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I. Introduction: classical catastrophes
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formulated by

René Frédéric Thom

September 2, 1923 - October 25, 2002
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classical theory in five paragraphs:

.
a. context

.
b. the simplest catastrophe - the fold

.
c. the most useful classical catastrophe - the cusp

.
d. symmetric cusp

.
e. the abstract classical theory

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 5 / 54



a. context

E. C. Zeeman, Catastrophe Theory

Scientific American, April 1976; pp. 65 - 70, 75 - 83

i. in geometry

= see singularity theory

ii. in nonlinear differential equations

= see bifurcation theory

iii. in physics:

= see the theory of dynamical systems
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see also the Salvador Daĺı’s last painting (May 1983):

“The Swallow’s Tail — Series on Catastrophes”

oil on canvas, 73 cm × 92.2 cm, Daĺı Theatre and Museum, Figueres
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b. the simplest catastrophe - the fold

= Lyapunov function V (x , a) = x3 + ax

“fold bifurcation”:

for a < 0, and for a > 0.
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c. the most useful classical catastrophe - the cusp

Lyapunov function V (x , a, b) = x4 + ax2 + bx

sign-change of b ⇔ shape-reflection of V

⇔
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boundary = “cusp”

domain with two stable solutions

cusp boundary  

in a-b plane: 

domain with single stable solution
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d. symmetric cusp (b = 0)

V (x , a, 0) = x4 + ax2

a collapse in x − a plane

pitchfork bifurcation at a = 0

 maximum

  

right minimum

left minimum

minimum
0

–2 –1 0

x

a
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example: use time t = −a > 0

V ′(x ,−t, 0) = 3 x3 − 2 t x = 0 mimics space-time equilibria

two-point Universe

pre-BB equilibrium

space
the first stable equilibrium

the second stable equilibrium

unstable equilibrium

Big-Bang instant

–1

0

1

–2 0 2
time

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 12 / 54



e. the abstract classical theory

= definition:

• catastrophe = a sudden and dramatic shift in behavior
caused by a small change of a “circumstance” parameter ~λ ∈ D

= method:

• equilibria = minima of Lyapunov function V (~ξ, ~λ)

= purpose: non-equivalent scenarios of time-evolution

• subdomains of parameters
• their boundaries ∂Ds
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II. The abstract concept of a quantum catastrophe
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starting point: classical - quantum parallels:

♦ classical motion:

• a point in phase space, q(t) ∈M;
• the qualitative theory ≡ GEOMETRY

♥ quantum motion has four aspects:

• time-dependent eigenvalues qn(t) and EP at t = 0

• time-dependent wave functions in Hilbert space, |ψ(t)〉 ∈ H;

• multiple observables F (~λ(t)),G (~λ(t)),H(~λ(t)), . . .

• ambiguous Hilbert-space metrics Θ(~λ(t), ~κ(t)).
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obstructions

1. ambiguity :

• many eligible Θ and non-equivalent H = H(Θ)

2. unfriendliness :

• the friendly “Dirac’s” Θ = I would give
(1) trivial theory,
(2) avoided crossings and
(3) trivial ∂Ds = ∅
(P.T.O.)
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Hermitian matrices: avoided crossings

real symmetric matrix : Λ̃(4)(y) =


−3

√
3y 0 0

√
3y −1 2 y 0

0 2 y 1
√
3y

0 0
√
3y 3


samples the repulsion of eigenvalues:

–4

–2

0

2

4

–1 –0.5 0 0.5 parameter  z 

eigenvalues
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QC concept will be based here on exceptional points :

EPs defined by

Tosio Kato (August 25, 1917 - October 2, 1999)
“Perturbation theory of linear operators”, Springer, 1966.
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EPs in quantum physics:

a. workshops: “The Physics of Exceptional Points”

(Stellenbosch 2010, see http://www.nithep.ac.za/2g6.htm)

b. PHHQP talks:

U. Guenther, D. Heiss, A. Tanaka
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encouragement:

∃ successful adiabatic versions of q. catastrophes:

MZ, “Quantum Big Bang without fine-tuning in a toy-model”
J. Phys.: Conf. Ser. 343 (2012) 012136 (20 pp.), arXiv: 1105.1282
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III. The benchmark quantum catastrophe: generalized cusp
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example: the initial stage of evolution of the Universe:

the Thom’s Catastrophe Theory must certainly be quantized!
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Big Bang in mathematics:

the model must be simplified:

= example: by conformal invariance (Penrose)

the evolution in time

= the challenge

stumbling stone: inflation (mysterious t < t1 = O(10−13) sec)

= will be described

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 23 / 54



Big Bang in mathematics:

the model must be simplified:

= example: by conformal invariance (Penrose)

the evolution in time

= the challenge

stumbling stone: inflation (mysterious t < t1 = O(10−13) sec)

= will be described

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 23 / 54



Big Bang in mathematics:

the model must be simplified:

= example: by conformal invariance (Penrose)

the evolution in time

= the challenge

stumbling stone: inflation (mysterious t < t1 = O(10−13) sec)

= will be described

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 23 / 54



Big Bang in mathematics:

the model must be simplified:

= example: by conformal invariance (Penrose)

the evolution in time

= the challenge

stumbling stone: inflation (mysterious t < t1 = O(10−13) sec)

= will be described

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 23 / 54



Big Bang in mathematics:

the model must be simplified:

= example: by conformal invariance (Penrose)

the evolution in time

= the challenge

stumbling stone: inflation (mysterious t < t1 = O(10−13) sec)

= will be described

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 23 / 54



background and features

.
QUANTUM MECHANICS in its three-Hilbert-space formulation

.
level crossings allowed

.
fine tuning not needed

.
time-dependence important

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 24 / 54



background and features

.
QUANTUM MECHANICS in its three-Hilbert-space formulation

.
level crossings allowed

.
fine tuning not needed

.
time-dependence important

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 24 / 54



background and features

.
QUANTUM MECHANICS in its three-Hilbert-space formulation

.
level crossings allowed

.
fine tuning not needed

.
time-dependence important

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 24 / 54



background and features

.
QUANTUM MECHANICS in its three-Hilbert-space formulation

.
level crossings allowed

.
fine tuning not needed

.
time-dependence important

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 24 / 54



assumptions

observables = eigenvalues

= spatial grid qj(t), j = 1, 2, . . . ,N

operators non-Hermitian in H(friendly) ≡ `2

X spectra real
X ad hoc inner products

formalism:
“Three-Hilbert-space formulation of Quantum Mechanics”

MZ, SIGMA 5 (2009) 001, arXiv:0901.0700
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prototype: four-point Universe

toy −model Λ(4)(z) =


−3

√
3z 0 0

−
√

3z −1 2 z 0

0 −2 z 1
√

3z

0 0 −
√

3z 3

 .

non-Hermitian matrix =⇒ the attraction of eigenvalues,

–3

–2

–1

0

1

2

3

–1 –0.5 0 0.5 1

parameter  z 

eigenvalues
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IIII. BB quantum catastrophe in adiabatic approximation
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notation:

a. the inner product in H(F ) is assumed friendly,

(f , g)(F ) :=

∫ b

a
f ∗(x)g(x)w(x)dx

BUT it is declared false and unphysical and auxiliary

b. the sophisticated inner product is used instead,

(f , g)(S) :=

∫ b

a

∫ d

c
f ∗(x)Θ(x , y)g(y)dx dy

it is declared physical and defines the standard space H(S).
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a detour to history:

the idea of crypto-Hermiticity:

Jean Alexandre Eugene Dieudonné (1. 7. 1906 – 29. 11. 1992)
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he defined, in 1962, quasi-Hermitian H :

H†Θ = ΘH

unfortunately, this definition appeared too broad

(pars pro toto, listen to the Thursday talk by Krejcirik)

fortunately, 30 years later, Scholtz et al

restricted attention to operators ∈ B(H)
clarified the use of the concept in (nuclear) physics

it is worth adding that it took several more years

before Bender et al made the idea truly visible among physicists
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at N <∞, all the mathematics is made friendly:

THEOREM 1.

every diagonalizable N by N matrix Q with real spectrum is tractable as an
isospectral image of a “paternal” Hermitian matrix, q = Ω Q Ω−1

REMARK

the Hermiticity of q = q† may be read as the crypto-Hermiticity of
Q = Q‡ = Θ−1 Q†Θ where Θ = Ω†Ω is Hilbert-space metric.

COROLLARY

crypto-Hermitian quantum systems are characterized
by the metric Θ and by an M−plet of operators of observables Qn

such that Q†nΘ = Θ Qn , n = 1, 2, . . . ,M (Dieudonné’s equations).
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in the context of physics

the grounds of the theory were attributed to Freeman Dyson;

who, in the context of nuclear physics, introduced

non-unitary boson-fermion mappings Ω such that H 6= H† while

Ω : H → h = h† Θ = Ω†Ω

cf. http://www.sns.ias.edu/˜dyson/
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Freeman Dyson (b. 15. December 1923 in UK)
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in our talk we

a. accept adiabatic approximation

Coriolis = negligible OR the observable is NOT the Hamiltonian

b. simplify the BB physics:

no relativistic covariance, single spatial dimension, E3 −→ E
discrete representation: qj(t), j = 1, 2, . . . ,N

c. require nothing before Big Bang

spatial grid = complex before t = tBB = 0 (= unobservable)

full degeneracy: qj(t)→ 0 at t → tBB = 0

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 34 / 54



in our talk we

a. accept adiabatic approximation

Coriolis = negligible OR the observable is NOT the Hamiltonian

b. simplify the BB physics:

no relativistic covariance, single spatial dimension, E3 −→ E
discrete representation: qj(t), j = 1, 2, . . . ,N

c. require nothing before Big Bang

spatial grid = complex before t = tBB = 0 (= unobservable)

full degeneracy: qj(t)→ 0 at t → tBB = 0

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 34 / 54



in our talk we

a. accept adiabatic approximation

Coriolis = negligible OR the observable is NOT the Hamiltonian

b. simplify the BB physics:

no relativistic covariance, single spatial dimension, E3 −→ E

discrete representation: qj(t), j = 1, 2, . . . ,N

c. require nothing before Big Bang

spatial grid = complex before t = tBB = 0 (= unobservable)

full degeneracy: qj(t)→ 0 at t → tBB = 0

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 34 / 54



in our talk we

a. accept adiabatic approximation

Coriolis = negligible OR the observable is NOT the Hamiltonian

b. simplify the BB physics:

no relativistic covariance, single spatial dimension, E3 −→ E
discrete representation: qj(t), j = 1, 2, . . . ,N

c. require nothing before Big Bang

spatial grid = complex before t = tBB = 0 (= unobservable)

full degeneracy: qj(t)→ 0 at t → tBB = 0

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 34 / 54



in our talk we

a. accept adiabatic approximation

Coriolis = negligible OR the observable is NOT the Hamiltonian

b. simplify the BB physics:

no relativistic covariance, single spatial dimension, E3 −→ E
discrete representation: qj(t), j = 1, 2, . . . ,N

c. require nothing before Big Bang

spatial grid = complex before t = tBB = 0 (= unobservable)

full degeneracy: qj(t)→ 0 at t → tBB = 0

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 34 / 54



∃ two eligible strategies:

1st: “dynamical” approach:
Hamiltonian H(t) is known in advance

discussed (by MZ) in Dresden: too ambitious
the construction of grid Q(t) = too difficult

2nd: “kinematical” approach (today):
the GTR-compatible grid operator Q(t) is given

the formalism is known:

“Time-dependent version of cryptohermitian quantum theory”

M. Znojil, Phys. Rev. D 78 (2008) 085003 (arXiv:0809.2874v1)

its implementation with Θ̇ ≈ 0 is straightforward.
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let’s start from Big Bang in classical scenario:

–8

–4

0

4

8

0 2 4 6 time t

space

idealized GTR evolution of a discrete N = 4 spatial grid
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the first, mathematical challenge: find some
benchmark models with big-banging spectra

the “N−point-geometry” operators Q = Q(N)(t) must have

fully real/fully complex spectra {qn(t)} at t ≶ 0, respectively

Jordan-block degeneracy in the BB limit, qn(t)→ 0

and will be chosen in tridiagonal , [N/2]−parametric form

Q
(2)
(a) =

[
1 a
− a −1

]
, Q

(4)
(a,b) =


3 b 0 0
−b 1 a 0
0 −a −1 b
0 0 −b −3

 . . .

taken from MZ, J. Phys. A: Math. Theor. 40 (2007) 4863 - 4875
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optimal parametrizations of benchmarks

Q(N)(t) are adiabatic (= not Hamiltonians):

♥ we satisfy the full-degeneracy constraint at any N

non-numerical construction yields the BB-limit sequence

Q
(2)
BB =

[
1 1
− 1 −1

]
, Q

(4)
BB =


3

√
3 0 0

−
√

3 1 2 0

0 −2 −1
√

3

0 0 −
√

3 −3

 . . .

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 38 / 54



optimal parametrizations of benchmarks

Q(N)(t) are adiabatic (= not Hamiltonians):

♥ we satisfy the full-degeneracy constraint at any N

non-numerical construction yields the BB-limit sequence

Q
(2)
BB =

[
1 1
− 1 −1

]
, Q

(4)
BB =


3

√
3 0 0

−
√

3 1 2 0

0 −2 −1
√

3

0 0 −
√

3 −3

 . . .

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 38 / 54



optimal parametrizations of benchmarks

Q(N)(t) are adiabatic (= not Hamiltonians):

♥ we satisfy the full-degeneracy constraint at any N

non-numerical construction yields the BB-limit sequence

Q
(2)
BB =

[
1 1
− 1 −1

]
, Q

(4)
BB =


3

√
3 0 0

−
√

3 1 2 0

0 −2 −1
√

3

0 0 −
√

3 −3

 . . .

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 38 / 54



let us sample the construction at N = 2J = 4:

take secular equation for s = E 2,
s2 +

(
−10 + 2 b2 + a2

)
s + 9 + 6 b2 − 9 a2 + b4 = 0

two BB conditions: −10 + 2 b2 + a2 = 0, 9 + 6 b2 − 9 a2 + b4 = 0

elimination of a, quadratic-equation roots b2
1 = 3 and b2

2 = −27:

the acceptable BB root (yielding real b) is unique.

(c) patience and symbolic manipulations are necessary in general

e.g., at N = 8 we get D = d2 = 7 as a unique root of a
seventeenth-degree polynomial (P. T. O.)
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314432D17−5932158016D16+4574211144896D15+3133529909492864D14+

+917318495163561932D13 + 167556261648918275684D12+

+14670346929744822064505D11 + 720991093724510065469933D10+

+62429137451114251409236415D9+676326278232758784369966787D8+

+40525434802944282153115803370D7+2361976444746440513605248930610D6−

−145759836636885012145070948315366D5+

+8129925258122948689157916436170874D4+

−68875673245487669398850290405642067D3+

+235326754101824439936800228806905073D2−

−453762279414621179815552897029039797D+

+153712881941946532798614648361265167 = 0 .
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in a test of the uniqueness of this solution one finds seven real and
positive roots D = d2;

three of them are manifestly spurious (negative),
−203.9147095,−156.6667001,−55.49992441;

the proof of the spuriosity of the remaining four non-integer roots
0.4192854385, 5.354156128, 1354.675195 and 18028.16789 is based
on showing the non-reality of one of the other three couplings.

for example, the values of A = a2 are given by the rule α × A = (a
polynomial in D of 16th degree) where the number of digits in the
auxiliary integer constant α exceeds one hundred.
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0.4192854385, 5.354156128, 1354.675195 and 18028.16789 is based
on showing the non-reality of one of the other three couplings.

for example, the values of A = a2 are given by the rule α × A = (a
polynomial in D of 16th degree) where the number of digits in the
auxiliary integer constant α exceeds one hundred.
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conclusion: the prescribed BB scenario is quantized!
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the adiabatic QC theory emerges:

success:

BB = one of benchmarks = exactly solvable at all N

the scenario resembles the cusp:

N−tuple pitchfork in x − t plane if N =odd
the “handle” disappears if N =even

further details: MZ, “Quantum catastrophes: a case study.”

J. Phys. A: Math. Theor. 45 (2012), in print, arXiv: 1206.6000

a weak point = the adiabaticity assumption
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IIIII. Coriolis-admitting theory and Inflation Period

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 44 / 54



standard probabilistic interpretation

THEOREM 2.

the time-evolution of the system is generated by Hermitian h = Ω H Ω−1

which acts on |ψ� = Ω|ψ〉 as follows,

i∂t |ψ� = h |ψ� .

COROLLARY

The friendly Schrödinger-equation pull-back contains a Coriolis term,

i∂t |ψ〉 = G |ψ〉 , G = H− iΩ−1∂t Ω .

details in loc. cit.
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benchmark model =⇒ non-numerical results:

♦ the fine-tuning trap is successfully circumvented

♥ the key trick = the parametrization using the time t

Q
(2)
(a) → Q

(2)
[A] (t) =

[
1

√
1− A t

−
√

1− A t −1

]
; next :


3

√
3
√

1− t − Bt2 0 0

−
√

3
√

1− t − Bt2 1 2
√

1− t − At2 0

0 −2
√

1− t − At2 −1
. . .

0 0 −
√

3
√

1− t − Bt2 −3

 ,

see MZ, J. Phys. A: Math. Theor. 40 (2007) 13131-13148

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 46 / 54



benchmark model =⇒ non-numerical results:

♦ the fine-tuning trap is successfully circumvented

♥ the key trick = the parametrization using the time t

Q
(2)
(a) → Q

(2)
[A] (t) =

[
1

√
1− A t

−
√

1− A t −1

]
; next :


3

√
3
√

1− t − Bt2 0 0

−
√

3
√

1− t − Bt2 1 2
√

1− t − At2 0

0 −2
√

1− t − At2 −1
. . .

0 0 −
√

3
√

1− t − Bt2 −3

 ,

see MZ, J. Phys. A: Math. Theor. 40 (2007) 13131-13148

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 46 / 54



benchmark model =⇒ non-numerical results:

♦ the fine-tuning trap is successfully circumvented

♥ the key trick = the parametrization using the time t

Q
(2)
(a) → Q

(2)
[A] (t) =

[
1

√
1− A t

−
√

1− A t −1

]
; next :


3

√
3
√

1− t − Bt2 0 0

−
√

3
√

1− t − Bt2 1 2
√

1− t − At2 0

0 −2
√

1− t − At2 −1
. . .

0 0 −
√

3
√

1− t − Bt2 −3

 ,

see MZ, J. Phys. A: Math. Theor. 40 (2007) 13131-13148

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 46 / 54



benchmark model =⇒ non-numerical results:

♦ the fine-tuning trap is successfully circumvented

♥ the key trick = the parametrization using the time t

Q
(2)
(a) → Q

(2)
[A] (t) =

[
1

√
1− A t

−
√

1− A t −1

]
; next :


3

√
3
√

1− t − Bt2 0 0

−
√

3
√

1− t − Bt2 1 2
√

1− t − At2 0

0 −2
√

1− t − At2 −1
. . .

0 0 −
√

3
√

1− t − Bt2 −3

 ,

see MZ, J. Phys. A: Math. Theor. 40 (2007) 13131-13148

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 46 / 54



benchmark model =⇒ non-numerical results:

♦ the fine-tuning trap is successfully circumvented

♥ the key trick = the parametrization using the time t

Q
(2)
(a) → Q

(2)
[A] (t) =

[
1

√
1− A t

−
√

1− A t −1

]
; next :


3

√
3
√

1− t − Bt2 0 0

−
√

3
√

1− t − Bt2 1 2
√

1− t − At2 0

0 −2
√

1− t − At2 −1
. . .

0 0 −
√

3
√

1− t − Bt2 −3

 ,

see MZ, J. Phys. A: Math. Theor. 40 (2007) 13131-13148

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 46 / 54



benchmark model =⇒ non-numerical results:

♦ the fine-tuning trap is successfully circumvented

♥ the key trick = the parametrization using the time t

Q
(2)
(a) → Q

(2)
[A] (t) =

[
1

√
1− A t

−
√

1− A t −1

]
; next :


3

√
3
√

1− t − Bt2 0 0

−
√

3
√

1− t − Bt2 1 2
√

1− t − At2 0

0 −2
√

1− t − At2 −1
. . .

0 0 −
√

3
√

1− t − Bt2 −3

 ,

see MZ, J. Phys. A: Math. Theor. 40 (2007) 13131-13148

c©Miloslav Znojil (NPI) Crypto-Hermitian theory of quantum catastrophesAugust 28, 2012 46 / 54



IIIIII. Discussion
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the first main result: horizons

♠ we know the boundaries of the observability domains

(i) the N = 4 domain:

−µ2
4 = −1/4 ≤ 2A/2− B ≤ +4/9 = +ν2

4

(ii) the N = 6 domain:

−µ2
6 ≤ 6A/2− 4B + C ≤ +ν2

6

(iii) the N = 8 domain:

−µ2
6 ≤ 20A/2− 15B + 6C − D ≤ +ν2

6

extrapolated to all N: arXiv:0709.1569

THEOREM 3: near BB, physical domain D(N) = a flat layer
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hypersurfaces ∂D near BB points:

they are all cusp-shaped! (generic feature)

= benchmark

first: two-dimensional quantum catastrophe

Generic shape
of the domain of quasi-Hermiticity

for two parameters

b

a

cf. MZ, Phys. Lett. B 647 (2007) 225 - 230 (quant-ph/0701232).
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the three-dimensional quantum-cusp surface ∂D

picture drawn by Petr Siegl in his diploma thesis

“Quasi-Hermitian Models”, FNSPE CTU Prague, 2008
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definition: BB-type quantum catastrophe

= the motion through the EP spike in parametric space D

realization via the prototype benchmark:

A = B = . . . = 0, positive t ≡ r2, anti-time z =
√

1− r2

grid points in closed form:

(N − 1)r , (N − 3)r , . . . , 1,−1, . . . ,−(N − 1)r

the theory is non-adiabatic: the Coriolis force

(1) is added to Hamiltonian, G (t) = H(t)− Σ(t)
(2) may be large, Σ(t) = iΘ−1(t)Θ̇(t) is explicit
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the explicit constructions

♠ the starting point: the ambiguity of the generic Θ(t)

reason: N−parametricity of the spectral-like representation:

Θ =
N∑

n=1

|n〉〉κ2
n 〈〈n|

illustration: the N = 2 case: κ1 = κ+ = sinα, κ2 = κ− = cosα,
0 < α < π/2 (may be also time-dependent, α = α(r));

Θ = Θ(2)(α) =

[
1 + r cos 2α −

√
1− r2

−
√

1− r2 1− r cos 2α

]

= diagonal when r → 1 (⇒ the end of “inflation period”).
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the second main result:

eigenvalues of any Θ(N=2)(α) are never equal (= inflation anisotropy),

θ± = 1±
√

1− r2 sin2 2α .

♥ at N = 2, there exists a privileged Θ(2) with minimal anisotropy

“equal weights” κ2
+ = κ2

−, i.e., α = π/4

. such a metric is unique! .

at the end of inflation the anisotropy vanishes

= this result is valid at all N
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♠ the message: inflation terminates, no anisotropy beyond t = 1:

0

10
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30

40

50

60

0.2 0.4 0.6 0.8 1

r

The N = 4 sample of the eigenvalues of our metric. The inflation (= the
regime of anisotropic metric) ends in a finite time t = r2 = 1.
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