta=/$ would give
(1) trivial theory,
(2) avoided crossings and
(3) trivial $\partial \mathcal{D}_{s}=\emptyset$
(P.T.O.)

Hermitian matrices: avoided crossings

real symmetric matrix : $\quad \tilde{\Lambda}^{(4)}(y)=\left[\begin{array}{cccc}-3 & \sqrt{3} y & 0 & 0 \\ \sqrt{3} y & -1 & 2 y & 0 \\ 0 & 2 y & 1 & \sqrt{3} y \\ 0 & 0 & \sqrt{3} y & 3\end{array}\right]$

Hermitian matrices: avoided crossings

samples the repulsion of eigenvalues:

QC concept will be based here on exceptional points:

QC concept will be based here on exceptional points:

EPs defined by

Tosio Kato (August 25, 1917 - October 2, 1999) "Perturbation theory of linear operators", Springer, 1966.

EPs in quantum physics:

EPs in quantum physics:

a. workshops: "The Physics of Exceptional Points"
(Stellenbosch 2010, see http://www.nithep.ac.za/2g6.htm)

EPs in quantum physics:

a. workshops: "The Physics of Exceptional Points"
(Stellenbosch 2010, see http://www.nithep.ac.za/2g6.htm)
b. PHHQP talks:
U. Guenther, D. Heiss, A. Tanaka

encouragement:

encouragement:

\exists successful adiabatic versions of q. catastrophes:

MZ, "Quantum Big Bang without fine-tuning in a toy-model" J. Phys.: Conf. Ser. 343 (2012) 012136 (20 pp.), arXiv: 1105.1282

III. The benchmark quantum catastrophe: generalized cusp

example: the initial stage of evolution of the Universe:

example: the initial stage of evolution of the Universe:

example: the initial stage of evolution of the Universe:

the Thom's Catastrophe Theory must certainly be quantized!

Big Bang in mathematics:

Big Bang in mathematics:

the model must be simplified:
 $=$ example: by conformal invariance (Penrose)

Big Bang in mathematics:

the model must be simplified:
 $=$ example: by conformal invariance (Penrose)

the evolution in time
= the challenge

Big Bang in mathematics:

the model must be simplified:
 $=$ example: by conformal invariance (Penrose)

the evolution in time
$=$ the challenge
stumbling stone: inflation (mysterious $t<t_{1}=\mathcal{O}\left(10^{-13}\right) \mathrm{sec}$)

Big Bang in mathematics:

the model must be simplified:

$=$ example: by conformal invariance (Penrose)
the evolution in time
$=$ the challenge
stumbling stone: inflation (mysterious $t<t_{1}=\mathcal{O}\left(10^{-13}\right) \mathrm{sec}$)
$=$ will be described

background and features

QUANTUM MECHANICS in its three-Hilbert-space formulation

background and features

QUANTUM MECHANICS in its three-Hilbert-space formulation
level crossings allowed

background and features

QUANTUM MECHANICS in its three-Hilbert-space formulation
level crossings allowed
fine tuning not needed

background and features

QUANTUM MECHANICS in its three-Hilbert-space formulation
level crossings allowed
fine tuning not needed
time-dependence important

assumptions

assumptions

observables $=$ eigenvalues

assumptions

observables $=$ eigenvalues

$=$ spatial $\operatorname{grid} q_{j}(t), j=1,2, \ldots, N$

assumptions

$$
\begin{aligned}
& \text { observables }=\text { eigenvalues } \\
& =\text { spatial } \operatorname{grid} q_{j}(t), j=1,2, \ldots, N
\end{aligned}
$$

operators non-Hermitian in $\mathcal{H}^{\text {(friendly })} \equiv \ell_{2}$

assumptions

$$
\begin{aligned}
& \text { observables }=\text { eigenvalues } \\
& =\text { spatial grid } q_{j}(t), j=1,2, \ldots, N \\
& \text { operators non-Hermitian in } \mathcal{H}^{(\text {friendly })} \equiv \ell_{2} \\
& \checkmark \text { spectra real }
\end{aligned}
$$

assumptions

observables $=$ eigenvalues
$=$ spatial grid $q_{j}(t), j=1,2, \ldots, N$
operators non-Hermitian in $\mathcal{H}^{(\text {friendly })} \equiv \ell_{2}$
\checkmark spectra real
\checkmark ad hoc inner products

assumptions

observables $=$ eigenvalues
$=$ spatial grid $q_{j}(t), j=1,2, \ldots, N$

```
operators non-Hermitian in }\mp@subsup{\mathcal{H}}{}{(friendly)}\equiv\mp@subsup{\ell}{2}{
\checkmark ~ s p e c t r a ~ r e a l
\checkmark ~ a d ~ h o c ~ i n n e r ~ p r o d u c t s
```

```
formalism:
    "Three-Hilbert-space formulation of Quantum Mechanics"
    MZ, SIGMA 5 (2009) 001, arXiv:0901.0700
```


prototype: four-point Universe

prototype: four-point Universe

$$
\text { toy }- \text { model } \quad \Lambda^{(4)}(z)=\left[\begin{array}{cccc}
-3 & \sqrt{3} z & 0 & 0 \\
-\sqrt{3} z & -1 & 2 z & 0 \\
0 & -2 z & 1 & \sqrt{3} z \\
0 & 0 & -\sqrt{3} z & 3
\end{array}\right]
$$

prototype: four-point Universe

$$
\text { toy }- \text { model } \quad \Lambda^{(4)}(z)=\left[\begin{array}{cccc}
-3 & \sqrt{3} z & 0 & 0 \\
-\sqrt{3} z & -1 & 2 z & 0 \\
0 & -2 z & 1 & \sqrt{3} z \\
0 & 0 & -\sqrt{3} z & 3
\end{array}\right]
$$

non-Hermitian matrix \Longrightarrow the attraction of eigenvalues,

III. BB quantum catastrophe in adiabatic approximation

notation:

notation:

a. the inner product in $\mathcal{H}^{(F)}$ is assumed friendly,

$$
(f, g)^{(F)}:=\int_{a}^{b} f^{*}(x) g(x) w(x) \mathrm{d} x
$$

notation:

a. the inner product in $\mathcal{H}^{(F)}$ is assumed friendly,

$$
(f, g)^{(F)}:=\int_{a}^{b} f^{*}(x) g(x) w(x) \mathrm{d} x
$$

BUT it is declared false and unphysical and auxiliary

notation:

a. the inner product in $\mathcal{H}^{(F)}$ is assumed friendly,

$$
(f, g)^{(F)}:=\int_{a}^{b} f^{*}(x) g(x) w(x) \mathrm{d} x
$$

BUT it is declared false and unphysical and auxiliary

b. the sophisticated inner product is used instead,

$$
(f, g)^{(S)}:=\int_{a}^{b} \int_{c}^{d} f^{*}(x) \Theta(x, y) g(y) \mathrm{d} x \mathrm{~d} y
$$

notation:

a. the inner product in $\mathcal{H}^{(F)}$ is assumed friendly,

$$
(f, g)^{(F)}:=\int_{a}^{b} f^{*}(x) g(x) w(x) \mathrm{d} x
$$

BUT it is declared false and unphysical and auxiliary

b. the sophisticated inner product is used instead,

$$
(f, g)^{(S)}:=\int_{a}^{b} \int_{c}^{d} f^{*}(x) \Theta(x, y) g(y) \mathrm{d} x \mathrm{~d} y
$$

it is declared physical and defines the standard space $\mathcal{H}(S)$.

a detour to history:

the idea of crypto-Hermiticity:

a detour to history:

the idea of crypto-Hermiticity:

Jean Alexandre Eugene Dieudonné (1. 7. 1906-29. 11. 1992)

he defined, in 1962, quasi-Hermitian H :

$$
H^{\dagger} \Theta=\Theta H
$$

he defined, in 1962, quasi-Hermitian H :

$$
H^{\dagger} \Theta=\Theta H
$$

unfortunately, this definition appeared too broad

he defined, in 1962, quasi-Hermitian H :

$$
H^{\dagger} \Theta=\Theta H
$$

unfortunately, this definition appeared too broad

(pars pro toto, listen to the Thursday talk by Krejcirik)
he defined, in 1962, quasi-Hermitian H :

$$
H^{\dagger} \Theta=\Theta H
$$

unfortunately, this definition appeared too broad

(pars pro toto, listen to the Thursday talk by Krejcirik)
fortunately, 30 years later, Scholtz et al restricted attention to operators $\in \mathcal{B}(\mathcal{H})$ clarified the use of the concept in (nuclear) physics
he defined, in 1962, quasi-Hermitian H :

$$
H^{\dagger} \Theta=\Theta H
$$

unfortunately, this definition appeared too broad

(pars pro toto, listen to the Thursday talk by Krejcirik)
fortunately, 30 years later, Scholtz et al restricted attention to operators $\in \mathcal{B}(\mathcal{H})$ clarified the use of the concept in (nuclear) physics

it is worth adding that it took several more years

before Bender et al made the idea truly visible among physicists

at $N<\infty$, all the mathematics is made friendly:

at $N<\infty$, all the mathematics is made friendly:

THEOREM 1.

every diagonalizable N by N matrix Q with real spectrum is tractable as an isospectral image of a "paternal" Hermitian matrix, $\mathfrak{q}=\Omega Q \Omega^{-1}$

at $N<\infty$, all the mathematics is made friendly:

THEOREM 1.

every diagonalizable N by N matrix Q with real spectrum is tractable as an isospectral image of a "paternal" Hermitian matrix, $\mathfrak{q}=\Omega Q \Omega^{-1}$

REMARK

the Hermiticity of $\mathfrak{q}=\mathfrak{q}^{\dagger}$ may be read as the crypto-Hermiticity of $Q=Q^{\ddagger}=\Theta^{-1} Q^{\dagger} \Theta$ where $\Theta=\Omega^{\dagger} \Omega$ is Hilbert-space metric.

at $N<\infty$, all the mathematics is made friendly:

THEOREM 1.

every diagonalizable N by N matrix Q with real spectrum is tractable as an isospectral image of a "paternal" Hermitian matrix, $\mathfrak{q}=\Omega Q \Omega^{-1}$

REMARK

the Hermiticity of $\mathfrak{q}=\mathfrak{q}^{\dagger}$ may be read as the crypto-Hermiticity of $Q=Q^{\ddagger}=\Theta^{-1} Q^{\dagger} \Theta$ where $\Theta=\Omega^{\dagger} \Omega$ is Hilbert-space metric.

COROLLARY

crypto-Hermitian quantum systems are characterized by the metric Θ and by an M-plet of operators of observables Q_{n}

at $N<\infty$, all the mathematics is made friendly:

THEOREM 1.

every diagonalizable N by N matrix Q with real spectrum is tractable as an isospectral image of a "paternal" Hermitian matrix, $\mathfrak{q}=\Omega Q \Omega^{-1}$

REMARK

the Hermiticity of $\mathfrak{q}=\mathfrak{q}^{\dagger}$ may be read as the crypto-Hermiticity of $Q=Q^{\ddagger}=\Theta^{-1} Q^{\dagger} \Theta$ where $\Theta=\Omega^{\dagger} \Omega$ is Hilbert-space metric.

COROLLARY

crypto-Hermitian quantum systems are characterized by the metric Θ and by an M -plet of operators of observables Q_{n} such that $Q_{n}^{\dagger} \Theta=\Theta Q_{n}, \quad n=1,2, \ldots, M$ (Dieudonné's equations).

in the context of physics

in the context of physics

the grounds of the theory were attributed to Freeman Dyson;

in the context of physics

the grounds of the theory were attributed to Freeman Dyson; who, in the context of nuclear physics, introduced
non-unitary boson-fermion mappings Ω such that $H \neq H^{\dagger}$ while

$$
\Omega: H \rightarrow \mathfrak{h}=\mathfrak{h}^{\dagger} \quad \Theta=\Omega^{\dagger} \Omega
$$

in the context of physics

the grounds of the theory were attributed to Freeman Dyson; who, in the context of nuclear physics, introduced
non-unitary boson-fermion mappings Ω such that $H \neq H^{\dagger}$ while

$$
\Omega: H \rightarrow \mathfrak{h}=\mathfrak{h}^{\dagger} \quad \Theta=\Omega^{\dagger} \Omega
$$

cf. http://www.sns.ias.edu/~dyson/

Freeman Dyson
(b. 15. December 1923 in UK)

in our talk we

in our talk we

a. accept adiabatic approximation

Coriolis = negligible OR the observable is NOT the Hamiltonian

in our talk we

a. accept adiabatic approximation

Coriolis = negligible OR the observable is NOT the Hamiltonian

b. simplify the BB physics:

- no relativistic covariance, single spatial dimension, $\mathbb{E}^{3} \longrightarrow \mathbb{E}$

in our talk we

a. accept adiabatic approximation

Coriolis = negligible OR the observable is NOT the Hamiltonian

b. simplify the BB physics:

- no relativistic covariance, single spatial dimension, $\mathbb{E}^{3} \longrightarrow \mathbb{E}$
- discrete representation: $q_{j}(t), j=1,2, \ldots, N$

in our talk we

a. accept adiabatic approximation

Coriolis = negligible OR the observable is NOT the Hamiltonian
b. simplify the BB physics:

- no relativistic covariance, single spatial dimension, $\mathbb{E}^{3} \longrightarrow \mathbb{E}$
- discrete representation: $q_{j}(t), j=1,2, \ldots, N$
c. require nothing before Big Bang
- spatial grid $=$ complex before $t=t_{B B}=0$ (= unobservable)
- full degeneracy: $q_{j}(t) \rightarrow 0$ at $t \rightarrow t_{B B}=0$
\exists two eligible strategies:
- 1st: "dynamical" approach:

Hamiltonian $H(t)$ is known in advance
\exists two eligible strategies:

- 1st: "dynamical" approach:

Hamiltonian $H(t)$ is known in advance

- discussed (by MZ) in Dresden: too ambitious

two eligible strategies:

- 1st: "dynamical" approach:

Hamiltonian $H(t)$ is known in advance

- discussed (by MZ) in Dresden: too ambitious
- the construction of grid $Q(t)=$ too difficult

two eligible strategies:

- 1st: "dynamical" approach:

Hamiltonian $H(t)$ is known in advance

- discussed (by MZ) in Dresden: too ambitious
- the construction of grid $Q(t)=$ too difficult
- 2nd: "kinematical" approach (today): the GTR-compatible grid operator $Q(t)$ is given

two eligible strategies:

- 1st: "dynamical" approach:

Hamiltonian $H(t)$ is known in advance

- discussed (by MZ) in Dresden: too ambitious
- the construction of grid $Q(t)=$ too difficult
- 2nd: "kinematical" approach (today): the GTR-compatible grid operator $Q(t)$ is given
the formalism is known:

"Time-dependent version of cryptohermitian quantum theory"
 M. Znojil, Phys. Rev. D 78 (2008) 085003 (arXiv:0809.2874v1)

its implementation with $\dot{\Theta} \approx 0$ is straightforward.

let's start from Big Bang in classical scenario:

let's start from Big Bang in classical scenario:

idealized GTR evolution of a discrete $N=4$ spatial grid
the first, mathematical challenge: find some benchmark models with big-banging spectra
the first, mathematical challenge: find some benchmark models with big-banging spectra
the " N-point-geometry" operators $Q=Q^{(N)}(t)$ must have

- fully real/fully complex spectra $\left\{q_{n}(t)\right\}$ at $t \lessgtr 0$, respectively
the first, mathematical challenge: find some benchmark models with big-banging spectra
the " N-point-geometry" operators $Q=Q^{(N)}(t)$ must have
- fully real/fully complex spectra $\left\{q_{n}(t)\right\}$ at $t \lessgtr 0$, respectively
- Jordan-block degeneracy in the BB limit, $q_{n}(t) \rightarrow 0$
the first, mathematical challenge: find some benchmark models with big-banging spectra
the " N-point-geometry" operators $Q=Q^{(N)}(t)$ must have
- fully real/fully complex spectra $\left\{q_{n}(t)\right\}$ at $t \lessgtr 0$, respectively
- Jordan-block degeneracy in the BB limit, $q_{n}(t) \rightarrow 0$
and will be chosen in tridiagonal, [N/2]-parametric form

$$
Q_{(a)}^{(2)}=\left[\begin{array}{cc}
1 & a \\
-a & -1
\end{array}\right], \quad Q_{(a, b)}^{(4)}=\left[\begin{array}{cccc}
3 & b & 0 & 0 \\
-b & 1 & a & 0 \\
0 & -a & -1 & b \\
0 & 0 & -b & -3
\end{array}\right] \ldots
$$

the first, mathematical challenge: find some benchmark models with big-banging spectra
the " N-point-geometry" operators $Q=Q^{(N)}(t)$ must have

- fully real/fully complex spectra $\left\{q_{n}(t)\right\}$ at $t \lessgtr 0$, respectively
- Jordan-block degeneracy in the BB limit, $q_{n}(t) \rightarrow 0$
and will be chosen in tridiagonal , [N/2]-parametric form

$$
Q_{(a)}^{(2)}=\left[\begin{array}{cc}
1 & a \\
-a & -1
\end{array}\right], \quad Q_{(a, b)}^{(4)}=\left[\begin{array}{cccc}
3 & b & 0 & 0 \\
-b & 1 & a & 0 \\
0 & -a & -1 & b \\
0 & 0 & -b & -3
\end{array}\right] \ldots
$$

taken from MZ, J. Phys. A: Math. Theor. 40 (2007) 4863-4875

optimal parametrizations of benchmarks

$Q^{(N)}(t)$ are adiabatic (= not Hamiltonians):

optimal parametrizations of benchmarks

$Q^{(N)}(t)$ are adiabatic (= not Hamiltonians):

we satisfy the full-degeneracy constraint at any N

 non-numerical construction yields the BB-limit sequence
optimal parametrizations of benchmarks

$Q^{(N)}(t)$ are adiabatic (= not Hamiltonians):

we satisfy the full-degeneracy constraint at any N non-numerical construction yields the BB-limit sequence

$$
Q_{B B}^{(2)}=\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right], \quad Q_{B B}^{(4)}=\left[\begin{array}{cccc}
3 & \sqrt{3} & 0 & 0 \\
-\sqrt{3} & 1 & 2 & 0 \\
0 & -2 & -1 & \sqrt{3} \\
0 & 0 & -\sqrt{3} & -3
\end{array}\right] \ldots
$$

let us sample the construction at $N=2 J=4$:

- take secular equation for $s=E^{2}$,

$$
s^{2}+\left(-10+2 b^{2}+a^{2}\right) s+9+6 b^{2}-9 a^{2}+b^{4}=0
$$

let us sample the construction at $N=2 J=4$:

- take secular equation for $s=E^{2}$,
$s^{2}+\left(-10+2 b^{2}+a^{2}\right) s+9+6 b^{2}-9 a^{2}+b^{4}=0$
- two BB conditions: $-10+2 b^{2}+a^{2}=0,9+6 b^{2}-9 a^{2}+b^{4}=0$

let us sample the construction at $N=2 J=4$:

- take secular equation for $s=E^{2}$,

$$
s^{2}+\left(-10+2 b^{2}+a^{2}\right) s+9+6 b^{2}-9 a^{2}+b^{4}=0
$$

- two BB conditions: $-10+2 b^{2}+a^{2}=0,9+6 b^{2}-9 a^{2}+b^{4}=0$
- elimination of a, quadratic-equation roots $b_{1}^{2}=3$ and $b_{2}^{2}=-27$:

let us sample the construction at $N=2 J=4$:

- take secular equation for $s=E^{2}$,

$$
s^{2}+\left(-10+2 b^{2}+a^{2}\right) s+9+6 b^{2}-9 a^{2}+b^{4}=0
$$

- two BB conditions: $-10+2 b^{2}+a^{2}=0,9+6 b^{2}-9 a^{2}+b^{4}=0$
- elimination of a, quadratic-equation roots $b_{1}^{2}=3$ and $b_{2}^{2}=-27$:
- the acceptable BB root (yielding real b) is unique.

let us sample the construction at $N=2 J=4$:

- take secular equation for $s=E^{2}$,

$$
s^{2}+\left(-10+2 b^{2}+a^{2}\right) s+9+6 b^{2}-9 a^{2}+b^{4}=0
$$

- two BB conditions: $-10+2 b^{2}+a^{2}=0,9+6 b^{2}-9 a^{2}+b^{4}=0$
- elimination of a, quadratic-equation roots $b_{1}^{2}=3$ and $b_{2}^{2}=-27$:
- the acceptable BB root (yielding real b) is unique.
(c) patience and symbolic manipulations are necessary in general

let us sample the construction at $N=2 J=4$:

- take secular equation for $s=E^{2}$,

$$
s^{2}+\left(-10+2 b^{2}+a^{2}\right) s+9+6 b^{2}-9 a^{2}+b^{4}=0
$$

- two BB conditions: $-10+2 b^{2}+a^{2}=0,9+6 b^{2}-9 a^{2}+b^{4}=0$
- elimination of a, quadratic-equation roots $b_{1}^{2}=3$ and $b_{2}^{2}=-27$:
- the acceptable BB root (yielding real b) is unique.

(c) patience and symbolic manipulations are necessary in general

e.g., at $N=8$ we get $D=d^{2}=7$ as a unique root of a seventeenth-degree polynomial (P. T. O.)
$314432 D^{17}-5932158016 D^{16}+4574211144896 D^{15}+3133529909492864 D^{14}-$
$+917318495163561932 D^{13}+167556261648918275684 D^{12}+$
$+14670346929744822064505 D^{11}+720991093724510065469933 D^{10}+$
$+62429137451114251409236415 D^{9}+676326278232758784369966787 D^{8}+$ $+40525434802944282153115803370 D^{7}+236197644474644051360524893061$

$$
\begin{gathered}
-145759836636885012145070948315366 D^{5}+ \\
+8129925258122948689157916436170874 D^{4}+ \\
-68875673245487669398850290405642067 D^{3}+ \\
+235326754101824439936800228806905073 D^{2}- \\
-453762279414621179815552897029039797 D+ \\
+153712881941946532798614648361265167=0 .
\end{gathered}
$$

- in a test of the uniqueness of this solution one finds seven real and positive roots $D=d^{2}$;
- in a test of the uniqueness of this solution one finds seven real and positive roots $D=d^{2}$;
- three of them are manifestly spurious (negative), -203.9147095, -156.6667001, -55.49992441;
- in a test of the uniqueness of this solution one finds seven real and positive roots $D=d^{2}$;
- three of them are manifestly spurious (negative), -203.9147095, -156.6667001, -55.49992441;
- the proof of the spuriosity of the remaining four non-integer roots $0.4192854385,5.354156128,1354.675195$ and 18028.16789 is based on showing the non-reality of one of the other three couplings.
- in a test of the uniqueness of this solution one finds seven real and positive roots $D=d^{2}$;
- three of them are manifestly spurious (negative), -203.9147095, -156.6667001, -55.49992441;
- the proof of the spuriosity of the remaining four non-integer roots $0.4192854385,5.354156128,1354.675195$ and 18028.16789 is based on showing the non-reality of one of the other three couplings.
- for example, the values of $A=a^{2}$ are given by the rule $\alpha \times A=(a$ polynomial in D of 16th degree) where the number of digits in the auxiliary integer constant α exceeds one hundred.

conclusion: the prescribed BB scenario is quantized!

conclusion: the prescribed BB scenario is quantized!

eigenvalues at $N=4$

the adiabatic QC theory emerges:

the adiabatic QC theory emerges:

success:

the adiabatic QC theory emerges:

success:

BB $=$ one of benchmarks $=$ exactly solvable at all N

the adiabatic QC theory emerges:

success:

BB $=$ one of benchmarks $=$ exactly solvable at all N
the scenario resembles the cusp:
N-tuple pitchfork in $x-t$ plane if $N=o d d$
the "handle" disappears if $N=$ even

the adiabatic QC theory emerges:

success:

BB $=$ one of benchmarks $=$ exactly solvable at all N
the scenario resembles the cusp:
N-tuple pitchfork in $x-t$ plane if $N=o d d$
the "handle" disappears if $N=$ even
further details: MZ, "Quantum catastrophes: a case study."
J. Phys. A: Math. Theor. 45 (2012), in print, arXiv: 1206.6000

the adiabatic QC theory emerges:

success:

BB $=$ one of benchmarks $=$ exactly solvable at all N
the scenario resembles the cusp:
N-tuple pitchfork in $x-t$ plane if $N=o d d$
the "handle" disappears if $N=$ even
further details: MZ, "Quantum catastrophes: a case study."
J. Phys. A: Math. Theor. 45 (2012), in print, arXiv: 1206.6000
a weak point $=$ the adiabaticity assumption

IIIII. Coriolis-admitting theory and Inflation Period

standard probabilistic interpretation

THEOREM 2.

the time-evolution of the system is generated by Hermitian $\mathfrak{h}=\Omega \mathrm{H} \Omega^{-1}$ which acts on $|\psi \succ=\Omega| \psi\rangle$ as follows,

$$
\mathfrak{i} \partial_{t}|\psi \succ=\mathfrak{h}| \psi \succ .
$$

standard probabilistic interpretation

THEOREM 2.

the time-evolution of the system is generated by Hermitian $\mathfrak{h}=\Omega \mathrm{H} \Omega^{-1}$ which acts on $|\psi \succ=\Omega| \psi\rangle$ as follows,

$$
\mathfrak{i} \partial_{t}|\psi \succ=\mathfrak{h}| \psi \succ .
$$

COROLLARY

The friendly Schrödinger-equation pull-back contains a Coriolis term,

$$
\mathrm{i} \partial_{t}|\psi\rangle=\mathrm{G}|\psi\rangle, \quad \mathrm{G}=\mathrm{H}-\mathrm{i} \Omega^{-1} \partial_{t} \Omega .
$$

standard probabilistic interpretation

THEOREM 2.

the time-evolution of the system is generated by Hermitian $\mathfrak{h}=\Omega \mathrm{H} \Omega^{-1}$ which acts on $|\psi \succ=\Omega| \psi\rangle$ as follows,

$$
\mathfrak{i} \partial_{t}|\psi \succ=\mathfrak{h}| \psi \succ .
$$

COROLLARY

The friendly Schrödinger-equation pull-back contains a Coriolis term,

$$
\mathrm{i} \partial_{t}|\psi\rangle=\mathrm{G}|\psi\rangle, \quad \mathrm{G}=\mathrm{H}-\mathrm{i} \Omega^{-1} \partial_{t} \Omega .
$$

details in loc. cit.

benchmark model \Longrightarrow non-numerical results:

benchmark model \Longrightarrow non-numerical results:

the fine-tuning trap is successfully circumvented

benchmark model \Longrightarrow non-numerical results:

the fine-tuning trap is successfully circumvented
\bigcirc the key trick $=$ the parametrization using the time t

benchmark model \Longrightarrow non-numerical results:

the fine-tuning trap is successfully circumvented

\bigcirc the key trick $=$ the parametrization using the time t

$$
Q_{(a)}^{(2)} \rightarrow Q_{[A]}^{(2)}(t)=\left[\begin{array}{cc}
1 & \sqrt{1-A t} \\
-\sqrt{1-A t} & -1
\end{array}\right] ; \quad \text { next : }
$$

benchmark model \Longrightarrow non-numerical results:

the fine-tuning trap is successfully circumvented

\bigcirc the key trick $=$ the parametrization using the time t

$$
\begin{gathered}
Q_{(a)}^{(2)} \rightarrow Q_{[A]}^{(2)}(t)=\left[\begin{array}{ccc}
1 & \sqrt{1-A t} \\
-\sqrt{1-A t} & -1
\end{array}\right] ; \text { next : } \\
{\left[\begin{array}{cccc}
3 & \sqrt{3} \sqrt{1-t-B t^{2}} & 0 & 0 \\
-\sqrt{3} \sqrt{1-t-B t^{2}} & 1 & 2 \sqrt{1-t-A t^{2}} & 0 \\
0 & -2 \sqrt{1-t-A t^{2}} & -1 & \ddots \\
0 & 0 & -\sqrt{3} \sqrt{1-t-B t^{2}} & -3
\end{array}\right],}
\end{gathered}
$$

benchmark model \Longrightarrow non-numerical results:

the fine-tuning trap is successfully circumvented

\bigcirc the key trick $=$ the parametrization using the time t

$$
\left.\begin{array}{ccc}
Q_{(a)}^{(2)} \rightarrow Q_{[A]}^{(2)}(t)=\left[\begin{array}{ccc}
1 & \sqrt{1-A t} \\
-\sqrt{1-A t} & -1
\end{array}\right] ; \text { next : } \\
3 & \sqrt{3} \sqrt{1-t-B t^{2}} & 0
\end{array} \begin{array}{c}
0 \\
-\sqrt{3} \sqrt{1-t-B t^{2}} \\
1
\end{array} \begin{array}{ccc}
2 \sqrt{1-t-A t^{2}} & 0 \\
0 & -2 \sqrt{1-t-A t^{2}} & -1 \\
0 & 0 & -\sqrt{3} \sqrt{1-t-B t^{2}} \\
0 & -3
\end{array}\right],
$$

see MZ, J. Phys. A: Math. Theor. 40 (2007) 13131-13148

IIIIII. Discussion

the first main result: horizons

a we know the boundaries of the observability domains

the first main result: horizons

we know the boundaries of the observability domains
(i) the $N=4$ domain:
$-\mu_{4}^{2}=-1 / 4 \leq 2 A / 2-B \leq+4 / 9=+\nu_{4}^{2}$

the first main result: horizons

Q we know the boundaries of the observability domains
(i) the $N=4$ domain:
$-\mu_{4}^{2}=-1 / 4 \leq 2 A / 2-B \leq+4 / 9=+\nu_{4}^{2}$
(ii) the $N=6$ domain:
$-\mu_{6}^{2} \leq 6 A / 2-4 B+C \leq+\nu_{6}^{2}$

the first main result: horizons

We know the boundaries of the observability domains

(i) the $N=4$ domain:
$-\mu_{4}^{2}=-1 / 4 \leq 2 A / 2-B \leq+4 / 9=+\nu_{4}^{2}$
(ii) the $N=6$ domain:
$-\mu_{6}^{2} \leq 6 A / 2-4 B+C \leq+\nu_{6}^{2}$
(iii) the $N=8$ domain:
$-\mu_{6}^{2} \leq 20 A / 2-15 B+6 C-D \leq+\nu_{6}^{2}$

the first main result: horizons

\$ we know the boundaries of the observability domains

(i) the $N=4$ domain:
$-\mu_{4}^{2}=-1 / 4 \leq 2 A / 2-B \leq+4 / 9=+\nu_{4}^{2}$
(ii) the $N=6$ domain:
$-\mu_{6}^{2} \leq 6 A / 2-4 B+C \leq+\nu_{6}^{2}$
(iii) the $N=8$ domain:
$-\mu_{6}^{2} \leq 20 A / 2-15 B+6 C-D \leq+\nu_{6}^{2}$
extrapolated to all N : arXiv:0709.1569

the first main result: horizons

Q we know the boundaries of the observability domains

(i) the $N=4$ domain:
$-\mu_{4}^{2}=-1 / 4 \leq 2 A / 2-B \leq+4 / 9=+\nu_{4}^{2}$
(ii) the $N=6$ domain:
$-\mu_{6}^{2} \leq 6 A / 2-4 B+C \leq+\nu_{6}^{2}$
(iii) the $N=8$ domain:

$$
-\mu_{6}^{2} \leq 20 A / 2-15 B+6 C-D \leq+\nu_{6}^{2}
$$

extrapolated to all N : arXiv:0709.1569

THEOREM 3: near BB, physical domain $\mathcal{D}^{(N)}=$ a flat layer

hypersurfaces $\partial \mathcal{D}$ near BB points:

> they are all cusp-shaped! (generic feature)
> $=$ benchmark
first: two-dimensional quantum catastrophe

Generic shape
of the domain of quasi-Hermiticity

cf. MZ, Phys. Lett. B 647 (2007) 225-230 (quant-ph/0701232).

the three-dimensional quantum-cusp surface $\partial \mathcal{D}$

picture drawn by Petr Siegl in his diploma thesis

 "Quasi-Hermitian Models", FNSPE CTU Prague, 2008
definition: BB-type quantum catastrophe

$=$ the motion through the EP spike in parametric space \mathcal{D}
realization via the prototype benchmark:
$A=B=\ldots=0$, positive $t \equiv r^{2}$, anti-time $z=\sqrt{1-r^{2}}$
grid points in closed form:
$(N-1) r,(N-3) r, \ldots, 1,-1, \ldots,-(N-1) r$
the theory is non-adiabatic: the Coriolis force
(1) is added to Hamiltonian, $G(t)=H(t)-\Sigma(t)$
(2) may be large, $\Sigma(t)=\mathrm{i} \Theta^{-1}(t) \dot{\Theta}(t)$ is explicit

the explicit constructions

$\boldsymbol{\infty}$ the starting point: the ambiguity of the generic $\Theta(t)$

the explicit constructions

© the starting point: the ambiguity of the generic $\Theta(t)$
reason: N-parametricity of the spectral-like representation:

$$
\left.\Theta=\sum_{n=1}^{N}|n\rangle\right\rangle \kappa_{n}^{2}\langle\langle n|
$$

the explicit constructions

\uparrow the starting point: the ambiguity of the generic $\Theta(t)$

reason: N-parametricity of the spectral-like representation:

$$
\left.\Theta=\sum_{n=1}^{N}|n\rangle\right\rangle \kappa_{n}^{2}\langle\langle n|
$$

illustration: the $N=2$ case: $\kappa_{1}=\kappa_{+}=\sin \alpha, \kappa_{2}=\kappa_{-}=\cos \alpha$, $0<\alpha<\pi / 2$ (may be also time-dependent, $\alpha=\alpha(r)$);

$$
\Theta=\Theta^{(2)}(\alpha)=\left[\begin{array}{cc}
1+r \cos 2 \alpha & -\sqrt{1-r^{2}} \\
-\sqrt{1-r^{2}} & 1-r \cos 2 \alpha
\end{array}\right]
$$

$=$ diagonal when $r \rightarrow 1(\Rightarrow$ the end of "inflation period" $)$.

the second main result:

the second main result:

eigenvalues of any $\Theta^{(N=2)}(\alpha)$ are never equal ($=$ inflation anisotropy),

$$
\theta_{ \pm}=1 \pm \sqrt{1-r^{2} \sin ^{2} 2 \alpha}
$$

\bigcirc at $N=2$, there exists a privileged $\Theta^{(2)}$ with minimal anisotropy

the second main result:

eigenvalues of any $\Theta^{(N=2)}(\alpha)$ are never equal ($=$ inflation anisotropy),

$$
\theta_{ \pm}=1 \pm \sqrt{1-r^{2} \sin ^{2} 2 \alpha}
$$

\bigcirc at $N=2$, there exists a privileged $\Theta^{(2)}$ with minimal anisotropy
"equal weights" $\kappa_{+}^{2}=\kappa_{-}^{2}$, i.e., $\alpha=\pi / 4$
such a metric is unique!.

the second main result:

eigenvalues of any $\Theta^{(N=2)}(\alpha)$ are never equal ($=$ inflation anisotropy),

$$
\theta_{ \pm}=1 \pm \sqrt{1-r^{2} \sin ^{2} 2 \alpha}
$$

\bigcirc at $N=2$, there exists a privileged $\Theta^{(2)}$ with minimal anisotropy
"equal weights" $\kappa_{+}^{2}=\kappa_{-}^{2}$, i.e., $\alpha=\pi / 4$
such a metric is unique! .
at the end of inflation the anisotropy vanishes
$=$ this result is valid at all N
∞ the message: inflation terminates, no anisotropy beyond $t=1$:

S the message: inflation terminates, no anisotropy beyond $t=1$:

The $N=4$ sample of the eigenvalues of our metric. The inflation ($=$ the regime of anisotropic metric) ends in a finite time $t=r^{2}=1$.

