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Non-Hermitian Maxwell Operators, Lasing, Coherent

Absorption and PT-symmetric Scattering

A. Douglas Stone Applied Physics, Yale University,
PHHQP, Paris - 8/29/12

This talk is 80% non-PT, it is mainly about non-
hermitian (NH) classical electrodynamics
Classical NH wave equations have familiar NH
singularities, i.e. poles and EPs — will talk about
both, emphasis on pole “motion” (new)

Field quantization effects neglected, except laser
linewidth, not single photon QM optics
Everything is observable despite NH theory

. Application of NH theory of practical importance

— “old” laser theory limited — new phenomena



Non-Hermitian Maxwell Operators, Lasing, Coherent
Absorption and PT-symmetric Scattering

Will focus on non-unitary S-matrices, not NH Hamiltonian

1. three cases:

gain => Lasing

loss => Coherent Absorption
Hakan Tureci— Princeton 8aiN+loss (PT) => Laser-Absorber
Stefan Rotter — TU Wien 2. Laser = nonlinear “NH”
Arthur Goetschy - Yale wave equation (SALT) — analyzed
Alex Cerjan - Yale through linear CF basis set
Hui Cao- Yale (expt) 3, PT-symmetric EM scattering —

symmetry-breaking in S-matrix

Collaborators

Y.-D. Chong — Nanyang
Li Ge — Princeton




Principle of the laser:

Pump energy in to create “an inverted
state” - now send in light wave

|- + Ez + E2 E2
M
e~ __—— e~__——
e—~__——
M M

Stimulated emission beats absorption => amplification!

medium has complex amplifying — ik(n-in")x +n’x
index of refraction: E = Eoe ~ €

Light Amplified by Stimulated Emission of Radiation



It’s not a laser yet

A laser is a light source, not an amplifier!
Need to put the atoms in a cavity to trap light

outcoupling loss = gain =>Re*?"L = 1 => threshold
A Laser is self-organized electromagnetic oscillator (feedback),
not all modes of cavity contribute to lasing spectrum

Light Oscillator by Stimulated Emission of Radiation



Modern challenge for laser theory

Complex laser cavities and micro/nano lasers

cavity

The strangest one,
aggregate of ZnO
nanoparticles
No mirrors at all!
=> Random Laser






Openness and complexity: Lasers as scattering systems
VZ +n?(r)k?|E(r) =0

n(7) = \/Ec(f,:’) + Ae,y(7) Ag,,n(r) complex =>non-hermitian
for real k, n,<0 (amplifying)

S(n(f)k) QL= ﬁ - amplifying, non-linear scattering

problem, Ag,(E) = x(E)

non-unitary T
Q Can neglect the non-

linearity to find lasing
thresholds (=singularities)

M

CAVITY, £(x)

GAIN,
Asg(x) ~ pump




Threshold lasing modes and spectral singularities

S(n(Mk) &=, ® 37—

Laser: lasing mode 3 23 TLM m_;
goes out, nothing in 2 , —
. Z 15 ‘eikux‘Q

= S -> 00 =pole = - -
Can this happen for real k?g — T
Passive cavity, NO: n = (g )2, 03 —
S unitary, poles complex. 05 . I : LS
Simple example: 1D uniform </a L‘;phys’i‘ccaels'
dielectric CaVity:@ pump complex sine inside, purely outgoing outside

o Kout Now add gain

k= o=l 4 :> medium + pump,

E € =€+ Ag,

Overall amplitude of TLM will be determined by non-linearity



TLM vs. Resonances/Quasi-modes

x=0

x=L

ax@‘L — Z.kSO(L)

= Rl

—> (6323 + ngnkz)gpm (gj) — () on-herm BC,

=lasing freq

(ai T ngkgn)gpm (.CU) =0 unknown)

c;Om(m) — Sin(nkmx) \ | quivalent

|

Threshold lasing modes/constant-flux sfates

(024 2K om() =0

|

resonances/quasi-modes

Resonances/quasimodes # physical solutions of
Max. Eqs — describe scattering in passive cavity

TLMs are physical solutions of Maxwell’s
equations at threshold, for passive cavity plus

(b) 3_ T [ T | T ]
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ol 2 - |
sk -
s J
0.5 —
. | 1 | P
% 0.5 1 1.
(a) 3 —

ol QB State B
S .

| |

OO 0.5 1

L5 appropriate gain medium (stabilized by NL)



TLMs and Constant-Flux states

Countable set of TLMS, each with

specific (k,, x;*, ,(r)) — not a basis set

To expand arbitrary outgoing function at k ,
Define non-hermitian basis set of constant-  .®
flux CF states =

complex CF e-values

oo o rael o LA L
Relk 1]
\ outgoing BC \ ™

\ / <= I n=1.5 —>

A% E(7) Tk Wtns (7, k) = npr
T L e
OEBFlete set of biorthogonal fcns

Used to solve non-linear problem s

Exceptional pts in CF spectrum (Rotter) 12 13 14 1I5Re[k]1‘6

-08 1




no quant of E,

Semiclassical lasing theory nospont emission

Cavity arbitrary no laser linewidth

e.(x) O0? 4 O?

2 ath(Xa t) C_Qﬁp ( )

Gain medium:2-level atoms, w,= ck, (c=1)

V?E(x,t) —

P =ngTrpp Polarization
1(»
D = ng(poo — p11) Inversion

. o 5 .
Damped, driven, non-linear system €CE+ v E—I- 47TP+
Arbitrary cavity, gain/pumping
configuration, openness P+ = ( Wq — ’}/J_ P+ — Z!g.
Stu.dy.only steady-‘state multi.- D 7||(DO - D) + 2 - E-l-*P-}-
periodic soln (multi-mode lasing) / 7‘

v =1/Ts, v =1/T1

Doy = pump strength

Maxwell-Bloch equations 9 ‘ _
Haken(1963), Lamb (1963) g° = dipole coupling




SALT Outline

J Relation to S-matrix picture: At threshold D => D,
Pt = (—iwg —v1)PT —i|g|*ET D,
[V? + (e + Ay )k?]ET =0
—1Doy1
i(ka — k) + 71

J Above threshold, hole-burning + mode competition,
lasing field reacts back on the cavity, inversion eq.

A€y = x4 = = Doy

D =7 (Do — D) + 2i(ETP** — E**PT)

J Approximation for multi-mode lasing => dD/dt=0

| 4 f modes).
(neglects beating of modes). .. YL ==



Non-linear Spatial Hole-burning in Laser emission (from integration of MB equations)

Tine=0

E field mam
Polarization maam

Inversion

1.2

Active cavity
with laser
emission is
different from
the passive
cavity

Solved by SALT
(with approx)



Non-linear SALT eq

At threshold y

[VZ + (€ + Dovu) k) By = 0

pump

. 36 . 38
Above threshold, steady-state, non-linear coupled wave equations Relk ]

/ \ .
/y —

,u

ol

Im[k

i(ka _ k,u) -+ YL

uations

[V? + (ec + Do)kl By = 0

~

Dy

Dy

T+ Y B ()2 1

=>Steady-state Ab initio Laser Theory:
Thresholds, frequencies, amplitudes, output
power, emission patterns, internal fields —
noise properties later

Laser intensity (a.u.)

Im(k)
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N
SALINE SOLUTION: E(7,t) = Re[» W, (#)e "]

v (- 22w =0 B, () — 0, 0)

U, (7) = Z abt un (7, k)

Expand soln in basis set of TLMs

Use blorthogonallty of {u,}

[v2+(Qpﬁ+whugFu§yﬁ]mxﬁk):o
\ outgoing BC DO Z nn’an’ — au

T%L&/WFUMM>(%M
C

nn' —
M 1+ h(r)
Can also solve non-linear non- Truncate sum on CF states,
hermitian e-value problem One term at threshold,

directly (Liu and Johnson, MIT) rapidly convergent above



Why SALT is good for you

J No time integration, orders of magnitude faster
[ Treats openness of the cavity exactly

[ Treats non-linear interactions to infinite order
J Formulated and applicable to arbitrary cavity

J How well does it work?



Comparison of SALT and Maxwell-Bloch: intensities

35

OV)
o

Modal intensities

o

N
O

N U L\
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O

2 n un s—H¥

4 6
Pump strength D0

8 10

Total output

1 Ge,Tandy,ADS,
Tureci, Optics
Express, 2008

No SIA approx!

Mode 2

Mode 3



SALT and FDTD agree for 1D random laser

10 i Modal Field Intensities inside cavity . é o
' 60 - Also agrees for 2D photonic P
50 - crystal laser and for coupled o
sl u M ﬂ ﬂ - cavity lasers (Rotter) o
6 _ 10 .LV. ttﬂl‘ < &
4r ' 5 mode lasing
21 -"'..‘
. -'......' T 3
o ...c';.::..:::::::
st P T
O":::M”:.';;....'.': ......
0.05 0.10 0.15




Laser Linewidth from SALT (chong, Aps, prL, 2012)

History: Schawlow-Townes, Lax, Petermann, Henry, Haus, Siegman, Woerdman, Goldberg...

2
A héd()’yc “one photon”
ST —
2P,,

Petermann

Corrected ST formula (non-herm)
2
Aw = K [np(-T)/07

2P0ut
_ . ~ Weknows,and | >
Essence of SALT: real lasing pole in S-matrix from SALT!

diverging e-value G A I'g P
o >0 T wou) i, B2 = | |2

S() x hWL
) S~ |7) ) (U™

Classical output field in
channel i, find QM flucts




Output power (a.u.)

0; =

Q) =) Si()
J

i(b! — b;)

Generalized laser linewidth
+th

2B;

]
2 gain medium, £=1.2

e=9 —

A A " 0 A ' L 1
4 6 8 10 0 2 4 6 8 10
Normalized pump

dT —Q).

Linewidth (a.u.)

0.2

0.1

FLWi

hﬁ)=l3—-w @

t
/ d' e TP P(¢)

\PL\?\ huwr
|x11Tx11L\2' 2P

np]

“There is no Petermann factor”!

Violation of 1/P behavior, stems from
dispersion of the gain medium

250

(a) e

200
150
100

sof oF S

0

1 2 3 4 5 0 1 2 3 4 5
Inverse modal power, 1/P (a.u.)



Why are we finding smaller linewidth than STP?

Im(k)
A -
’,’ \
b\ gain curve
\
! 3
! \
! 3
- II, \~ _______
Re(k) < >
.. —® < >®
Distance larger,
_ . residue smaller,
Residue of pole will depend linewidth smaller
o ?
v on distance from others Effect of pole motion

Move from poles of S-matrix to zeros (poles of S)



Coherent perfect absorption: EM S-matrix under time-reversal (CC):

S(n(Mk) =5 TR= Sn*(MNk) 3" =g

Gain => Loss, Incoming <> Outgoing
=> Also an allowed scattering process

LASER: B, finite, &;, >0 TR-LASER: B~ finite, a”_, -> 0

— out

‘ Coherent Perfect Absorber (CPA)

CPA theorem: For every lasing mode at threshold,
with frequency w, and complex (amplifying) index
n(r), there exists a CPA mode at w with complex

(lossy) index n*(r) Chong et al., PRL 105, 053901 (2010),



Poles and zeros of S-matrix

TR symmetry w/o ‘ kpole =q— 1K
loss or gain

Erero = q+1K

*f

® ’Zeros
% (th) (th) . (th)
o

Niase — T — g

Im(k) ¢

@ —O—0O

/threshold lasing mode, w, = ck,

° ?; Re:(k)

o
® Increase gain (Im n < 0)

Poles (real n) ®




1)

2)

CPA threshold

L@ wwi-smn BRI

Im(k) -

Continuity
argument — for
each resonance
there will be a

(th) (th)
Nepa = Ny @m

@ Increase absorption (Im n > 0)

O
Real-frequency zero at wy

/ (“Coherent perfect absorber”)

® /Zeros

[
O

o
N\

CPA resonance 0
Unlike laser you

can access all of

them, even low-Q

Re(k)

b

Poles (real n) .&

Oo—e



CPA exists in arb. complex system

random/complex “cavity” (b) w/o gain/loss
A A A AA A
ﬁ AN A D A AA AA AAA .
CPA
A Zeros|
A Poles
lasing
A
:AAA‘AA‘ A:AAAAA
A A A A A
A
29 29.5 30 30.5 31
Re[wm]

Eigenstates of S-matrix

S (e )dsg wittpgain S

] ac-%;rjansgﬁ fec>t|1_
SO nVsV':c O

Other channels non-singular




Was this known? Yes and no

Single channel case well known

mirror single-channel input

\%;B = =~ 5

Did not use relation to lasing.
1-channel case not sensitive to phase or amplitude of incoming beam

Look at two-channel: simplest one with optical control

of absorption
G o noboy) (B

-0 g Y
B1 BZ Absorbing vs. scattering eigenvector

Can demonstrate in intrinsic Si near bandgap (Chong et al., PRL 2010)




Experlmental demonstration

Phase Control

o
o

©
N
l"

o
N

Output intensity

(@)

998 999 _ 100
Wavelength (nm)

©
(o]
~

W. Wan, Y. D. Chong, L. Ge, H. Noh,
A. D. Stone, H. Cao, Science, 2/18/11

“Low-Q Fabry- - .
Perot etalon”  Varying relative

phase 0 -> 2m at
various A



Coherent control of absorption in disordered media

picture of CCR, AFP, 2-
channel CPA

(a) \ — / / Beyond ray interference
.o .

/ Time-reverse wave chaos,

Radiation can
penetrate a
normally opaque
outer shell to be
fully absorbed in
central region!



Sub-wavelength random CPA

Time-reverse of a
laser with a highly
localized gain
medium — “beats”
diffraction limit,due
to scattering

Sub A object could
note lase — not
enough gain

A ,J Very lossy objects
' are easy to find!

ce n'est pas “Leffect
Fink”. Steady-state,
d passive sink, narrow
band




Beyond CPA: Coherent enhancement of absorption

Y. Chong and A. D. Stone, PRL 107, 163901 (2011)

[ CPA, like lasing, occurs at discrete points in the (loss, w) parameter space; if
loss can be continuously varied, occurs at discrete narrow w bands
 Is it possible to strongly enhance absorption at any w, if input field tunable?

[ Yes for N-channel diffusive scatterer
. — L —-

"3 Wb e=m +oetin

< >
Weak absorptivity can lead to strong absorption with right input wave

O Study e-value distribution of lossy S-matrix, for reflection geometry can prove
J.P.D. is the Laguerre Ensemble of random matrix theory (Beenakker, Chalker, 1996)
U Can show (Edelman, 1988), that <R... >~ 1/(2N2I/I.); can be much less than one
when <R> ~ 1.



Hidden Black: Coherent Enhancement of Absorption

0.4

0.2

(1)
N

0
37.

74

’J’\_\'\
e gy

495 37.5 37.505

Frequency

_ “white”
channels

“black”
channels



PT-symmetric wave equations

* Origin: Bender et al. (1998), non-hermitian QM with PT
symmetry, {V(x) = V*(-x)}, real spectrum possible

* Exists spontaneous PT-symmetry breaking transitions,
spectrum complex, unphysical in QM.

* Physical realization in optics (D. Christodoulides,G. Salamo,D.
Kip,M. Segev, focused on waveguides and PT lattices.

* Singularities in PT scattering (simultaneous lasing and coherent
perfect absorption) — Longhi, Mostafazadeh, Schomerus

(Longhi, PRA 82 031801 (2010), Mostafazadeh, PRA 80 032711
(2009), Schomerus, PRL 104 233601 (2010))

PT singularities and PT symmetry breaking:

Y.D. Chong, L. Ge, ADS PRL 106, 093902 (2011).
Generalized Unitarity Relations in 1D scattering:

L. Ge, Y. D. Chong and A. D. Stone, PRA, 85, 023802 (2012).

|T — 1| = v/ R; R (confirmed in circuits by Kottos group)



S-matrix approach to PT-structures

No mapping to paraxial wave equation, assume full wave equation has PT symmetry,

analyze resulting S-matrix PT [ s s |
’}”L(’f’)] p— fn/(fr) 1D cases studied:
Cannata et al.,
PT-heterojunction Mostafazadeh.
— -:... ..o.. ‘..:.:o < .
- Loss 3 .Gg:il"? —> PT-disk

- L—>
PTS(nk)PT = S~ (nk) e
= Det(S) = e'? But, Sis not unitaryll
S(nk) - ¢ = sy = S(nk)-PTy = —PT¢

S-matrix eigenstates come in “unimodular pairs”: |s;*s,| =1



Spontaneous symmetry-breaking in S-matrix

S(nk) - = syp = S(nk) - PTy = i*PTﬂ

S
Two possibilities:

PY PTw — Cw Scattering eigenstates ‘S‘ — 1

preserve PT symmetry

=> PT- symmetric or unimodular “phase”

1
° PT% # Cﬂ Scattering eigenstates 3_* # S, ‘5‘ # 1

break PT symmetry

S-matrix eigenstates come in pairs, with |s,| = |s_|?, one
amplifying, one attenuating — broken symmetry “phase”.



Loglo[scattered intensity]

1.5

0.5

-0.5

Simple 1D PT-symmetric heterojunction

2-channel case, similar to CPA
geometry, 2 e-values either uni-
modular or amplifying/attenuating

Either amplifying or attenuating
=> Interferometric amplifier-
absorber

0.2F
01}
L, . »
01F
02F
1418
~F
unimodular {
PT- broken ) é
17 ' ' '
0 1410 1420 1430

kL

1440



Simple HS: CPA on steroids

CPA: strongly scattering or perfectly absorbing
PT- CPA: strongly amplifying or absorbing

[ phase transition with 5 1 x107° |

increasing n, or w T

4 transition at n, =0.005 =0 PT=broken phase
at L= 200 um in simple HS

requires a lot of gain! < = Im[n] 4.9
O phase boundary
depends onlv weaklv

w. = In(2ng/7)c/7L.

Temporal analog recently observed, 1440 | 14'60 | 14I80 | 1500
Regensburger et al.




Exact PT “no-go” theorem
Comment: Zyablovsky et al., Arxiv 1205.2820

* Proof: g(r,w) = €*(-r,w) not possible over any finite region of the real w
axis (uses analyticity in u.h. plane, uniqueness of analytic continuation)
* PT symmetric S-matrix only exists at finite discrete set of freqgs for fixed
external parameters (e.g. pump)

* Can only have exact PT transition varying e.g. pump and retuning, not
by varying freq at fixed parameters.

* When dispersion is weak can have good approx PT over substantial
interval, expt’l problem depends on system.

* At least one expt already show PT behavior as freq as varied (PT
microwave electronics, Kottos group).

* Lasing happens at discrete fregs, so exact CPA-laser is possible.



Robustness to dispersion

Add 0.1% dispersion L
over 10 FSR < > .
) o '’
n n*
eigenvalue “measurement” balanced inputs “measurement”
2 " 103 4
I I
15 ¢ | I
I I
I
1 : 12+ :
05 : :
|
0 UL {1 '} :
YVVV A :
05} : il | V !
I
1 : 10°
I
15} I
I
-2 ‘ 10'1 A :l L
900 950 1000 1050 1100 900 850 L = L

Will assume exact PT symmetry as freq varies henceforth



More complex heterostructures

[D) . x 10~ 3 L lossless
— 6.5
=
E 6|
55
P —_ = = - -
SI = i
45— —

1440 1450 1460 1470 1480 1490 150(

J Re-entrant due to resonance,
at transmission resonance perfect
coupling suppresses PT transition

wlL
Re-entrant in w, but notin t

Enhanced symmetry
breaking possible, but trivial



L. Ge, Chong

PT transitionin Svs. H  cta,pra

2012

I LOSS GAIN I

=> Hamiltonian PT system, discrete real or complex pair e-values

(a)
0.5
o More work on
= n o - this from
'g' Oloo m m ooo m 0 oo o oo m ooo 4 Rotter group,
- i} o - _ e.g. effect of
BCs
-0.5 1490 1500 15110 1520 1530
(b) Re“ku]
6 ‘ | '
D 0
§§1o -
1/6 1

1490 1500 1510 1520 1530
(c) K



Singularities in broken PT phase

Recall oscillations in broken PT phase of

— Gain |<—
< LOSsS Gain —> simple heterostructure
-€ L ' _3
x10
5-1 1 1 1 | |
%o
®o, CPALL
o) AS
_ n 5.0 P00, tRPR
. . o Uo

Singular|pts jn|P[l broken(phase: "Poo,

D 1 II | o0y >
|s, | - 7 >0\ (PA-Laser "By

." Co
Don’t hit thesevpoints uhless you 4.9 I
tune y { RN
Singularitiés|afe|e ‘ aniced by 4.8\
adding a high-Qlcavit) ' ® =~ w, + (¢/7L)In[(n2 + 1)/(n2 — 1)].

1 1 \

1420 1430 1440 4 - 7 I I I I I

frequency 1440 1460 1480 1500

wL




Mirrors move singularities but not the phase boundaries

Loss - Gair
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Heterojunction CPA laser singularities: poles and zeros

0.5 ] _ |
j —£ Loss G.afi-n"<;—:
3 i ° C - L -
-
B0tk e N
cpa-laser oree:
g A A p A kpole = k Jero
T i u u . = - -
: ’ M Non-trivial
-0.5 O O - sole motion
related to
EP

Signature: FSR doubles to 2mnt/L,resonances shift by %2 an FSR
Laser with zero net single-pass gain!



Non-trivial pole motion beyond PT: Partial pumping

Nn=1 .
<}:J iR om

Non-uniform pumping
leads to extra lasing
modes!

Where do they come

from?

Surface Modes

Conventional Modes

n=l1 E

x=L

Uniform passive dielectric cavity,
pumped only in one section

(@) n= ThE in; )
= 2 =N l"""i n, n=1
— 1}= —
o \MANAAARARANAN
5 osf WW\I\IW\NW\N\NWv'b’U‘d‘w"JVk"uu’h’ :
0 0 2 4 6 5 10
(b) X (um)
1k N
AR \
o "\,"'l,l"ll"mlmﬂﬂ‘fl‘f‘f‘lf\f‘lm
i’ 05 '4“U‘.".'\”.'UJJ\'HH -
O— 2 4 ( )é 5
o X (Um
(€) 10 % e — s S
& 10" i
02 X ® K R XK X ® K X
043 14.5 15 15.5 16



Im[K] @m'™)

4t 1(a) 1 (b) :
ol uniform ’ ' ,—""_Q_ ““\\
| pump I '. -
1] R DY I S Y
- m B = SM N
-2t pole 1 Pole 2]
) | (d)
2| %} |
|- —_— |
. N
Of--4--mmmmmnnn ” T I i Bt SESERE
h - : g .' : i.
ol ' . ' .
C (e) ) |
)| |
| \ \
0 eSS W e s “"E-"'_""“‘::% """"""""" ? """""" -
.' E O \\_ —
-2t : :

Pole motion and EPs

X

0 x=Lg

A’ -

Exceptional point!

poles coalesce at the EP,
role reversal

Two modes associated with
pole #1 move closer

Two modes annihilate in
inverse bifurcation —> 3
modes reduced to one

gain-loss ratio equal, half

modes gone, doubling of
FSR, % FSR shift (PT)



Summary

* Maxwell operators with gain, loss and gain+ loss give rise
to interesting and novel non-hermitian physics.

* Singularities (poles and EPs) control many of the
phenomena

*Non-linear ab initio (SALT) theory of lasing, based on
S-matrix, quantitative solution of multimode lasing.

* Non-linear S-matrix gives quantum fluctuations as well

* For every laser there is a coherent perfect absorber
(related to zeros of S-matrix) — can generalize to coherently
enhance absorption

* PT S-matrix, poles and zeros coincide on real axis: CPA-
Laser

* Non-trivial pole motion and EPs give rise to novel modes





