Crypto-Hermitian theory of quantum catastrophes

Miloslav Znojil

NPI ASCR Řež

PHHQP XI: Non-Hermitian Operators in Quantum Physics

APC, Paris, France

August 28, 2012

Crypto-Hermitian theory

- I. Classical catastrophes
- II. The abstract concept of a quantum catastrophe
- III. The benchmark quantum catastrophe: generalized cusp
- IIII. BB quantum catastrophe in adiabatic approximation
- IIIII. Coriolis-admitting theory and Inflation Period

IIIIII. Discussion

I. Introduction: classical catastrophes

formulated by

René Frédéric Thom

September 2, 1923 - October 25, 2002

a. context

.

.

- b. the simplest catastrophe the fold
- c. the most useful classical catastrophe the cusp
- d. symmetric cusp
- e. the abstract classical theory

Scientific American, April 1976; pp. 65 - 70, 75 - 83

Image: A matrix and a matrix

Scientific American, April 1976; pp. 65 - 70, 75 - 83

i. in geometry

= see singularity theory

Scientific American, April 1976; pp. 65 - 70, 75 - 83

i. in geometry

= see singularity theory

ii. in nonlinear differential equations

= see bifurcation theory

Scientific American, April 1976; pp. 65 - 70, 75 - 83

i. in geometry

= see singularity theory

ii. in nonlinear differential equations

= see bifurcation theory

iii. in physics:

= see the theory of dynamical systems

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

August 28, 2012 6 / 54

see also the Salvador Dalí's last painting (May 1983):

"The Swallow's Tail — Series on Catastrophes"

oil on canvas, 73 cm \times 92.2 cm, Dalí Theatre and Museum, Figueres

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

August 28, 2012 7 / 54

c. the most useful classical catastrophe - the cusp

d. symmetric cusp (b=0)

$$V(x,a,0) = x^4 + ax^2$$

a collapse in x - a plane

Image: A matrix and a matrix

$V'(x, -t, 0) = 3x^3 - 2tx = 0$ mimics space-time equilibria

Crypto-Hermitian theory

3

< A

= definition:

• catastrophe = a sudden and dramatic shift in behavior caused by a small change of a "circumstance" parameter $\vec{\lambda} \in \mathcal{D}$

= definition:

• catastrophe = a sudden and dramatic shift in behavior caused by a small change of a "circumstance" parameter $\vec{\lambda} \in D$

= method:

• equilibria = minima of Lyapunov function $V(\vec{\xi}, \vec{\lambda})$

= definition:

• catastrophe = a sudden and dramatic shift in behavior caused by a small change of a "circumstance" parameter $\vec{\lambda} \in D$

= method:

• equilibria = minima of Lyapunov function $V(\vec{\xi}, \vec{\lambda})$

= purpose: non-equivalent scenarios of time-evolution

- subdomains of parameters
- their boundaries $\partial \mathcal{D}_s$

II. The abstract concept of a quantum catastrophe

starting point: classical - quantum parallels:

\diamondsuit classical motion:

- a point in phase space, $q(t) \in \mathcal{M}$;
- the qualitative theory \equiv GEOMETRY

\diamondsuit classical motion:

- a point in phase space, $q(t) \in \mathcal{M}$;
- the qualitative theory \equiv GEOMETRY

\heartsuit quantum motion has four aspects:

- time-dependent eigenvalues $q_n(t)$ and EP at t = 0
- time-dependent wave functions in Hilbert space, $|\psi(t)
 angle\in\mathcal{H};$
- multiple observables $F(\vec{\lambda}(t)), G(\vec{\lambda}(t)), H(\vec{\lambda}(t)), \dots$
- ambiguous Hilbert-space metrics $\Theta(\vec{\lambda}(t), \vec{\kappa}(t))$.

1. ambiguity :

• many eligible Θ and non-equivalent $\mathcal{H} = \mathcal{H}(\Theta)$

- ∢ ⊢⊒ →

э

1. ambiguity :

 \bullet many eligible Θ and non-equivalent $\mathcal{H}=\mathcal{H}(\Theta)$

2. unfriendliness :

• the friendly "Dirac's" $\Theta = I$ would give

(1) trivial theory, (2) avoided crossings and (3) trivial $\partial D_s = \emptyset$

Hermitian matrices: avoided crossings

э

Hermitian matrices: avoided crossings

real symmetric matrix :

$$\tilde{\Lambda}^{(4)}(y) = \begin{bmatrix} -3 & \sqrt{3}y & 0 & 0\\ \sqrt{3}y & -1 & 2y & 0\\ 0 & 2y & 1 & \sqrt{3}y\\ 0 & 0 & \sqrt{3}y & 3 \end{bmatrix}$$

Hermitian matrices: avoided crossings

real symmetric matrix : $\tilde{\Lambda}^{(4)}(y) = \begin{bmatrix} -3 & \sqrt{3}y & 0 & 0\\ \sqrt{3}y & -1 & 2y & 0\\ 0 & 2y & 1 & \sqrt{3}y\\ 0 & 0 & \sqrt{3}y & 3 \end{bmatrix}$

samples the repulsion of eigenvalues:

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

August 28, 2012 17 / 54

QC concept will be based here on exceptional points :

EPs defined by

Tosio Kato (August 25, 1917 - October 2, 1999) "Perturbation theory of linear operators", Springer, 1966.

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

August 28, 2012 18 / 54

EPs in quantum physics:

Image: A matrix

a. workshops: "The Physics of Exceptional Points"

(Stellenbosch 2010, see http://www.nithep.ac.za/2g6.htm)

a. workshops: "The Physics of Exceptional Points"

(Stellenbosch 2010, see http://www.nithep.ac.za/2g6.htm)

b. PHHQP talks:

U. Guenther, D. Heiss, A. Tanaka

© Miloslav Znojil (NPI)

・ロト ・日本・ ・ 日本

∃ successful adiabatic versions of q. catastrophes:

MZ, "Quantum Big Bang without fine-tuning in a toy-model" J. Phys.: Conf. Ser. 343 (2012) 012136 (20 pp.), arXiv: 1105.1282

Crypto-Hermitian theory

III. The benchmark quantum catastrophe: generalized cusp
example: the initial stage of evolution of the Universe:

example: the initial stage of evolution of the Universe:

Crypto-Hermitian theory

- N

example: the initial stage of evolution of the Universe:

the Thom's Catastrophe Theory must certainly be quantized!

Image: Image:

Big Bang in mathematics:

-

= example: by conformal invariance (Penrose)

= example: by conformal invariance (Penrose)

the evolution in time

= the challenge

= example: by conformal invariance (Penrose)

the evolution in time

= the challenge

stumbling stone: inflation (mysterious $t < t_1 = O(10^{-13})$ sec)

= example: by conformal invariance (Penrose)

the evolution in time

= the challenge

stumbling stone: inflation (mysterious $t < t_1 = \mathcal{O}(10^{-13})$ sec)

= will be described

.

level crossings allowed

.

.

level crossings allowed

fine tuning not needed

.

level crossings allowed

fine tuning not needed

time-dependence important

assumptions

∃ →

・ロト ・日本・ ・ 日本

Image: Image:

= spatial grid $q_j(t)$, $j = 1, 2, \ldots, N$

э

æ

= spatial grid
$$q_j(t)$$
, $j = 1, 2, \ldots, N$

operators non-Hermitian in $\mathcal{H}^{(\text{friendly})} \equiv \ell_2$

A 🖓 h

æ

$$=$$
 spatial grid $q_j(t)$, $j=1,2,\ldots,N$

operators non-Hermitian in $\mathcal{H}^{(friendly)} \equiv \ell_2$

 \checkmark spectra real

æ

$$=$$
 spatial grid $q_j(t)$, $j=1,2,\ldots,N$

operators non-Hermitian in $\mathcal{H}^{(friendly)}~\equiv~\ell_2$

- \checkmark spectra real
- ✓ ad hoc inner products

$$=$$
 spatial grid $q_j(t)$, $j=1,2,\ldots,N$

operators non-Hermitian in $\mathcal{H}^{(friendly)}$ \equiv ℓ_2

- \checkmark spectra real
- ✓ ad hoc inner products

formalism: "Three-Hilbert-space formulation of Quantum Mechanics" MZ, SIGMA 5 (2009) 001, arXiv:0901.0700

3

Image: A matrix

prototype: four-point Universe

toy - model
$$\Lambda^{(4)}(z) = \begin{bmatrix} -3 & \sqrt{3}z & 0 & 0 \\ -\sqrt{3}z & -1 & 2z & 0 \\ 0 & -2z & 1 & \sqrt{3}z \\ 0 & 0 & -\sqrt{3}z & 3 \end{bmatrix}$$

3

Image: A matrix

prototype: four-point Universe

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

August 28, 2012 26 / 54

IIII. BB quantum catastrophe in adiabatic approximation

2

・ロト ・聞ト ・ヨト ・ヨト

a. the inner product in $\mathcal{H}^{(F)}$ is assumed friendly,

$$(f,g)^{(F)} := \int_a^b f^*(x)g(x)w(x)\mathsf{d}x$$

a. the inner product in $\mathcal{H}^{(F)}$ is assumed friendly,

$$(f,g)^{(F)} := \int_a^b f^*(x)g(x)w(x)\mathrm{d}x$$

BUT it is declared false and unphysical and auxiliary

a. the inner product in $\mathcal{H}^{(F)}$ is assumed friendly,

$$(f,g)^{(F)} := \int_a^b f^*(x)g(x)w(x)\mathrm{d}x$$

BUT it is declared false and unphysical and auxiliary

b. the sophisticated inner product is used instead,

$$(f,g)^{(S)} := \int_a^b \int_c^d f^*(x) \Theta(x,y) g(y) \mathrm{d}x \, \mathrm{d}y$$

Image: A matched block

a. the inner product in $\mathcal{H}^{(F)}$ is assumed friendly,

$$(f,g)^{(F)} := \int_a^b f^*(x)g(x)w(x)\mathrm{d}x$$

BUT it is declared false and unphysical and auxiliary

b. the sophisticated inner product is used instead,

$$(f,g)^{(S)} := \int_a^b \int_c^d f^*(x) \Theta(x,y) g(y) \mathrm{d}x \, \mathrm{d}y$$

it is declared physical and defines the standard space $\mathcal{H}^{(S)}$.

© Miloslav Znojil (NPI)

a detour to history:

the idea of crypto-Hermiticity:

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

a detour to history:

the idea of crypto-Hermiticity:

Jean Alexandre Eugene Dieudonné (1. 7. 1906 – 29. 11. 1992)

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

 $H^{\dagger}\Theta=\Theta H$

 $H^{\dagger}\Theta=\Theta H$

unfortunately, this definition appeared too broad

 $H^{\dagger}\Theta=\Theta H$

unfortunately, this definition appeared too broad

(pars pro toto, listen to the Thursday talk by Krejcirik)

 $H^{\dagger}\Theta=\Theta H$

unfortunately, this definition appeared too broad

(pars pro toto, listen to the Thursday talk by Krejcirik)

fortunately, 30 years later, Scholtz et al

restricted attention to operators $\in \mathcal{B}(\mathcal{H})$ clarified the use of the concept in (nuclear) physics

 $H^{\dagger}\Theta=\Theta H$

unfortunately, this definition appeared too broad

(pars pro toto, listen to the Thursday talk by Krejcirik)

fortunately, 30 years later, Scholtz et al

restricted attention to operators $\in \mathcal{B}(\mathcal{H})$ clarified the use of the concept in (nuclear) physics

it is worth adding that it took several more years

before Bender et al made the idea truly visible among physicists

at $N < \infty$, all the mathematics is made friendly:
every diagonalizable N by N matrix Q with real spectrum is tractable as an isospectral image of a "paternal" Hermitian matrix, $\mathfrak{q}=\Omega\,Q\,\Omega^{-1}$

every diagonalizable N by N matrix Q with real spectrum is tractable as an isospectral image of a "paternal" Hermitian matrix, $\mathfrak{q}=\Omega\,Q\,\Omega^{-1}$

REMARK

the Hermiticity of $q = q^{\dagger}$ may be read as the crypto-Hermiticity of $Q = Q^{\ddagger} = \Theta^{-1} Q^{\dagger} \Theta$ where $\Theta = \Omega^{\dagger} \Omega$ is Hilbert-space metric.

every diagonalizable N by N matrix Q with real spectrum is tractable as an isospectral image of a "paternal" Hermitian matrix, $\mathfrak{q}=\Omega\,Q\,\Omega^{-1}$

REMARK

the Hermiticity of $q = q^{\dagger}$ may be read as the crypto-Hermiticity of $Q = Q^{\ddagger} = \Theta^{-1} Q^{\dagger} \Theta$ where $\Theta = \Omega^{\dagger} \Omega$ is Hilbert-space metric.

COROLLARY

crypto-Hermitian quantum systems are characterized

by the metric Θ and by an M-plet of operators of observables Q_n

イロト 不得下 イヨト イヨト

every diagonalizable N by N matrix Q with real spectrum is tractable as an isospectral image of a "paternal" Hermitian matrix, $\mathfrak{q}=\Omega\,Q\,\Omega^{-1}$

REMARK

the Hermiticity of $\mathfrak{q}=\mathfrak{q}^{\dagger}$ may be read as the crypto-Hermiticity of $Q=Q^{\ddagger}=\Theta^{-1}\,Q^{\dagger}\,\Theta$ where $\Theta=\Omega^{\dagger}\Omega$ is Hilbert-space metric.

COROLLARY

crypto-Hermitian quantum systems are characterized

by the metric
$$\Theta$$
 and by an M-plet of operators of observables Q_n

such that $\left| \mathbf{Q}_{n}^{\dagger} \Theta = \Theta \mathbf{Q}_{n}, \quad n = 1, 2, \dots, \mathsf{M} \right|$ (Dieudonné's equations).

イロト 不得下 イヨト イヨト 二日

in the context of physics

æ

the grounds of the theory were attributed to Freeman Dyson;

the grounds of the theory were attributed to Freeman Dyson;

who, in the context of nuclear physics, introduced

non-unitary boson-fermion mappings Ω such that $H \neq H^{\dagger}$ while

$$\Omega: H \to \mathfrak{h} = \mathfrak{h}^{\dagger} \qquad \Theta = \Omega^{\dagger} \Omega$$

the grounds of the theory were attributed to Freeman Dyson;

who, in the context of nuclear physics, introduced

non-unitary boson-fermion mappings Ω such that $H \neq H^{\dagger}$ while

$$\Omega: H \to \mathfrak{h} = \mathfrak{h}^{\dagger} \qquad \Theta = \Omega^{\dagger} \Omega$$

cf. http://www.sns.ias.edu/~dyson/

Freeman Dyson (b. 15. December 1923 in UK)

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

August 28, 2012 33 / 54

Image: Image:

in our talk we

* ロ > * 個 > * 注 > * 注 >

æ

Coriolis = negligible OR the observable is NOT the Hamiltonian

 $Coriolis = negligible \ OR \ the \ observable \ is \ NOT \ the \ Hamiltonian$

b. simplify the BB physics:

• no relativistic covariance, single spatial dimension, $\mathbb{E}^3 \longrightarrow \mathbb{E}$

 $Coriolis = negligible \ OR \ the \ observable \ is \ NOT \ the \ Hamiltonian$

b. simplify the BB physics:

- \bullet no relativistic covariance, single spatial dimension, $\mathbb{E}^3 \longrightarrow \mathbb{E}$
- discrete representation: $q_j(t)$, $j = 1, 2, \dots, N$

Coriolis = negligible OR the observable is NOT the Hamiltonian

b. simplify the BB physics:

- \bullet no relativistic covariance, single spatial dimension, $\mathbb{E}^3\longrightarrow\mathbb{E}$
- discrete representation: $q_j(t)$, $j = 1, 2, \dots, N$

c. require nothing before Big Bang

• spatial grid = complex before $t = t_{BB} = 0$ (= unobservable)

• full degeneracy:
$$q_j(t)
ightarrow 0$$
 at $t
ightarrow t_{BB} = 0$

• 1st: "dynamical" approach: Hamiltonian *H*(*t*) is known in advance

• 1st: "dynamical" approach: Hamiltonian *H*(*t*) is known in advance

• discussed (by MZ) in Dresden: too ambitious

- 1st: "dynamical" approach:
 Hamiltonian H(t) is known in advance
 - discussed (by MZ) in Dresden: too ambitious
 - the construction of grid Q(t) = too difficult

1st: "dynamical" approach:
 Hamiltonian H(t) is known in advance

- discussed (by MZ) in Dresden: too ambitious
- the construction of grid Q(t) = too difficult

• 2nd: "kinematical" approach (today): the GTR-compatible grid operator Q(t) is given

1st: "dynamical" approach:
 Hamiltonian H(t) is known in advance

- discussed (by MZ) in Dresden: too ambitious
- the construction of grid Q(t) = too difficult
- 2nd: "kinematical" approach (today): the GTR-compatible grid operator Q(t) is given

the formalism is known:

"Time-dependent version of cryptohermitian quantum theory"

M. Znojil, Phys. Rev. D 78 (2008) 085003 (arXiv:0809.2874v1)

its implementation with $\dot{\Theta}\approx 0$ is straightforward.

let's start from Big Bang in classical scenario:

idealized GTR evolution of a discrete N = 4 spatial grid

the "N-point-geometry" operators $Q = Q^{(N)}(t)$ must have

• fully real/fully complex spectra $\{q_n(t)\}$ at $t \leq 0$, respectively

the "N-point-geometry" operators $Q = Q^{(N)}(t)$ must have

- fully real/fully complex spectra $\{q_n(t)\}\$ at $t \leq 0$, respectively
- Jordan-block degeneracy in the BB limit, $q_n(t)
 ightarrow 0$

the "N-point-geometry" operators $Q = Q^{(N)}(t)$ must have

- fully real/fully complex spectra $\{q_n(t)\}\$ at $t \leq 0$, respectively
- Jordan-block degeneracy in the BB limit, $q_n(t)
 ightarrow 0$

and will be chosen in tridiagonal, [N/2]-parametric form

$$Q_{(a)}^{(2)} = \begin{bmatrix} 1 & a \\ -a & -1 \end{bmatrix}, \quad Q_{(a,b)}^{(4)} = \begin{bmatrix} 3 & b & 0 & 0 \\ -b & 1 & a & 0 \\ 0 & -a & -1 & b \\ 0 & 0 & -b & -3 \end{bmatrix}$$

-54

. . .

the "N-point-geometry" operators $Q = Q^{(N)}(t)$ must have

- fully real/fully complex spectra $\{q_n(t)\}$ at $t \leq 0$, respectively
- Jordan-block degeneracy in the BB limit, $q_n(t)
 ightarrow 0$

and will be chosen in tridiagonal, [N/2]-parametric form

$$Q_{(a)}^{(2)} = \begin{bmatrix} 1 & a \\ -a & -1 \end{bmatrix}, \quad Q_{(a,b)}^{(4)} = \begin{bmatrix} 3 & b & 0 & 0 \\ -b & 1 & a & 0 \\ 0 & -a & -1 & b \\ 0 & 0 & -b & -3 \end{bmatrix}$$

taken from MZ, J. Phys. A: Math. Theor. 40 (2007) 4863 - 4875

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

August 28, 2012 37

54

< 67 ▶

. . .

$Q^{(N)}(t)$ are adiabatic (= not Hamiltonians):

$Q^{(N)}(t)$ are adiabatic (= not Hamiltonians):

\heartsuit we satisfy the full-degeneracy constraint at any N

non-numerical construction yields the BB-limit sequence

$Q^{(N)}(t)$ are adiabatic (= not Hamiltonians):

\heartsuit we satisfy the full-degeneracy constraint at any N

non-numerical construction yields the BB-limit sequence

$$Q_{BB}^{(2)} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}, \quad Q_{BB}^{(4)} = \begin{bmatrix} 3 & \sqrt{3} & 0 & 0 \\ -\sqrt{3} & 1 & 2 & 0 \\ 0 & -2 & -1 & \sqrt{3} \\ 0 & 0 & -\sqrt{3} & -3 \end{bmatrix} \dots$$

• take secular equation for $s = E^2$, $s^2 + (-10 + 2b^2 + a^2)s + 9 + 6b^2 - 9a^2 + b^4 = 0$

- take secular equation for $s = E^2$, $s^2 + (-10 + 2b^2 + a^2)s + 9 + 6b^2 - 9a^2 + b^4 = 0$
- two BB conditions: $-10 + 2b^2 + a^2 = 0$, $9 + 6b^2 9a^2 + b^4 = 0$

- take secular equation for $s = E^2$, $s^2 + (-10 + 2b^2 + a^2)s + 9 + 6b^2 - 9a^2 + b^4 = 0$
- two BB conditions: $-10 + 2b^2 + a^2 = 0$, $9 + 6b^2 9a^2 + b^4 = 0$
- elimination of *a*, quadratic-equation roots $b_1^2 = 3$ and $b_2^2 = -27$:

- take secular equation for $s = E^2$, $s^2 + (-10 + 2b^2 + a^2)s + 9 + 6b^2 - 9a^2 + b^4 = 0$
- two BB conditions: $-10 + 2b^2 + a^2 = 0$, $9 + 6b^2 9a^2 + b^4 = 0$
- elimination of *a*, quadratic-equation roots $b_1^2 = 3$ and $b_2^2 = -27$:
- the acceptable BB root (yielding real b) is unique.

- take secular equation for $s = E^2$, $s^2 + (-10 + 2b^2 + a^2)s + 9 + 6b^2 - 9a^2 + b^4 = 0$
- two BB conditions: $-10 + 2b^2 + a^2 = 0$, $9 + 6b^2 9a^2 + b^4 = 0$
- elimination of *a*, quadratic-equation roots $b_1^2 = 3$ and $b_2^2 = -27$:
- the acceptable BB root (yielding real b) is unique.

(c) patience and symbolic manipulations are necessary in general

- take secular equation for $s = E^2$, $s^2 + (-10 + 2b^2 + a^2)s + 9 + 6b^2 - 9a^2 + b^4 = 0$
- two BB conditions: $-10 + 2b^2 + a^2 = 0$, $9 + 6b^2 9a^2 + b^4 = 0$
- elimination of *a*, quadratic-equation roots $b_1^2 = 3$ and $b_2^2 = -27$:
- the acceptable BB root (yielding real b) is unique.

(c) patience and symbolic manipulations are necessary in general

e.g., at N = 8 we get $D = d^2 = 7$ as a unique root of a seventeenth-degree polynomial (P. T. O.)

314432 $D^{17}-5932158016\,D^{16}+4574211144896\,D^{15}+3133529909492864\,D^{14}-5932158016\,D^{16}+4574211144896\,D^{15}+3133529909492864\,D^{14}-5932158016\,D^{16}+4574211144896\,D^{15}+3133529909492864\,D^{14}-5932158016\,D^{16}+574211144896\,D^{15}+3133529909492864\,D^{14}-5932158016\,D^{16}+574211144896\,D^{15}+3133529909492864\,D^{14}-5932158016\,D^{16}+574211144896\,D^{15}+3133529909492864\,D^{14}-5932158016\,D^{16}+574211144896\,D^{15}+574211144896\,D^{15}+574211144896\,D^{15}+574211144896\,D^{15}+57421144896\,D^{16}+574211144896\,D^{16}+5742116400,D^{16}+57421144896\,D^{16}+57421144896\,D^{16}+57421400,D^{16}+5742100,D^{16}+5742100,D^{16}+5742100,D^{16}+574210,D^{16}+574200,D^{16}+574200,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{16}+57400,D^{1$

 $+917318495163561932\,D^{13}+167556261648918275684\,D^{12}+$

 $+ 14670346929744822064505\,D^{11} + 720991093724510065469933\,D^{10} +$

 $+ 62429137451114251409236415\,D^9 + 676326278232758784369966787\,D^8 +$

 $+40525434802944282153115803370 D^7 + 236197644474644051360524893061$

 $-145759836636885012145070948315366\,{\it D}^{5}+$

 $+ 8129925258122948689157916436170874\,D^4 +$

 $-68875673245487669398850290405642067\,D^3+$

 $+ 235326754101824439936800228806905073\,D^2 -$

 $-453762279414621179815552897029039797\,D+$

 $+ 153712881941946532798614648361265167 = 0\,.$
• in a test of the uniqueness of this solution one finds seven real and positive roots $D = d^2$;

- in a test of the uniqueness of this solution one finds seven real and positive roots $D = d^2$;
- three of them are manifestly spurious (negative), -203.9147095, -156.6667001, -55.49992441;

- in a test of the uniqueness of this solution one finds seven real and positive roots $D = d^2$;
- three of them are manifestly spurious (negative), -203.9147095, -156.6667001, -55.49992441;
- the proof of the spuriosity of the remaining four non-integer roots 0.4192854385, 5.354156128, 1354.675195 and 18028.16789 is based on showing the non-reality of one of the other three couplings.

- in a test of the uniqueness of this solution one finds seven real and positive roots $D = d^2$;
- three of them are manifestly spurious (negative), -203.9147095, -156.6667001, -55.49992441;
- the proof of the spuriosity of the remaining four non-integer roots 0.4192854385, 5.354156128, 1354.675195 and 18028.16789 is based on showing the non-reality of one of the other three couplings.
- for example, the values of $A = a^2$ are given by the rule $\alpha \times A =$ (a polynomial in *D* of 16th degree) where the number of digits in the auxiliary integer constant α exceeds one hundred.

conclusion: the *prescribed* BB scenario is quantized!

conclusion: the *prescribed* BB scenario *is* quantized!

eigenvalues at N = 4

© Miloslav Znojil (NPI)

the adiabatic QC theory emerges:

success:

< 67 ▶

э

BB = one of benchmarks = exactly solvable at all N

BB = one of benchmarks = exactly solvable at all N

the scenario resembles the cusp:

N-tuple pitchfork in x - t plane if N =odd the "handle" disappears if N =even

BB = one of benchmarks = exactly solvable at all N

the scenario resembles the cusp:

N-tuple pitchfork in x - t plane if N =odd the "handle" disappears if N =even

further details: MZ, "Quantum catastrophes: a case study."

J. Phys. A: Math. Theor. 45 (2012), in print, arXiv: 1206.6000

BB = one of benchmarks = exactly solvable at all N

the scenario resembles the cusp:

N-tuple pitchfork in x - t plane if N =odd the "handle" disappears if N =even

further details: MZ, "Quantum catastrophes: a case study."

J. Phys. A: Math. Theor. 45 (2012), in print, arXiv: 1206.6000

a weak point = the adiabaticity assumption

IIIII. Coriolis-admitting theory and Inflation Period

THEOREM 2.

the time-evolution of the system is generated by Hermitian $\mathfrak{h} = \Omega H \Omega^{-1}$ which acts on $|\psi \succ = \Omega |\psi\rangle$ as follows,

 $\mathrm{i}\partial_t \left| \psi \succ = \mathfrak{h} \left| \psi \succ \right. \right. .$

THEOREM 2.

the time-evolution of the system is generated by Hermitian $\mathfrak{h} = \Omega H \Omega^{-1}$ which acts on $|\psi \succ = \Omega |\psi\rangle$ as follows,

$$\mathrm{i}\partial_t |\psi \succ = \mathfrak{h} |\psi \succ$$
.

COROLLARY

The friendly Schrödinger-equation pull-back contains a Coriolis term,

$$\mathrm{i}\partial_t \ket{\psi} = \mathsf{G} \ket{\psi}, \quad \mathsf{G} = \mathsf{H} - \mathrm{i}\Omega^{-1}\partial_t \Omega.$$

THEOREM 2.

the time-evolution of the system is generated by Hermitian $\mathfrak{h} = \Omega H \Omega^{-1}$ which acts on $|\psi \succ = \Omega |\psi\rangle$ as follows,

$$\mathrm{i}\partial_t \ket{\psi} \succ = \mathfrak{h} \ket{\psi} \succ$$
 .

COROLLARY

The friendly Schrödinger-equation pull-back contains a Coriolis term,

$$\mathrm{i}\partial_t |\psi\rangle = \mathrm{G} |\psi\rangle, \quad \mathrm{G} = \mathrm{H} - \mathrm{i}\Omega^{-1}\partial_t \Omega.$$

details in loc. cit.

Image: Image:

3

 \diamondsuit the fine-tuning trap is successfully circumvented

- 一司

 \diamond the fine-tuning trap is successfully circumvented

 \heartsuit the key trick = the parametrization using the time *t*

 \diamond the fine-tuning trap is successfully circumvented

 \heartsuit the key trick = the parametrization using the time t

$$Q^{(2)}_{(a)} o Q^{(2)}_{[A]}(t) = \left[egin{array}{cc} 1 & \sqrt{1-A\,t} \ -\sqrt{1-A\,t} & -1 \end{array}
ight]; \quad {
m next}:$$

\diamond the fine-tuning trap is successfully circumvented

 \heartsuit the key trick = the parametrization using the time t

$$Q^{(2)}_{(a)}
ightarrow Q^{(2)}_{[A]}(t) = \left[egin{array}{cc} 1 & \sqrt{1-A\,t} \ -\sqrt{1-A\,t} & -1 \end{array}
ight]; ext{ next}:$$

$$\begin{bmatrix} 3 & \sqrt{3}\sqrt{1-t-Bt^2} & 0 & 0 \\ -\sqrt{3}\sqrt{1-t-Bt^2} & 1 & 2\sqrt{1-t-At^2} & 0 \\ 0 & -2\sqrt{1-t-At^2} & -1 & \ddots \\ 0 & 0 & -\sqrt{3}\sqrt{1-t-Bt^2} & -3 \end{bmatrix},$$

\diamond the fine-tuning trap is successfully circumvented

 \heartsuit the key trick = the parametrization using the time t

$$Q^{(2)}_{(a)} o Q^{(2)}_{[A]}(t) = \left[egin{array}{cc} 1 & \sqrt{1-A\,t} \ -\sqrt{1-A\,t} & -1 \end{array}
ight]$$
; next:

$$\begin{bmatrix} 3 & \sqrt{3}\sqrt{1-t-Bt^2} & 0 & 0\\ -\sqrt{3}\sqrt{1-t-Bt^2} & 1 & 2\sqrt{1-t-At^2} & 0\\ 0 & -2\sqrt{1-t-At^2} & -1 & \ddots\\ 0 & 0 & -\sqrt{3}\sqrt{1-t-Bt^2} & -3 \end{bmatrix},$$

see MZ, J. Phys. A: Math. Theor. 40 (2007) 13131-13148

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

August 28, 2012 46 / 54

IIIIII. Discussion

3 🕨 🖌 3

Image: A image: A

2

\diamondsuit we know the boundaries of the observability domains

 \diamondsuit we know the boundaries of the observability domains

(i) the N = 4 domain:

$$-\mu_4^2 = -1/4 \le 2A/2 - B \le +4/9 = +\nu_4^2$$

• we know the boundaries of the observability domains

(i) the N = 4 domain:

$$-\mu_4^2 = -1/4 \le 2A/2 - B \le +4/9 = +\nu_4^2$$

(ii) the N = 6 domain:

 $-\mu_6^2 \le 6A/2 - 4B + C \le +\nu_6^2$

伺下 イヨト イヨト

♠ we know the boundaries of the observability domains

(i) the N = 4 domain:

$$-\mu_4^2 = -1/4 \le 2A/2 - B \le +4/9 = +\nu_4^2$$

(ii) the N = 6 domain:

$$-\mu_6^2 \le 6A/2 - 4B + C \le +\nu_6^2$$

(iii) the N = 8 domain:

$$-\mu_6^2 \le 20A/2 - 15B + 6C - D \le +\nu_6^2$$

- 4 週 ト - 4 三 ト - 4 三 ト

 \blacklozenge we know the boundaries of the observability domains

(i) the N = 4 domain:

$$-\mu_4^2 = -1/4 \le 2A/2 - B \le +4/9 = +\nu_4^2$$

(ii) the N = 6 domain:

$$-\mu_6^2 \le 6A/2 - 4B + C \le +\nu_6^2$$

(iii) the N = 8 domain:

 $-\mu_6^2 \le 20A/2 - 15B + 6C - D \le +\nu_6^2$

extrapolated to all N: arXiv:0709.1569

通 ト イヨ ト イヨト

 \blacklozenge we know the boundaries of the observability domains

(i) the N = 4 domain:

$$-\mu_4^2 = -1/4 \le 2A/2 - B \le +4/9 = +\nu_4^2$$

(ii) the N = 6 domain:

$$-\mu_6^2 \le 6A/2 - 4B + C \le +\nu_6^2$$

(iii) the N = 8 domain:

$$-\mu_6^2 \le 20A/2 - 15B + 6C - D \le +\nu_6^2$$

extrapolated to all N: arXiv:0709.1569

THEOREM 3: near BB, physical domain $\mathcal{D}^{(\bar{N})} =$ a flat layer

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

hypersurfaces $\partial \mathcal{D}$ near BB points:

first: two-dimensional quantum catastrophe

cf. MZ, Phys. Lett. B 647 (2007) 225 - 230 (quant-ph/0701232).

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

August 28, 2012 49 / 54

(日) (同) (日) (日)

the three-dimensional quantum-cusp surface $\partial \mathcal{D}^{'}$

picture drawn by Petr Siegl in his diploma thesis "Quasi-Hermitian Models", FNSPE CTU Prague, 2008

© Miloslav Znojil (NPI)

Crypto-Hermitian theory

= the motion through the EP spike in parametric space $\ensuremath{\mathcal{D}}$

realization via the prototype benchmark:

 $A = B = \ldots = 0$, positive $t \equiv r^2$, anti-time $z = \sqrt{1 - r^2}$

grid points in closed form:

$$(N-1)r, (N-3)r, \ldots, 1, -1, \ldots, -(N-1)r$$

the theory is non-adiabatic: the Coriolis force

(1) is added to Hamiltonian, $G(t) = H(t) - \Sigma(t)$ (2) may be large, $\Sigma(t) = i\Theta^{-1}(t)\dot{\Theta}(t)$ is explicit

- < A > < B > < B >

the explicit constructions

\diamondsuit the starting point: the ambiguity of the generic $\Theta(t)$

\blacklozenge the starting point: the ambiguity of the generic $\Theta(t)$

reason: *N*-parametricity of the spectral-like representation:

$$\Theta = \sum_{n=1}^{N} |n\rangle\rangle \, \kappa_n^2 \, \langle \langle n|$$

\diamondsuit the starting point: the ambiguity of the generic $\Theta(t)$

reason: *N*-parametricity of the spectral-like representation:

$$\Theta = \sum_{n=1}^{N} |n\rangle\rangle \, \kappa_n^2 \, \langle\langle n|$$

illustration: the N = 2 case: $\kappa_1 = \kappa_+ = \sin \alpha$, $\kappa_2 = \kappa_- = \cos \alpha$, $0 < \alpha < \pi/2$ (may be also time-dependent, $\alpha = \alpha(r)$);

$$\Theta = \Theta^{(2)}(\alpha) = \begin{bmatrix} 1 + r \cos 2\alpha & -\sqrt{1 - r^2} \\ -\sqrt{1 - r^2} & 1 - r \cos 2\alpha \end{bmatrix}$$

= diagonal when $r \rightarrow 1$ (\Rightarrow the end of "inflation period").

the second main result:

メロト メポト メヨト メヨト

2
the second main result:

eigenvalues of any $\Theta^{(N=2)}(\alpha)$ are never equal (= inflation anisotropy),

$$\theta_{\pm} = 1 \pm \sqrt{1 - r^2 \sin^2 2\alpha} \,.$$

 \heartsuit at N = 2, there exists a privileged $\Theta^{(2)}$ with minimal anisotropy

the second main result:

eigenvalues of any $\Theta^{(N=2)}(\alpha)$ are never equal (= inflation anisotropy),

$$\theta_{\pm} = 1 \pm \sqrt{1 - r^2 \sin^2 2\alpha} \,.$$

Crypto-Hermitian theory

eigenvalues of any $\Theta^{(N=2)}(\alpha)$ are never equal (= inflation anisotropy),

$$\theta_{\pm} = 1 \pm \sqrt{1 - r^2 \sin^2 2\alpha} \,.$$

 \heartsuit at N = 2, there exists a privileged $\Theta^{(2)}$ with minimal anisotropy

"equal weights" $\kappa_{+}^{2} = \kappa_{-}^{2}$, i.e., $\alpha = \pi/4$. such a metric is unique!

at the end of inflation the anisotropy vanishes

= this result is valid at all N

\uparrow the message: inflation terminates, no anisotropy beyond t = 1:

\diamondsuit the message: inflation terminates, no anisotropy beyond t = 1:

The N = 4 sample of the eigenvalues of our metric. The inflation (= the regime of anisotropic metric) ends in a finite time $t = r^2 = 1$.